Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
PLoS One ; 17(11): e0277925, 2022.
Article in English | MEDLINE | ID: covidwho-2140675

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged in late 2019, and quickly spread to every continent causing the global coronavirus disease 2019 (COVID-19) pandemic. Fast propagation of the disease presented numerous challenges to the health care industry in general and especially placed enormous pressure on laboratory testing. Throughout the pandemic, reverse transcription-PCR (RT-PCR)-based nucleic acid amplification tests have been the primary technique to identify acute infections caused by SARS-CoV-2. Since the start of the pandemic, there has been a constantly growing need for accurate and fast tests to enable timely protective and isolation means, as well as rapid therapeutic interventions. Here we present an evaluation of the GenomEra test for SARS-CoV-2. Analytical and clinical performance was evaluated in a multicenter setting with specimens analyzed using standard-of-care (SOC) techniques. Analytical sensitivity was assessed from spiked respiratory swab samples collected into different viral transport media, and in the best performer eSwab, the limit of detection was found to be 239 IU/mL in a heat processed sample. The GenomEra SARS-CoV-2 Assay Kit did not show specificity/cross-reactivity issues with common micro-organisms or other substances commonly found in respiratory specimens when analyzed both in vitro and in silico. Finally, the clinical performance was assessed in comparison to SOC techniques used at four institutions. Based on the analysis of 274 clinical specimens, the positive agreement of the GenomEra SARS-CoV-2 Assay Kit was 90.7%, and the negative agreement was 100%. The GenomEra SARS-CoV-2 Assay Kit provided accurate detection of SARS-CoV-2 with a short turnaround time in under 90 min.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Biological Assay , Pandemics , Cross Reactions
2.
ACS Sens ; 7(11): 3470-3480, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2117058

ABSTRACT

In early 2022, the number of people infected with the highly contagious mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), called Omicron, was increasing worldwide. Therefore, several countries approved the lateral flow assay (LFA) strip as a diagnostic method for confirming SARS-CoV-2 instead of reverse transcription-polymerase chain reaction (RT-PCR), which takes a long time to generate the results. However, owing to the limitation of detection sensitivity, commercial LFA strips have high false-negative diagnosis rates for patients with low virus concentrations. Therefore, in this study, we developed a portable surface-enhanced Raman scattering (SERS)-LFA reader based on localized surface plasmon effects to solve the sensitivity problem of the commercial LFA strip. We tested 54 clinical samples using this portable SERS-LFA reader, which generated 49 positive and 5 negative results. Out of the 49 positive results, SERS-LFA classified only 2 as false negative, while the commercial LFA classified 21 as false negative. This confirmed that the false-negative rate had significantly improved compared to that of commercial LFA strips. We believe that the proposed SERS-LFA system can be utilized as a point-of-care diagnostic system to quickly and accurately determine a virus infection that could spread significantly within a short period.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spectrum Analysis, Raman/methods , COVID-19/diagnosis , Point-of-Care Systems , Biological Assay
3.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116030

ABSTRACT

To combat pandemics, there is a need for rapid point-of-care diagnostics to identify infected patients and to track the spread of the disease. While recent progress has been made in response to COVID-19, there continues to be a need for point-of-care diagnostics capable of detecting biomarkers-such as antibodies-in whole blood. We have recently reported the development of thermally responsive alkane partitions (TRAPs) for the automation of point-of-care immuno-magnetic assays. Here, we demonstrate the use of TRAPs to enable sample-to-answer detection of antibodies against the SARS-CoV-2 virus in whole blood samples. We report a limit of detection of 84 pg/mL, well below the clinically relevant threshold. We anticipate that the TRAP-enabled sample-to-answer immunoassay can be used to track the progression of future pandemics, leading to a more informed and robust clinical and societal response.


Subject(s)
Alkanes , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Biological Assay , Antibodies, Viral
4.
Viruses ; 14(11)2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2099856

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal disease of cats that currently lacks licensed and affordable vaccines or antiviral therapeutics. The disease has a spectrum of clinical presentations including an effusive ("wet") form and non-effusive ("dry") form, both of which may be complicated by neurologic or ocular involvement. The feline coronavirus (FCoV) biotype, termed feline infectious peritonitis virus (FIPV), is the etiologic agent of FIP. The objective of this study was to determine and compare the in vitro antiviral efficacies of the viral protease inhibitors GC376 and nirmatrelvir and the nucleoside analogs remdesivir (RDV), GS-441524, molnupiravir (MPV; EIDD-2801), and ß-D-N4-hydroxycytidine (NHC; EIDD-1931). These antiviral agents were functionally evaluated using an optimized in vitro bioassay system. Antivirals were assessed as monotherapies against FIPV serotypes I and II and as combined anticoronaviral therapies (CACT) against FIPV serotype II, which provided evidence for synergy for selected combinations. We also determined the pharmacokinetic properties of MPV, GS-441524, and RDV after oral administration to cats in vivo as well as after intravenous administration of RDV. We established that orally administered MPV at 10 mg/kg, GS-441524 and RDV at 25 mg/kg, and intravenously administered RDV at 7 mg/kg achieves plasma levels greater than the established corresponding EC50 values, which are sustained over 24 h for GS-441514 and RDV.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Assay
5.
Viruses ; 14(11)2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-2090369

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.5 emerged as of February 2022 and replaced the earlier Omicron subvariants BA.1 and BA.2. COVID-19 genomic surveillance should be continued as new variants seem to subsequently appear, including post-BA.5 subvariants. A rapid assay is needed to differentiate between the currently dominant BA.5 variant and other variants. This study successfully developed a high-resolution melting (HRM)-based assay for BA.4/5-characteristic spike mutation F486V detection and demonstrated that our assay could discriminate between BA.1, BA.2, and BA.5 subvariants in clinical specimens. The mutational spectra at two regions (G446/L452 and F486) for the variant-selective HRM analysis was the focus of our assay. The mutational spectra used as the basis to identify each Omicron subvariant were as follows: BA.1 (G446S/L452/F486), BA.2 (G446/L452/F486), and BA.4/5 (G446/L452R/F486V). Upon mutation-coding RNA fragment analysis, the wild-type fragments melting curves were distinct from those of the mutant fragments. Based on the analysis of 120 clinical samples (40 each of subvariants BA.1, BA.2, and BA.5), this method's sensitivity and specificity were determined to be more than 95% and 100%, respectively. These results clearly demonstrate that this HRM-based assay is a simple screening method for monitoring Omicron subvariant evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Sensitivity and Specificity , Biological Assay , Mutation , Spike Glycoprotein, Coronavirus/genetics
6.
Chem Rev ; 122(18): 14881-14910, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2016511

ABSTRACT

Lateral flow assays (LFAs) are currently the most used point-of-care sensors for both diagnostic (e.g., pregnancy test, COVID-19 monitoring) and environmental (e.g., pesticides and bacterial monitoring) applications. Although the core of LFA technology was developed several decades ago, in recent years the integration of novel nanomaterials as signal transducers or receptor immobilization platforms has brought improved analytical capabilities. In this Review, we present how nanomaterial-based LFAs can address the inherent challenges of point-of-care (PoC) diagnostics such as sensitivity enhancement, lowering of detection limits, multiplexing, and quantification of analytes in complex samples. Specifically, we highlight the strategies that can synergistically solve the limitations of current LFAs and that have proven commercial feasibility. Finally, we discuss the barriers toward commercialization and the next generation of LFAs.


Subject(s)
COVID-19 , Metal Nanoparticles , Nanostructures , Pesticides , Biological Assay , COVID-19/diagnosis , Humans , Point-of-Care Systems
7.
J Chem Inf Model ; 62(18): 4512-4522, 2022 09 26.
Article in English | MEDLINE | ID: covidwho-2008239

ABSTRACT

Five major variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged and posed challenges in controlling the pandemic. Among them, the current dominant variant, viz., Omicron, has raised serious concerns about its infectiousness and antibody neutralization. However, few studies pay attention to the effect of the mutations on the dynamic interaction network of Omicron S protein trimers binding to the host angiotensin-converting enzyme 2 (ACE2). In this study, we conducted molecular dynamics (MD) simulations and enzyme linked immunosorbent assay (ELISA) to explore the binding strength and mechanism of wild type (WT), Delta, and Omicron S protein trimers to ACE2. The results showed that the binding capacities of both the two variants' S protein trimers to ACE2 are enhanced in varying degrees, indicating possibly higher cell infectiousness. Energy decomposition and protein-protein interaction network analysis suggested that both the mutational and conserved sites make effects on the increase in the overall affinity through a variety of interactions. The experimentally determined KD values by biolayer interferometry (BLI) and the predicted binding free energies of the RBDs of Delta and Omicron to mAb HLX70 revealed that the two variants may have the high risk of immune evasion from the mAb. These results are not only helpful in understanding the binding strength and mechanism of S protein trimer-ACE2 but also beneficial for drug, especially for antibody development.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Biological Assay , Humans , Molecular Dynamics Simulation , Mutation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
8.
Lab Chip ; 22(14): 2695-2706, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1900680

ABSTRACT

Heterogeneous immunoassays (HI) are an invaluable tool for biomarker detection and remain an ideal candidate for microfluidic point-of-care diagnostics. However, automating and controlling sustained fluid flow from benchtop to microfluidics for the HI reaction during the extended sample incubation step, remains difficult to implement; this leads to challenges for assay integration and assay result interpretation. To address these issues, we investigated the liquid reciprocation process on a microfluidic centrifugal disc (CD) to generate continuous, bidirectional fluid flow using only a rotating motor. Large volumetric flow rates (µL s-1) through the HI reaction chamber were sustained for extended durations (up to 1 h). The CD liquid reciprocation operating behavior was characterized experimentally and simulated to determine fluid flow shear rates through our HI reaction chamber. We demonstrated the continuous CD liquid reciprocation for target molecule incubation for a microarray HI and that higher fluid shear rates negatively influenced our fluorescence intensity. We highlight the importance of proper fluid flow considerations when integrating HIs with microfluidics.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Biological Assay , Humans , Immunoassay , Microfluidics
9.
Pharmacol Res Perspect ; 9(3): e00800, 2021 05.
Article in English | MEDLINE | ID: covidwho-1898944

ABSTRACT

Antiprotozoal drug nitazoxanide (NTZ) has shown diverse pharmacological properties and has appeared in several clinical trials. Herein we present the synthesis, characterization, in vitro biological investigation, and in silico study of four hetero aryl amide analogs of NTZ. Among the synthesized molecules, compound 2 and compound 4 exhibited promising antibacterial activity against Escherichia coli (E. coli), superior to that displayed by the parent drug nitazoxanide as revealed from the in vitro antibacterial assay. Compound 2 displayed zone of inhibition of 20 mm, twice as large as the parent drug NTZ (10 mm) in their least concentration (12.5 µg/ml). Compound 1 also showed antibacterial effect similar to that of nitazoxanide. The analogs were also tested for in vitro cytotoxic activity by employing cell counting kit-8 (CCK-8) assay technique in HeLa cell line, and compound 2 was identified as a potential anticancer agent having IC50 value of 172 µg which proves it to be more potent than nitazoxanide (IC50  = 428 µg). Furthermore, the compounds were subjected to molecular docking study against various bacterial and cancer signaling proteins. The in vitro test results corroborated with the in silico docking study as compound 2 and compound 4 had comparatively stronger binding affinity against the proteins and showed a higher docking score than nitazoxanide toward human mitogen-activated protein kinase (MAPK9) and fatty acid biosynthesis enzyme (FabH) of E. coli. Moreover, the docking study demonstrated dihydrofolate reductase (DHFR) and thymidylate synthase (TS) as probable new targets for nitazoxanide and its synthetic analogs. Overall, the study suggests that nitazoxanide and its analogs can be a potential lead compound in the drug development.


Subject(s)
Amides , Anti-Bacterial Agents , Antineoplastic Agents , Antiparasitic Agents , Nitro Compounds , Thiazoles , Amides/chemistry , Amides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Bacterial Proteins/metabolism , Biological Assay , Cell Survival/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , HeLa Cells , Humans , Mitogen-Activated Protein Kinase 9/metabolism , Molecular Docking Simulation , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology , Thymidylate Synthase/metabolism
10.
Clin Chem Lab Med ; 60(7): 959-960, 2022 May 03.
Article in English | MEDLINE | ID: covidwho-1875156
11.
Mikrochim Acta ; 189(5): 202, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1850343

ABSTRACT

The construction of a rapid and easy immunofluorescence bioassay for SARS-CoV-2 detection is described. We report for the first time a novel one-pot synthetic approach for simultaneous photoinduced step-growth polymerization of pyrene (Py) and ring-opening polymerization of ε-caprolactone (PCL) to produce a graft fluorescent copolymer PPy-g-PCL that was conjugated to SARS-CoV-2-specific antibodies using EDC/NHS chemistry. The synthesis steps and conjugation products were fully characterized using standard spectral analysis. Next, the PPy-g-PCL was used for the construction of a dot-blot assay which was calibrated for applications to human nasopharyngeal samples. The analytical features of the proposed sensor showed a detection range of 6.03-8.7 LOG viral copy mL-1 (Ct Scores: 8-25), the limit of detection (LOD), and quantification (LOQ) of 1.84 and 6.16 LOG viral copy mL-1, respectively. The repeatability and reproducibility of the platform had a coefficient of variation (CV) ranging between 1.2 and 5.9%. The fluorescence-based dot-blot assay was tested with human samples. Significant differences were observed between the fluorescence intensity of the negative and positive samples, with an overall correct response of 93.33%. The assay demonstrated a high correlation with RT-PCR data. This strategy opens new insights into simplified synthesis procedures of the reporter molecules and their high potential sensing and diagnosis applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Biological Assay , COVID-19/diagnosis , Caproates , Coloring Agents , Humans , Lactones , Poly A , Polyesters , Polymerization , Reproducibility of Results
12.
Molecules ; 27(9)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1847380

ABSTRACT

A small fenbufen library comprising 18 compounds was prepared via Suzuki Miyara coupling. The five-step preparations deliver 9-17% biphenyl compounds in total yield. These fenbufen analogs exert insignificant activity against the IL-1 release as well as inhibiting cyclooxygenase 2 considerably. Both the para-amino and para-hydroxy mono substituents display the most substantial COX-2 inhibition, particularly the latter one showing a comparable activity as celecoxib. The most COX-2 selective and bioactive disubstituted compound encompasses one electron-withdrawing methyl and one electron-donating fluoro groups in one arene. COX-2 is selective but not COX-2 to bioactive compounds that contain both two electron-withdrawing groups; disubstituted analogs with both resonance-formable electron-donating dihydroxy groups display high COX-2 activity but inferior COX-2 selectivity. In silico simulation and modeling for three COX-2 active-p-fluoro, p-hydroxy and p-amino-fenbufens show a preferable docking to COX-2 than COX-1. The most stabilization by the p-hydroxy fenbufen with COX-2 predicted by theoretical simulation is consistent with its prominent COX-2 inhibition resulting from experiments.


Subject(s)
Cyclooxygenase 2 Inhibitors , Drug Design , Anti-Inflammatory Agents/pharmacology , Biological Assay , Cyclooxygenase 1 , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Structure , Phenylbutyrates , Structure-Activity Relationship
13.
Methods Mol Biol ; 2452: 131-146, 2022.
Article in English | MEDLINE | ID: covidwho-1844264

ABSTRACT

A number of viral quantification methods are used to measure the concentration of infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the traditional plaque-based assay allows for direct enumeration of replication competent lytic virions and remains the gold standard for the quantification of infectious virus, the 50% tissue culture infectious dose (TCID50) endpoint dilution assay allows for a more rapid, large-scale analysis of experimental samples. In this chapter, we describe a well-established TCID50 assay protocol to measure the SARS-CoV-2 infectious titer in viral stocks, in vitro cell or organoid models, and animal tissue. We also present alternative assays for scoring the cytopathic effect of SARS-CoV-2 in cell culture and comparable methods to calculate the 50% endpoint by serial dilution.


Subject(s)
COVID-19 , Communicable Diseases , Animals , Biological Assay/methods , Cytopathogenic Effect, Viral , SARS-CoV-2
14.
Viruses ; 14(4)2022 03 29.
Article in English | MEDLINE | ID: covidwho-1810313

ABSTRACT

Surface plasmon resonance and biolayer interferometry are two common real-time and label-free assays that quantify binding events by providing kinetic parameters. There is increased interest in using these techniques to characterize whole virus-ligand interactions, as the methods allow for more accurate characterization than that of a viral subunit-ligand interaction. This review aims to summarize and evaluate the uses of these technologies specifically in virus-ligand and virus-like particle-ligand binding cases to guide the field towards studies that apply these robust methods for whole virus-based studies.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Biological Assay , Interferometry/methods , Kinetics , Ligands
15.
Int J Mol Sci ; 21(8)2020 Apr 18.
Article in English | MEDLINE | ID: covidwho-1725799

ABSTRACT

COVID-19 has become a major global public health burden, currently causing a rapidly growing number of infections and significant morbidity and mortality around the world. Early detection with fast and sensitive assays and timely intervention are crucial for interrupting the spread of the COVID-19 virus (SARS-CoV-2). Using a mismatch-tolerant amplification technique, we developed a simple, rapid, sensitive and visual reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for SARS-CoV-2 detection based on its N gene. The assay has a high specificity and sensitivity, and robust reproducibility, and its results can be monitored using a real-time PCR machine or visualized via colorimetric change from red to yellow. The limit of detection (LOD) of the assay is 118.6 copies of SARS-CoV-2 RNA per 25 µL reaction. The reaction can be completed within 30 min for real-time fluorescence monitoring, or 40 min for visual detection when the template input is more than 200 copies per 25 µL reaction. To evaluate the viability of the assay, a comparison between the RT-LAMP and a commercial RT-qPCR assay was made using 56 clinical samples. The SARS-CoV-2 RT-LAMP assay showed perfect agreement in detection with the RT-qPCR assay. The newly-developed SARS-CoV-2 RT-LAMP assay is a simple and rapid method for COVID-19 surveillance.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus/genetics , Biological Assay , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Nucleic Acid Amplification Techniques , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2 , Sensitivity and Specificity
17.
Anal Chem ; 94(5): 2510-2516, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1655403

ABSTRACT

Neutralization assays that can measure neutralizing antibodies in serum are vital for large-scale serodiagnosis and vaccine evaluation. Here, we establish multiplexed lab-on-a-chip bioassays for testing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Compared with enzyme-linked immunosorbent assay (ELISA), our method exhibits a low consumption of sample and reagents (10 µL), a low limit of detection (LOD: 0.08 ng/mL), a quick sample-to-answer time (about 70 min), and multiplexed ability (5 targets in each of 7 samples in one assay). We can also increase the throughput as needed. The concentrations of antibodies against RBD, D614G, N501Y, E484K, and L452R/E484Q-mutants after two doses of vaccines are 6.6 ± 3.6, 8.7 ± 4.6, 3.4 ± 2.8, 3.8 ± 2.8, and 2.8 ± 2.3 ng/mL, respectively. This suggests that neutralizing activities against N501Y, E484K, and L452R/E484Q-mutants were less effective than RBD and D614G-mutant. We performed a plaque reduction neutralization test (PRNT) for all volunteers. Compared with PRNT, our assay is fast, accurate, inexpensive, and multiplexed with multiple-sample processing ability, which is good for large-scale serodiagnosis and vaccine evaluation.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Biological Assay , Humans , Lab-On-A-Chip Devices , Spike Glycoprotein, Coronavirus
18.
ACS Appl Mater Interfaces ; 13(50): 60612-60624, 2021 Dec 22.
Article in English | MEDLINE | ID: covidwho-1569206

ABSTRACT

New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Nasal Mucosa/virology , Polymers/chemistry , RNA, Viral/metabolism , SARS-CoV-2 , Biofouling , Biological Assay , Biosensing Techniques , Humans , Ions , Limit of Detection , Mass Spectrometry , Nasopharynx/virology , Phosphoproteins/chemistry , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling
19.
mSphere ; 6(6): e0071121, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1546463

ABSTRACT

The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N6-(Δ2-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N6-(Δ2-isopentenyl)adenosine, had a 50% inhibitory concentration (IC50) of 2 µM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. IMPORTANCE The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection in vitro. These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.


Subject(s)
Antiviral Agents/pharmacology , Bacteria/metabolism , Culture Media/chemistry , Metabolic Networks and Pathways , Microbiota/physiology , SARS-CoV-2/drug effects , Symbiosis/physiology , Bacteria/chemistry , Bacteria/classification , Bacteria/growth & development , Biological Assay , Cell Line, Tumor , Culture Media/pharmacology , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protein Binding
20.
J Hazard Mater ; 425: 127923, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1536650

ABSTRACT

The metallopeptidase angiotensin-converting enzyme 2 (ACE2) is the SARS-CoV-2 receptor required for viral entry based on its specific recognition of the spike protein receptor binding domain (S_RBD) on SARS-CoV-2. We constructed a human ACE2 (hACE2)-based peptide pair by ligating discontinuous key residues involved in the hACE2-S_RBD interaction. We firstly performed in silico simulations to identify a 12-mer and 15-mer peptide pair with capability to bind to the SARS-CoV-2 S_RBD via different binding sites. Then, the bio-layer interferometry validated the specific interactions between the peptides and S_RBD, with affinities at the nanomolar level. Lastly, we developed a colorimetric sandwich-type bioassay based on S_RBD-specific peptide-modified gold nanoparticles and found the colorimetric bioassay offered fast (<30 min), simple, and sensitive detection of S_RBD protein at levels as low as 0.01 nM (0.26 ng mL-1) in SARS-CoV-2. The linear signals ranging from 105 to 107 virus copies mL-1 were achieved in typical types of environmental waters spiked with lysed SARS-CoV-2 pseudovirus. The technology can serve as a beneficial supplement to the routine virus nucleic acid detection in environment media and wastewater treatment.


Subject(s)
Colorimetry , Metal Nanoparticles , SARS-CoV-2/isolation & purification , Angiotensin-Converting Enzyme 2 , Biological Assay , COVID-19/diagnosis , Gold , Humans , Peptides , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL