Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1715400

ABSTRACT

Tunneling nanotubes (TNTs), discovered in 2004, are thin, long protrusions between cells utilized for intercellular transfer and communication. These newly discovered structures have been demonstrated to play a crucial role in homeostasis, but also in the spreading of diseases, infections, and metastases. Gaining much interest in the medical research field, TNTs have been shown to transport nanomedicines (NMeds) between cells. NMeds have been studied thanks to their advantageous features in terms of reduced toxicity of drugs, enhanced solubility, protection of the payload, prolonged release, and more interestingly, cell-targeted delivery. Nevertheless, their transfer between cells via TNTs makes their true fate unknown. If better understood, TNTs could help control NMed delivery. In fact, TNTs can represent the possibility both to improve the biodistribution of NMeds throughout a diseased tissue by increasing their formation, or to minimize their formation to block the transfer of dangerous material. To date, few studies have investigated the interaction between NMeds and TNTs. In this work, we will explain what TNTs are and how they form and then review what has been published regarding their potential use in nanomedicine research. We will highlight possible future approaches to better exploit TNT intercellular communication in the field of nanomedicine.


Subject(s)
Cell Membrane Structures/metabolism , Animals , Biological Transport/physiology , Humans , Nanomedicine/methods , Nanotubes , Tissue Distribution/physiology
2.
Nat Cell Biol ; 23(12): 1240-1254, 2021 12.
Article in English | MEDLINE | ID: covidwho-1699219

ABSTRACT

Extracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer's disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.


Subject(s)
Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Nanoparticles/metabolism , Alzheimer Disease/pathology , Angiotensin-Converting Enzyme 2/metabolism , Biological Transport/physiology , Biomarkers/metabolism , COVID-19/pathology , Cardiovascular Diseases/pathology , Cell Communication/physiology , Cell Line, Tumor , HeLa Cells , Humans , Lactic Acid/metabolism , MicroRNAs/genetics , Nanoparticles/classification , Neoplasms/pathology , Tumor Microenvironment
3.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1667194

ABSTRACT

The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors-including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins-also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.


Subject(s)
Anoctamin-1/metabolism , Anoctamins/metabolism , Chloride Channels/metabolism , Animals , Anoctamins/physiology , Biological Transport/physiology , Cell Membrane/metabolism , Humans , Ion Transport/physiology , Phospholipid Transfer Proteins/metabolism
4.
Cells ; 10(10)2021 09 24.
Article in English | MEDLINE | ID: covidwho-1438526

ABSTRACT

Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae, Poxviridae, Parvoviridae and Herpesviridae families.


Subject(s)
Endoplasmic Reticulum/virology , Golgi Apparatus/virology , Secretory Pathway/physiology , Viruses/isolation & purification , Biological Transport/physiology , Cell Membrane/metabolism , Cell Membrane/virology , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans
5.
Placenta ; 115: 70-77, 2021 11.
Article in English | MEDLINE | ID: covidwho-1433733

ABSTRACT

Species differences are among the main reasons for the high failure rate of preclinical studies. A better awareness and understanding of these differences might help to improve the outcome of preclinical research. In reproduction, the placenta is the central organ regulating fetal exposure to a substance circulating in the maternal organism. Exact information about placental transfer can help to better estimate the toxic potential of a substance. From an evolutionary point of view, the chorioallantoic placenta is the organ with the highest anatomical diversity among species. Moreover, frequently used animal models in reproduction belong to rodents and lagomorphs, two groups that are characterized by the generation of an additional type of placenta, which is crucial for fetal development, but absent from humans: the inverted yolk sac placenta. Taken together, the translatability of placental transfer studies from laboratory animals to humans is challenging, which is supported by the fact that numerous species-dependent toxic effects are described in literature. Thus, reliable human-relevant data are frequently lacking and the toxic potential of chemicals and pharmaceuticals for humans can hardly be estimated, often resulting in recommendations that medical treatments or exposure to chemicals should be avoided for safety reasons. Although species differences of placental anatomy have been described frequently and the need for human-relevant research models has been emphasized, analyses of substances with species-dependent placental transfer have been performed only sporadically. Here, we present examples for species-specific placental transfer, including that of nanoparticles and pharmaceuticals, and discuss potential underlying mechanisms. With respect to the COVID 19-pandemic it might be of interest that some antiviral drugs are reported to feature species-specific placental transfer. Further, differences in placental structure and antibody transfer may affect placental transfer of ZIKA virus.


Subject(s)
Maternal-Fetal Exchange/physiology , Placenta/metabolism , Animals , Antiviral Agents/pharmacokinetics , Biological Transport/physiology , COVID-19/drug therapy , COVID-19/transmission , COVID-19/virology , Female , Humans , Infectious Disease Transmission, Vertical , Maternal-Fetal Exchange/drug effects , Placenta/drug effects , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/virology , SARS-CoV-2/metabolism , Species Specificity , Yolk Sac/metabolism , Yolk Sac/physiology , Zika Virus/metabolism , Zika Virus Infection/drug therapy , Zika Virus Infection/transmission
6.
Cells ; 10(3)2021 02 24.
Article in English | MEDLINE | ID: covidwho-1147459

ABSTRACT

Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear-cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.


Subject(s)
Biological Transport/physiology , Cells/metabolism , Endosomal Sorting Complexes Required for Transport/physiology , Viruses/metabolism , Humans
7.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1186-L1193, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1124630

ABSTRACT

A significant number of patients with coronavirus disease 2019 (COVID-19) develop acute respiratory distress syndrome (ARDS) that is associated with a poor outcome. The molecular mechanisms driving failure of the alveolar barrier upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain incompletely understood. The Na,K-ATPase is an adhesion molecule and a plasma membrane transporter that is critically required for proper alveolar epithelial function by both promoting barrier integrity and resolution of excess alveolar fluid, thus enabling appropriate gas exchange. However, numerous SARS-CoV-2-mediated and COVID-19-related signals directly or indirectly impair the function of the Na,K-ATPase, thereby potentially contributing to disease progression. In this Perspective, we highlight some of the putative mechanisms of SARS-CoV-2-driven dysfunction of the Na,K-ATPase, focusing on expression, maturation, and trafficking of the transporter. A therapeutic mean to selectively inhibit the maladaptive signals that impair the Na,K-ATPase upon SARS-CoV-2 infection might be effective in reestablishing the alveolar epithelial barrier and promoting alveolar fluid clearance and thus advantageous in patients with COVID-19-associated ARDS.


Subject(s)
COVID-19/pathology , Pulmonary Alveoli/pathology , Severe Acute Respiratory Syndrome/pathology , Sodium-Potassium-Exchanging ATPase/metabolism , Tight Junctions/pathology , Biological Transport/physiology , Humans , Pulmonary Edema/pathology , SARS-CoV-2
8.
Development ; 147(13)2020 07 06.
Article in English | MEDLINE | ID: covidwho-737587

ABSTRACT

The veins are the vascular networks of plant leaves, functioning as channels for transport of signals and nutrients. A new paper in Development investigates how the spatial regulation of auxin transport contributes to vein patterning in Arabidopsis We caught up with first author Priyanka Govindaraju and her supervisor Enrico Scarpella, Associate Professor at the Department of Biological Sciences, University of Alberta in Edmonton, Canada, to find out more about the work.


Subject(s)
Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport/physiology , History, 20th Century , History, 21st Century , Humans , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL