Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS One ; 16(5): e0245031, 2021.
Article in English | MEDLINE | ID: covidwho-1314324

ABSTRACT

SARS-CoV-2 infection causing the novel coronavirus disease 2019 (COVID-19) has been responsible for more than 2.8 million deaths and nearly 125 million infections worldwide as of March 2021. In March 2020, the World Health Organization determined that the COVID-19 outbreak is a global pandemic. The urgency and magnitude of this pandemic demanded immediate action and coordination between local, regional, national, and international actors. In that mission, researchers require access to high-quality biological materials and data from SARS-CoV-2 infected and uninfected patients, covering the spectrum of disease manifestations. The "Biobanque québécoise de la COVID-19" (BQC19) is a pan-provincial initiative undertaken in Québec, Canada to enable the collection, storage and sharing of samples and data related to the COVID-19 crisis. As a disease-oriented biobank based on high-quality biosamples and clinical data of hospitalized and non-hospitalized SARS-CoV-2 PCR positive and negative individuals. The BQC19 follows a legal and ethical management framework approved by local health authorities. The biosamples include plasma, serum, peripheral blood mononuclear cells and DNA and RNA isolated from whole blood. In addition to the clinical variables, BQC19 will provide in-depth analytical data derived from the biosamples including whole genome and transcriptome sequencing, proteome and metabolome analyses, multiplex measurements of key circulating markers as well as anti-SARS-CoV-2 antibody responses. BQC19 will provide the scientific and medical communities access to data and samples to better understand, manage and ultimately limit, the impact of COVID-19. In this paper we present BQC19, describe the process according to which it is governed and organized, and address opportunities for future research collaborations. BQC19 aims to be a part of a global communal effort addressing the challenges of COVID-19.


Subject(s)
Biological Specimen Banks/organization & administration , COVID-19/pathology , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Humans , Information Dissemination/methods , Pandemics , Quebec/epidemiology , SARS-CoV-2/isolation & purification
2.
PLoS Pathog ; 17(6): e1009583, 2021 06.
Article in English | MEDLINE | ID: covidwho-1256050

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic reveals a major gap in global biosecurity infrastructure: a lack of publicly available biological samples representative across space, time, and taxonomic diversity. The shortfall, in this case for vertebrates, prevents accurate and rapid identification and monitoring of emerging pathogens and their reservoir host(s) and precludes extended investigation of ecological, evolutionary, and environmental associations that lead to human infection or spillover. Natural history museum biorepositories form the backbone of a critically needed, decentralized, global network for zoonotic pathogen surveillance, yet this infrastructure remains marginally developed, underutilized, underfunded, and disconnected from public health initiatives. Proactive detection and mitigation for emerging infectious diseases (EIDs) requires expanded biodiversity infrastructure and training (particularly in biodiverse and lower income countries) and new communication pipelines that connect biorepositories and biomedical communities. To this end, we highlight a novel adaptation of Project ECHO's virtual community of practice model: Museums and Emerging Pathogens in the Americas (MEPA). MEPA is a virtual network aimed at fostering communication, coordination, and collaborative problem-solving among pathogen researchers, public health officials, and biorepositories in the Americas. MEPA now acts as a model of effective international, interdisciplinary collaboration that can and should be replicated in other biodiversity hotspots. We encourage deposition of wildlife specimens and associated data with public biorepositories, regardless of original collection purpose, and urge biorepositories to embrace new specimen sources, types, and uses to maximize strategic growth and utility for EID research. Taxonomically, geographically, and temporally deep biorepository archives serve as the foundation of a proactive and increasingly predictive approach to zoonotic spillover, risk assessment, and threat mitigation.


Subject(s)
Biological Specimen Banks/organization & administration , Communicable Disease Control , Communicable Diseases, Emerging/prevention & control , Community Networks/organization & administration , Public Health Surveillance/methods , Animals , Animals, Wild , Biodiversity , Biological Specimen Banks/standards , Biological Specimen Banks/supply & distribution , Biological Specimen Banks/trends , COVID-19/epidemiology , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/standards , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/virology , Community Networks/standards , Community Networks/supply & distribution , Community Networks/trends , Disaster Planning/methods , Disaster Planning/organization & administration , Disaster Planning/standards , Geography , Global Health/standards , Global Health/trends , Humans , Medical Countermeasures , Pandemics/prevention & control , Public Health , Risk Assessment , SARS-CoV-2/physiology , Zoonoses/epidemiology , Zoonoses/prevention & control
3.
Dig Liver Dis ; 53(11): 1428-1432, 2021 11.
Article in English | MEDLINE | ID: covidwho-1240280

ABSTRACT

BACKGROUND: Due to the increasing rise of C. difficile infection, stool banks and donor programs have been launched to grant access to fecal microbiota transplantation (FMT). Our aim is to describe characteristics and outcomes of the donor program at our stool bank. METHODS: Donor candidates underwent a four-step selection process, including a clinical interview, blood and stool testing, a further questionnaire and a direct stool testing the day of each donation. From March 2020, specific changes to this process were introduced to avoid the potential transmission of COVID-19. We evaluated the rate of excluded candidates at each step of the screening, as well as the number of total fecal aliquots provided by qualified donors. RESULTS: Overall, 114 donor candidates were evaluated. Seventy-five candidates declined to join the program for logistic or personal issues, three were excluded after the questionnaire and seven for positive stool exams. Finally, 29 (25%) subjects qualified as stool donors, and provided 70 stool samples. Fifteen samples were excluded after direct molecular stool testing. A total of 127 aliquots was finally obtained. CONCLUSIONS: Donor recruitment for FMT is a challenging process, and only a small rate of candidates are eligible as donors.


Subject(s)
Biological Specimen Banks , Donor Selection/methods , Fecal Microbiota Transplantation , Adult , Biological Specimen Banks/organization & administration , Biological Specimen Banks/statistics & numerical data , Donor Selection/organization & administration , Donor Selection/statistics & numerical data , Feces/microbiology , Female , Humans , Infection Control/methods , Italy , Male , Program Evaluation , Prospective Studies
4.
PLoS One ; 16(5): e0245031, 2021.
Article in English | MEDLINE | ID: covidwho-1234580

ABSTRACT

SARS-CoV-2 infection causing the novel coronavirus disease 2019 (COVID-19) has been responsible for more than 2.8 million deaths and nearly 125 million infections worldwide as of March 2021. In March 2020, the World Health Organization determined that the COVID-19 outbreak is a global pandemic. The urgency and magnitude of this pandemic demanded immediate action and coordination between local, regional, national, and international actors. In that mission, researchers require access to high-quality biological materials and data from SARS-CoV-2 infected and uninfected patients, covering the spectrum of disease manifestations. The "Biobanque québécoise de la COVID-19" (BQC19) is a pan-provincial initiative undertaken in Québec, Canada to enable the collection, storage and sharing of samples and data related to the COVID-19 crisis. As a disease-oriented biobank based on high-quality biosamples and clinical data of hospitalized and non-hospitalized SARS-CoV-2 PCR positive and negative individuals. The BQC19 follows a legal and ethical management framework approved by local health authorities. The biosamples include plasma, serum, peripheral blood mononuclear cells and DNA and RNA isolated from whole blood. In addition to the clinical variables, BQC19 will provide in-depth analytical data derived from the biosamples including whole genome and transcriptome sequencing, proteome and metabolome analyses, multiplex measurements of key circulating markers as well as anti-SARS-CoV-2 antibody responses. BQC19 will provide the scientific and medical communities access to data and samples to better understand, manage and ultimately limit, the impact of COVID-19. In this paper we present BQC19, describe the process according to which it is governed and organized, and address opportunities for future research collaborations. BQC19 aims to be a part of a global communal effort addressing the challenges of COVID-19.


Subject(s)
Biological Specimen Banks/organization & administration , COVID-19/pathology , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Humans , Information Dissemination/methods , Pandemics , Quebec/epidemiology , SARS-CoV-2/isolation & purification
8.
ESMO Open ; 6(1): 100024, 2021 02.
Article in English | MEDLINE | ID: covidwho-1007937

ABSTRACT

BACKGROUND: This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases. MATERIALS AND METHODS: A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019. RESULTS: Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples. CONCLUSIONS: The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe.


Subject(s)
COVID-19/prevention & control , Clinical Laboratory Services/statistics & numerical data , Pathology, Clinical/statistics & numerical data , Pathology, Molecular/statistics & numerical data , Surveys and Questionnaires , Thoracic Diseases/diagnosis , Biological Specimen Banks/organization & administration , Biological Specimen Banks/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , Clinical Laboratory Services/trends , Containment of Biohazards/statistics & numerical data , Disease Outbreaks , Europe/epidemiology , Forecasting , Humans , Pandemics , Pathology, Clinical/methods , Pathology, Clinical/trends , Pathology, Molecular/methods , Pathology, Molecular/trends , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Specimen Handling/methods , Specimen Handling/statistics & numerical data , Thoracic Diseases/therapy
10.
Lancet Infect Dis ; 20(10): e268-e273, 2020 10.
Article in English | MEDLINE | ID: covidwho-671309

ABSTRACT

Outbreaks of infectious diseases are occurring with increasing frequency and unpredictability. The rapid development and deployment of diagnostics that can accurately and quickly identify pathogens as part of epidemic preparedness is needed now for the COVID-19 pandemic. WHO has developed a global research and innovation forum to facilitate, accelerate, and deepen research collaboration among countries and funders. Great progress has been made in the past decade, but access to specimens remains a major barrier for the development and evaluation of needed quality diagnostics. We present a sustainable model for a global network of country-owned biobanks with standardised methods for collection, characterisation, and archiving of specimens and pathogens to facilitate and accelerate diagnostics development and evaluation for COVID-19 and other diseases of epidemic potential. The biobanking network should be run on the guiding principles of transparency, equitable access, ethics, and respect for national laws that support country ownership and sustainability. Adapting the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits, sharing of specimens from national biobanks can be rewarded through mechanisms such as equitable access to diagnostics at negotiated prices. Such networks should be prepared for any pathogen of epidemic potential.


Subject(s)
Biological Specimen Banks/organization & administration , Biological Specimen Banks/standards , Communicable Diseases/diagnosis , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus/isolation & purification , COVID-19 , Communicable Disease Control , Communicable Diseases/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Diagnostic Tests, Routine , Epidemics/prevention & control , Humans , International Cooperation , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Specimen Handling/standards , Sustainable Development
SELECTION OF CITATIONS
SEARCH DETAIL