Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
J Sep Sci ; 44(9): 1961-1968, 2021 May.
Article in English | MEDLINE | ID: covidwho-1527448

ABSTRACT

In this study, a lab-made parallel single-drop microextraction methodology using the magnetic ionic liquid trihexyltetradecylphosphonium tetrachloromanganate (II) as extraction solvent was developed to determine the pesticides tebuconazole, pendimethalin, dichlorodiphenyltrichloroethane, and dichlorodiphenyldichloroethylene in human urine samples. The experimental setup consisted of a 96-well plate system containing a set of magnetic pins that allowed for the manipulation of up to 96 samples simultaneously, providing an enhanced drop stability compared to traditional single-drop microextraction approaches. The optimal conditions employed 5.38 ± 0.55 mg of extraction solvent, 1.5 mL of diluted urine samples (1:10), extraction time of 130 min, and subsequent dilution in 20 µL of acetonitrile. The method exhibited satisfactory analytical performance, with limits of detection of 7.5 µg/L for all analytes and coefficients of determination higher than 0.9955. Intraday and interday precisions ranged from 3 to 17% (n = 3) and 15 to 18% (n = 9), respectively, with relative recovery of analytes ranging from 70 to 122%. The method proposed was successfully applied in two human urine samples and no sign of the analytes was detected. The results demonstrated that the proposed method allowed for cost-effective and high-throughput methodology to be explored as a valuable tool in bioanalytical applications.


Subject(s)
Biological Monitoring/methods , Liquid Phase Microextraction/methods , Pesticides , COVID-19 , Humans , Limit of Detection , Pesticides/analysis , Pesticides/urine
4.
Biosensors (Basel) ; 11(1)2020 Dec 31.
Article in English | MEDLINE | ID: covidwho-1006988

ABSTRACT

The United States Centers for Disease Control and Prevention considers saliva contact the lead transmission means of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). Saliva droplets or aerosols expelled by heavy breathing, talking, sneezing, and coughing may carry this virus. People in close distance may be exposed directly or indirectly to these droplets, especially those droplets that fall on surrounding surfaces and people may end up contracting COVID-19 after touching the mucosa tissue on their faces. It is of great interest to quickly and effectively detect the presence of SARS-CoV-2 in an environment, but the existing methods only work in laboratory settings, to the best of our knowledge. However, it may be possible to detect the presence of saliva in the environment and proceed with prevention measures. However, detecting saliva itself has not been documented in the literature. On the other hand, many sensors that detect different organic components in saliva to monitor a person's health and diagnose different diseases that range from diabetes to dental health have been proposed and they may be used to detect the presence of saliva. This paper surveys sensors that detect organic and inorganic components of human saliva. Humidity sensors are also considered in the detection of saliva because a large portion of saliva is water. Moreover, sensors that detect infectious viruses are also included as they may also be embedded into saliva sensors for a confirmation of the virus' presence. A classification of sensors by their working principle and the substance they detect is presented. This comparison lists their specifications, sample size, and sensitivity. Indications of which sensors are portable and suitable for field application are presented. This paper also discusses future research and challenges that must be resolved to realize practical saliva sensors. Such sensors may help minimize the spread of not only COVID-19 but also other infectious diseases.


Subject(s)
Biological Monitoring/instrumentation , COVID-19/prevention & control , SARS-CoV-2/isolation & purification , Saliva/chemistry , Saliva/virology , Biological Monitoring/methods , COVID-19/enzymology , COVID-19/etiology , COVID-19/immunology , Communicable Diseases/enzymology , Communicable Diseases/etiology , Communicable Diseases/immunology , Communicable Diseases/virology , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Saliva/enzymology , Saliva/immunology , Viruses/chemistry , Viruses/enzymology , Viruses/immunology , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL