Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add filters

Document Type
Year range
1.
ACS Appl Mater Interfaces ; 13(50): 60612-60624, 2021 Dec 22.
Article in English | MEDLINE | ID: covidwho-1569206

ABSTRACT

New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Nasal Mucosa/virology , Polymers/chemistry , RNA, Viral/metabolism , SARS-CoV-2 , Biofouling , Biological Assay , Biosensing Techniques , Humans , Ions , Limit of Detection , Mass Spectrometry , Nasopharynx/virology , Phosphoproteins/chemistry , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling
2.
J Hazard Mater ; 425: 127923, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1536650

ABSTRACT

The metallopeptidase angiotensin-converting enzyme 2 (ACE2) is the SARS-CoV-2 receptor required for viral entry based on its specific recognition of the spike protein receptor binding domain (S_RBD) on SARS-CoV-2. We constructed a human ACE2 (hACE2)-based peptide pair by ligating discontinuous key residues involved in the hACE2-S_RBD interaction. We firstly performed in silico simulations to identify a 12-mer and 15-mer peptide pair with capability to bind to the SARS-CoV-2 S_RBD via different binding sites. Then, the bio-layer interferometry validated the specific interactions between the peptides and S_RBD, with affinities at the nanomolar level. Lastly, we developed a colorimetric sandwich-type bioassay based on S_RBD-specific peptide-modified gold nanoparticles and found the colorimetric bioassay offered fast (<30 min), simple, and sensitive detection of S_RBD protein at levels as low as 0.01 nM (0.26 ng mL-1) in SARS-CoV-2. The linear signals ranging from 105 to 107 virus copies mL-1 were achieved in typical types of environmental waters spiked with lysed SARS-CoV-2 pseudovirus. The technology can serve as a beneficial supplement to the routine virus nucleic acid detection in environment media and wastewater treatment.


Subject(s)
Colorimetry , Metal Nanoparticles , SARS-CoV-2/isolation & purification , Angiotensin-Converting Enzyme 2 , Biological Assay , COVID-19/diagnosis , Gold , Humans , Peptides , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism
3.
Bioanalysis ; 13(23): 1723-1729, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1497587

ABSTRACT

Polymerase chain reaction (PCR) is widely used in various fields of laboratory testing, ranging from forensic, molecular biology, medical and diagnostic applications to a wide array of basic research purposes. COVID-19 infection testing has brought the three-letter PCR abbreviation into the vocabulary of billions of people, making it likely the most well-known laboratory test worldwide. With new modalities and translational medicine gaining importance in pharmaceutical research and development, PCR or more specifically, quantitative PCR (qPCR) is now becoming a standard tool in the (regulated) bioanalytical laboratory, driving the bioanalytical community to define best practices for method development, characterization and validation. In absence of specific guidance from health authorities, qPCR may be vulnerable to scope creep from pharmacokinetics (PK) assay validation as defined in bioanalytical method validation guidance/guidelines. In this manuscript, the European Bioanalysis Forum builds a rationale for applying context of use principles when defining requirements for qPCR assay performance and validation criteria.


Subject(s)
Biological Assay/methods , Polymerase Chain Reaction/methods , Europe , Humans , Research Design
4.
Chem Commun (Camb) ; 57(82): 10771-10774, 2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1442812

ABSTRACT

We have established a new protocol for detecting severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) using a peptidomimetic to covalently detect a viral marker protease.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , SARS-CoV-2 , Viral Proteases/isolation & purification , Biological Assay/economics , Biosensing Techniques/economics , COVID-19/blood , COVID-19/virology , COVID-19 Testing/economics , Cost Savings , Electrochemical Techniques/economics , Humans , Peptidomimetics/chemistry , Tyrosine/chemistry , Viral Proteases/chemistry
5.
JAMA Netw Open ; 4(9): e2128534, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1441922

ABSTRACT

Importance: Currently, there are no presymptomatic screening methods to identify individuals infected with a respiratory virus to prevent disease spread and to predict their trajectory for resource allocation. Objective: To evaluate the feasibility of using noninvasive, wrist-worn wearable biometric monitoring sensors to detect presymptomatic viral infection after exposure and predict infection severity in patients exposed to H1N1 influenza or human rhinovirus. Design, Setting, and Participants: The cohort H1N1 viral challenge study was conducted during 2018; data were collected from September 11, 2017, to May 4, 2018. The cohort rhinovirus challenge study was conducted during 2015; data were collected from September 14 to 21, 2015. A total of 39 adult participants were recruited for the H1N1 challenge study, and 24 adult participants were recruited for the rhinovirus challenge study. Exclusion criteria for both challenges included chronic respiratory illness and high levels of serum antibodies. Participants in the H1N1 challenge study were isolated in a clinic for a minimum of 8 days after inoculation. The rhinovirus challenge took place on a college campus, and participants were not isolated. Exposures: Participants in the H1N1 challenge study were inoculated via intranasal drops of diluted influenza A/California/03/09 (H1N1) virus with a mean count of 106 using the median tissue culture infectious dose (TCID50) assay. Participants in the rhinovirus challenge study were inoculated via intranasal drops of diluted human rhinovirus strain type 16 with a count of 100 using the TCID50 assay. Main Outcomes and Measures: The primary outcome measures included cross-validated performance metrics of random forest models to screen for presymptomatic infection and predict infection severity, including accuracy, precision, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUC). Results: A total of 31 participants with H1N1 (24 men [77.4%]; mean [SD] age, 34.7 [12.3] years) and 18 participants with rhinovirus (11 men [61.1%]; mean [SD] age, 21.7 [3.1] years) were included in the analysis after data preprocessing. Separate H1N1 and rhinovirus detection models, using only data on wearble devices as input, were able to distinguish between infection and noninfection with accuracies of up to 92% for H1N1 (90% precision, 90% sensitivity, 93% specificity, and 90% F1 score, 0.85 [95% CI, 0.70-1.00] AUC) and 88% for rhinovirus (100% precision, 78% sensitivity, 100% specificity, 88% F1 score, and 0.96 [95% CI, 0.85-1.00] AUC). The infection severity prediction model was able to distinguish between mild and moderate infection 24 hours prior to symptom onset with an accuracy of 90% for H1N1 (88% precision, 88% sensitivity, 92% specificity, 88% F1 score, and 0.88 [95% CI, 0.72-1.00] AUC) and 89% for rhinovirus (100% precision, 75% sensitivity, 100% specificity, 86% F1 score, and 0.95 [95% CI, 0.79-1.00] AUC). Conclusions and Relevance: This cohort study suggests that the use of a noninvasive, wrist-worn wearable device to predict an individual's response to viral exposure prior to symptoms is feasible. Harnessing this technology would support early interventions to limit presymptomatic spread of viral respiratory infections, which is timely in the era of COVID-19.


Subject(s)
Biometry/methods , Common Cold/diagnosis , Influenza A Virus, H1N1 Subtype , Influenza, Human/diagnosis , Rhinovirus , Severity of Illness Index , Wearable Electronic Devices , Adult , Area Under Curve , Biological Assay , Biometry/instrumentation , Cohort Studies , Common Cold/virology , Early Diagnosis , Feasibility Studies , Female , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza, Human/virology , Male , Mass Screening , Models, Biological , Rhinovirus/growth & development , Sensitivity and Specificity , Virus Shedding , Young Adult
6.
PLoS Negl Trop Dis ; 15(8): e0009101, 2021 08.
Article in English | MEDLINE | ID: covidwho-1416858

ABSTRACT

BACKGROUND: In 2005, Bangladesh, India and Nepal agreed to eliminate visceral leishmaniasis (VL) as a public health problem. The approach to this was through improved case detection and treatment, and controlling transmission by the sand fly vector Phlebotomus argentipes, with indoor residual spraying (IRS) of insecticide. Initially, India applied DDT with stirrup pumps for IRS, however, this did not reduce transmission. After 2015 onwards, the pyrethroid alpha-cypermethrin was applied with compression pumps, and entomological surveillance was initiated in 2016. METHODS: Eight sentinel sites were established in the Indian states of Bihar, Jharkhand and West Bengal. IRS coverage was monitored by household survey, quality of insecticide application was measured by HPLC, presence and abundance of the VL vector was monitored by CDC light traps, insecticide resistance was measured with WHO diagnostic assays and case incidence was determined from the VL case register KAMIS. RESULTS: Complete treatment of houses with IRS increased across all sites from 57% in 2016 to 70% of houses in 2019, rising to >80% if partial house IRS coverage is included (except West Bengal). The quality of insecticide application has improved compared to previous studies, average doses of insecticide on filters papers ranged from 1.52 times the target dose of 25mg/m2 alpha-cypermethrin in 2019 to 1.67 times in 2018. Resistance to DDT has continued to increase, but the vector was not resistant to carbamates, organophosphates or pyrethroids. The annual and seasonal abundance of P. argentipes declined between 2016 to 2019 with an overall infection rate of 0.03%. This was associated with a decline in VL incidence for the blocks represented by the sentinel sites from 1.16 per 10,000 population in 2016 to 0.51 per 10,000 in 2019. CONCLUSION: Through effective case detection and management reducing the infection reservoirs for P. argentipes in the human population combined with IRS keeping P. argentipes abundance and infectivity low has reduced VL transmission. This combination of effective case management and vector control has now brought India within reach of the VL elimination targets.


Subject(s)
Insect Control/standards , Insect Vectors/parasitology , Insecticides/administration & dosage , Leishmaniasis, Visceral/prevention & control , Phlebotomus/parasitology , Animals , Biological Assay , Female , Humans , India/epidemiology , Insect Control/methods , Insecticide Resistance , Leishmaniasis, Visceral/epidemiology , Psychodidae/drug effects , Pyrethrins/administration & dosage
7.
J Virol Methods ; 298: 114293, 2021 12.
Article in English | MEDLINE | ID: covidwho-1415627

ABSTRACT

The qualitative ID Now COVID-19 assay combines claimed performance and ease of use that seem to position it as a reliable test for urgent patient management. However, the declared limit of detection (LOD) of 125 genome equivalents/mL is not confirmed by the published studies, which observed a range of LOD varying from 276 to 20.000 copies/mL. We decided to establish the LOD value on more robust basis using serial dilutions of a SARS-CoV-2 culture supernatant sample of defined concentration. Afterwards, we tested the analytical performances of the assay with 23 QCMD external quality control measurements. Hence, taking into consideration the additional dilution in the sample receiver cup, we found a lower 95 % LOD of 64 copies/mL. For its intended use and with the new established LOD, ID Now COVID-19 proved to be a suitable test for the diagnosis of COVID-19 in contagious patients, as proposed by the latest Belgian recommendations.


Subject(s)
COVID-19 , Biological Assay , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Limit of Detection , SARS-CoV-2 , Sensitivity and Specificity
8.
Chem Commun (Camb) ; 57(79): 10222-10225, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1408635

ABSTRACT

We developed a one-minute, one-step SARS-CoV-2 antigen assay based on protein-induced fluorescence enhancement of a DNA aptamer. The system showed significant selectivity and sensitivity towards both nucleocapsid protein and SARS-CoV-2 virus lysate, but with marked improvements in speed and manufacturability. We hence propose this platform as a mix-and-read testing strategy for SARS-CoV-2 that can be applied to POC diagnostics in clinical settings, especially in low- and middle-income countries.


Subject(s)
Antigens, Viral/chemistry , Aptamers, Nucleotide/chemistry , COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , SARS-CoV-2 , Biological Assay , Carbocyanines/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Phosphoproteins/chemistry
9.
Signal Transduct Target Ther ; 5(1): 220, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-1387194
10.
EBioMedicine ; 70: 103502, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1330765

ABSTRACT

BACKGROUND: Since 2020 SARS-CoV-2 spreads pandemically, infecting more than 119 million people, causing >2·6 million fatalities. Symptoms of SARS-CoV-2 infection vary greatly, ranging from asymptomatic to fatal. Different populations react differently to the disease, making it very hard to track the spread of the infection in a population. Measuring specific anti-SARS-CoV-2 antibodies is an important tool to assess the spread of the infection or successful vaccinations. To achieve sufficient sample numbers, alternatives to venous blood sampling are needed not requiring medical personnel or cold-chains. Dried-blood-spots (DBS) on filter-cards have been used for different studies, but not routinely for serology. METHODS: We developed a semi-automated protocol using self-sampled DBS for SARS-CoV-2 serology. It was validated in a cohort of matched DBS and venous-blood samples (n = 1710). Feasibility is demonstrated with two large serosurveys with 10247 company employees and a population cohort of 4465 participants. FINDINGS: Sensitivity and specificity reached 99·20% and 98·65%, respectively. Providing written instructions and video tutorials, 99·87% (4465/4471) of the unsupervised home sampling DBS cards could be analysed. INTERPRETATION: DBS-sampling is a valid and highly reliable tool for large scale serosurveys. We demonstrate feasibility and accuracy with a large validation cohort including unsupervised home sampling. This protocol might be of big importance for surveillance in resource-limited settings, providing low-cost highly accurate serology data. FUNDING: Provided by Bavarian State Ministry of Science and the Arts, LMU University-Hospital; Helmholtz-Centre-Munich, German Ministry for Education and Research (project01KI20271); University of Bonn; University of Bielefeld; the Medical Biodefense Research Program of Bundeswehr-Medical-Service; Euroimmun, RocheDiagnostics provided discounted kits and machines.


Subject(s)
Antibodies, Viral/immunology , Biological Assay/methods , COVID-19 Serological Testing/methods , COVID-19/blood , COVID-19/immunology , Dried Blood Spot Testing/methods , SARS-CoV-2/immunology , Asymptomatic Infections , Cohort Studies , Humans , Longitudinal Studies , Sensitivity and Specificity , Specimen Handling/methods , Vaccination/methods
11.
Bioanalysis ; 13(15): 1205-1211, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1317298

ABSTRACT

The COVID-19 pandemic challenged pharmaceutical and bioanalytical communities at large, in the development of vaccines and therapeutics as well as supporting ongoing drug development efforts. Existing processes were challenged to manage loss of staffing at facilities along with added workloads for COVID-19-related study support including conducting preclinical testing, initiating clinical trials, conducting bioanalysis and interactions with regulatory agencies, all in an ultra-rapid timeframes. A key factor of success was creative rethinking of processes and removing barriers - some of which hitherto had been considered immovable. This article describes how bioanalysis was crippled at the onset of the pandemic but how innovative and highly collaborative efforts across teams within and outside of both pharma, bioanalytical labs and regulatory agencies worked together remarkably well.


Subject(s)
Biological Assay/methods , COVID-19/epidemiology , Drug Development/methods , Humans , Pandemics , SARS-CoV-2
12.
Bioanalysis ; 13(15): 1195-1203, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1317297

ABSTRACT

Thousands of clinical trials all over the world were stopped, disrupted or delayed while countries grappled to contain the pandemic and research resources were redeployed. The long-term effects of the turbulence caused by the pandemic have yet to be fully understood, but it should already be clear that the increased focus on participant needs and on the logistical challenges of current models are not likely to fade away quickly. This disruption is opening doors for rethinking traditional approaches to clinical trial conduct - including decentralizing site visits, introducing new methods of sample collection, rethinking matrix selection, reducing sample volumes and collaborating on device development. These approaches reduce participant burden while improving critical trial data.


Subject(s)
Biological Assay/methods , COVID-19/epidemiology , Clinical Trials as Topic , Humans , Pandemics , SARS-CoV-2
13.
Molecules ; 25(20)2020 Oct 10.
Article in English | MEDLINE | ID: covidwho-1302394

ABSTRACT

A series of 27 compounds of general structure 2,3-dihydro-benzo[1,4]oxazin-4-yl)-2-{4-[3-(1H-3indolyl)-propyl]-1-piperazinyl}-ethanamides, Series I: 7(a-o) and (2-{4-[3-(1H-3-indolyl)-propyl]-1-piperazinyl}-acetylamine)-N-(2-morfolin-4-yl-ethyl)-fluorinated benzamides Series II: 13(a-l) were synthesized and evaluated as novel multitarget ligands towards dopamine D2 receptor, serotonin transporter (SERT), and monoamine oxidase-A (MAO-A) directed to the management of major depressive disorder (MDD). All the assayed compounds showed affinity for SERT in the nanomolar range, with five of them displaying Ki values from 5 to 10 nM. Compounds 7k, Ki = 5.63 ± 0.82 nM, and 13c, Ki = 6.85 ± 0.19 nM, showed the highest potencies. The affinities for D2 ranged from micro to nanomolar, while MAO-A inhibition was more discrete. Nevertheless, compounds 7m and 7n showed affinities for the D2 receptor in the nanomolar range (7n: Ki = 307 ± 6 nM and 7m: Ki = 593 ± 62 nM). Compound 7n was the only derivative displaying comparable affinities for SERT and D2 receptor (D2/SERT ratio = 3.6) and could be considered as a multitarget lead for further optimization. In addition, docking studies aimed to rationalize the molecular interactions and binding modes of the designed compounds in the most relevant protein targets were carried out. Furthermore, in order to obtain information on the structure-activity relationship of the synthesized series, a 3-D-QSAR CoMFA and CoMSIA study was conducted and validated internally and externally (q2 = 0.625, 0.523 for CoMFA and CoMSIA and r2ncv = 0.967, 0.959 for CoMFA and CoMSIA, respectively).


Subject(s)
Biological Assay/methods , Receptors, Dopamine D2/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Receptors, Dopamine D2/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Structure-Activity Relationship
14.
Molecules ; 26(13)2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1288957

ABSTRACT

In the current work, a simple, economical, accurate, and precise HPLC method with UV detection was developed to quantify Favipiravir (FVIR) in spiked human plasma using acyclovir (ACVR) as an internal standard in the COVID-19 pandemic time. Both FVIR and ACVR were well separated and resolved on the C18 column using the mobile phase blend of methanol:acetonitrile:20 mM phosphate buffer (pH 3.1) in an isocratic mode flow rate of 1 mL/min with a proportion of 30:10:60 %, v/v/v. The detector wavelength was set at 242 nm. Maximum recovery of FVIR and ACVR from plasma was obtained with dichloromethane (DCM) as extracting solvent. The calibration curve was found to be linear in the range of 3.1-60.0 µg/mL with regression coefficient (r2) = 0.9976. However, with acceptable r2, the calibration data's heteroscedasticity was observed, which was further reduced using weighted linear regression with weighting factor 1/x. Finally, the method was validated concerning sensitivity, accuracy (Inter and Intraday's % RE and RSD were 0.28, 0.65 and 1.00, 0.12 respectively), precision, recovery (89.99%, 89.09%, and 90.81% for LQC, MQC, and HQC, respectively), stability (% RSD for 30-day were 3.04 and 1.71 for LQC and HQC, respectively at -20 °C), and carry-over US-FDA guidance for Bioanalytical Method Validation for researchers in the COVID-19 pandemic crisis. Furthermore, there was no significant difference for selectivity when evaluated at LLOQ concentration of 3 µg/mL of FVIR and relative to the blank.


Subject(s)
Amides/analysis , Amides/blood , Antiviral Agents/analysis , Antiviral Agents/blood , Biological Assay/methods , COVID-19/drug therapy , Chromatography, High Pressure Liquid/methods , Liquid-Liquid Extraction/methods , Pyrazines/analysis , Pyrazines/blood , Acyclovir/analysis , Acyclovir/blood , COVID-19/blood , Calibration , Drug Stability , Freezing , Humans , Reference Standards , Reproducibility of Results , Solvents/chemistry
15.
PLoS Pathog ; 17(6): e1009683, 2021 06.
Article in English | MEDLINE | ID: covidwho-1282318

ABSTRACT

COVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay. Here, we developed a cell fusion assay based upon spike-hACE2 interaction. The system was tested by transient co-transfection of 293T cells, which demonstrated good correlation with standard spike pseudotyping for inhibition by sera and biologics. Then established stable cell lines were very well behaved and gave even better correlation with pseudotyping results, after a short, overnight co-incubation. Results with the stable cell fusion assay also correlated well with those of a live virus assay. In summary we have established a rapid, reliable, and reproducible cell fusion assay that will serve to complement the other neutralization assays currently in use, is easy to implement in most laboratories, and may serve as the basis for high throughput screens to identify inhibitors of SARS-CoV-2 virus-cell binding and entry.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Biological Assay/methods , COVID-19/virology , Receptors, Coronavirus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/blood , Cell Fusion , HEK293 Cells , Humans , Receptors, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Transfection , Virus Attachment
16.
Lab Chip ; 21(15): 2913-2921, 2021 08 07.
Article in English | MEDLINE | ID: covidwho-1279909

ABSTRACT

Decades of research have shown that biosensors using photonic circuits fabricated using CMOS processes can be highly sensitive, selective, and quantitative. Unfortunately, the cost of these sensors combined with the complexity of sample handling systems has limited the use of such sensors in clinical diagnostics. We present a new "disposable photonics" sensor platform in which rice-sized (1 × 4 mm) silicon nitride ring resonator sensor chips are paired with plastic micropillar fluidic cards for sample handling and optical detection. We demonstrate the utility of the platform in the context of detecting human antibodies to SARS-CoV-2, both in convalescent COVID-19 patients and for subjects undergoing vaccination. Given its ability to provide quantitative data on human samples in a simple, low-cost single-use format, we anticipate that this platform will find broad utility in clinical diagnostics for a broad range of assays.


Subject(s)
COVID-19 , Optics and Photonics , Biological Assay , COVID-19 Testing , Cost-Benefit Analysis , Humans , SARS-CoV-2
17.
SLAS Discov ; 26(9): 1189-1199, 2021 10.
Article in English | MEDLINE | ID: covidwho-1277903

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has a huge impact on the world. Although several vaccines have recently reached the market, the development of specific antiviral drugs against SARS-CoV-2 is an important additional strategy in fighting the pandemic. One of the most promising pharmacological targets is the viral main protease (Mpro). Here, we present an optimized biochemical assay procedure for SARS-CoV-2 Mpro. We have comprehensively investigated the influence of different buffer components and conditions on the assay performance and characterized Förster resonance energy transfer (FRET) substrates with a preference for 2-Abz/Tyr(3-NO2) FRET pairs. The substrates 2-AbzSAVLQSGTyr(3-NO2)R-OH, a truncated version of the established DABCYL/EDANS FRET substrate, and 2-AbzVVTLQSGTyr(3-NO2)R-OH are promising candidates for screening and inhibitor characterization. In the latter substrate, the incorporation of Val at position P5 improved the catalytic efficiency. Based on the obtained results, we present here a reproducible, reliable assay protocol using highly affordable buffer components.


Subject(s)
COVID-19/drug therapy , Drug Discovery , Peptide Hydrolases/genetics , Protease Inhibitors/isolation & purification , Antiviral Agents/isolation & purification , Antiviral Agents/therapeutic use , Biological Assay , COVID-19/epidemiology , COVID-19/virology , Cysteine Endopeptidases , Fluorescence Resonance Energy Transfer , Humans , Molecular Docking Simulation , Pandemics , Peptide Hydrolases/drug effects , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
18.
J Mol Diagn ; 23(6): 778-779, 2021 06.
Article in English | MEDLINE | ID: covidwho-1187797
19.
Bioanalysis ; 13(15): 1183-1193, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1266825

ABSTRACT

Aim: Serological assays for the detection of anti-SARS coronavirus-2 (SARS-CoV-2) antibodies are essential to the response to the global pandemic. A ligand binding-based serological assay was validated for the semiquantitative detection of IgG, IgM, IgA and neutralizing antibodies (nAb) against SARS-CoV-2 in serum. Results: The assay demonstrated high levels of diagnostic specificity and sensitivity (85-99% for all analytes). Serum IgG, IgM, IgA and nAb correlated positively (R2 = 0.937, R2 = 0.839, R2 = 0.939 and R2 = 0.501, p < 0.001, respectively) with those measured in dried blood spot samples collected using the hemaPEN® microsampling device (Trajan Scientific and Medical, Victoria, Australia). In vitro SARS-CoV-2 pseudotype neutralization correlated positively with the solid phase nAb signals in convalescent donors (R2 = 0.458, p < 0.05). Conclusion: The assay is applicable in efficacy studies, infection monitoring and postmarketing surveillance following vaccine rollout.


Subject(s)
COVID-19/blood , Dried Blood Spot Testing/methods , High-Throughput Screening Assays/methods , SARS-CoV-2/pathogenicity , Biological Assay , Healthy Volunteers , Humans , Reproducibility of Results
20.
Virol J ; 18(1): 123, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1262510

ABSTRACT

BACKGROUND: The international SARS-CoV-2 pandemic has resulted in an urgent need to identify new anti-viral drugs for treatment of COVID-19. The initial step to identifying potential candidates usually involves in vitro screening that includes standard cytotoxicity controls. Under-appreciated is that viable, but stressed or otherwise compromised cells, can also have a reduced capacity to replicate virus. A refinement proposed herein for in vitro drug screening thus includes a simple growth assay to identify drug concentrations that cause cellular stress or "cytomorbidity", as distinct from cytotoxicity or loss of viability. METHODS: A simple rapid bioassay is presented for antiviral drug screening using Vero E6 cells and inhibition of SARS-CoV-2 induced cytopathic effects (CPE) measured using crystal violet staining. We use high cell density for cytotoxicity assays, and low cell density for cytomorbidity assays. RESULTS: The assay clearly illustrated the anti-viral activity of remdesivir, a drug known to inhibit SARS-CoV-2 replication. In contrast, nitazoxanide, oleuropein, cyclosporine A and ribavirin all showed no ability to inhibit SARS-CoV-2 CPE. Hydroxychloroquine, cyclohexamide, didemnin B, γ-mangostin and linoleic acid were all able to inhibit viral CPE at concentrations that did not induce cytotoxicity. However, these drugs inhibited CPE at concentrations that induced cytomorbidity, indicating non-specific anti-viral activity. CONCLUSIONS: We describe the methodology for a simple in vitro drug screening assay that identifies potential anti-viral drugs via their ability to inhibit SARS-CoV-2-induced CPE. The additional growth assay illustrated how several drugs display anti-viral activity at concentrations that induce cytomorbidity. For instance, hydroxychloroquine showed anti-viral activity at concentrations that slow cell growth, arguing that its purported in vitro anti-viral activity arises from non-specific impairment of cellular activities. The cytomorbidity assay can therefore rapidly exclude potential false positives.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Biological Assay , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , Drug Evaluation, Preclinical/methods , Inhibitory Concentration 50 , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...