Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
Add filters

Document Type
Year range
3.
BMC Microbiol ; 21(1): 277, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1463230

ABSTRACT

BACKGROUND: Fusobacterium nucleatum (F. n) is an important opportunistic pathogen causing oral and gastrointestinal disease. Faecalibacterium prausnitzii (F. p) is a next-generation probiotic and could serve as a biomarker of gut eubiosis/dysbiosis to some extent. Alterations in the human oral and gut microbiomes are associated with viral respiratory infection. The aim of this study was to characterise the oral and fecal bacterial biomarker (i.e., F. n and F. p) in COVID-19 patients by qPCR and investigate the pharyngeal microbiome of COVID-19 patients through metagenomic next-generation sequencing (mNGS). RESULTS: Pharyngeal F. n was significantly increased in COVID-19 patients, and it was higher in male than female patients. Increased abundance of pharyngeal F. n was associated with a higher risk of a positive SARS-CoV-2 test (adjusted OR = 1.32, 95% CI = 1.06 ~ 1.65, P < 0.05). A classifier to distinguish COVID-19 patients from the healthy controls based on the pharyngeal F. n was constructed and achieved an area under the curve (AUC) of 0.843 (95% CI = 0.688 ~ 0.940, P < 0.001). However, the level of fecal F. n and fecal F. p remained unaltered between groups. Besides, mNGS showed that the pharyngeal swabs of COVID-19 patients were dominated by opportunistic pathogens. CONCLUSIONS: Pharyngeal but not fecal F. n was significantly increased in COVID-19 patients, clinicians should pay careful attention to potential coinfection. Pharyngeal F. n may serve as a promising candidate indicator for COVID-19.


Subject(s)
COVID-19/microbiology , Feces/microbiology , Fusobacterium Infections/microbiology , Fusobacterium nucleatum/genetics , Pharynx/microbiology , Adult , Biomarkers/analysis , COVID-19/virology , Carrier State/microbiology , Coinfection/microbiology , Coinfection/virology , Dysbiosis , Female , Fusobacterium Infections/virology , High-Throughput Nucleotide Sequencing , Humans , Male , Metagenomics , Microbiota , Middle Aged , Pharynx/virology , Sex Factors
5.
Crit Care Med ; 49(10): 1664-1673, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1452743

ABSTRACT

OBJECTIVES: The rapid diagnosis of acute infections and sepsis remains a serious challenge. As a result of limitations in current diagnostics, guidelines recommend early antimicrobials for suspected sepsis patients to improve outcomes at a cost to antimicrobial stewardship. We aimed to develop and prospectively validate a new, 29-messenger RNA blood-based host-response classifier Inflammatix Bacterial Viral Non-Infected version 2 (IMX-BVN-2) to determine the likelihood of bacterial and viral infections. DESIGN: Prospective observational study. SETTING: Emergency Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany. PATIENTS: Three hundred twelve adult patients presenting to the emergency department with suspected acute infections or sepsis with at least one vital sign change. INTERVENTIONS: None (observational study only). MEASUREMENTS AND MAIN RESULTS: Gene expression levels from extracted whole blood RNA was quantified on a NanoString nCounter SPRINT (NanoString Technologies, Seattle, WA). Two predicted probability scores for the presence of bacterial and viral infection were calculated using the IMX-BVN-2 neural network classifier, which was trained on an independent development set. The IMX-BVN-2 bacterial score showed an area under the receiver operating curve for adjudicated bacterial versus ruled out bacterial infection of 0.90 (95% CI, 0.85-0.95) compared with 0.89 (95% CI, 0.84-0.94) for procalcitonin with procalcitonin being used in the adjudication. The IMX-BVN-2 viral score area under the receiver operating curve for adjudicated versus ruled out viral infection was 0.83 (95% CI, 0.77-0.89). CONCLUSIONS: IMX-BVN-2 demonstrated accuracy for detecting both viral infections and bacterial infections. This shows the potential of host-response tests as a novel and practical approach for determining the causes of infections, which could improve patient outcomes while upholding antimicrobial stewardship.


Subject(s)
Bacterial Infections/diagnosis , RNA, Messenger/analysis , Virus Diseases/diagnosis , Aged , Aged, 80 and over , Area Under Curve , Bacterial Infections/blood , Bacterial Infections/physiopathology , Berlin , Biomarkers/analysis , Biomarkers/blood , Emergency Service, Hospital/organization & administration , Emergency Service, Hospital/statistics & numerical data , Female , Humans , Male , Middle Aged , Prospective Studies , RNA, Messenger/blood , ROC Curve , Virus Diseases/blood , Virus Diseases/physiopathology
6.
Bioanalysis ; 13(19): 1459-1465, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1450902

ABSTRACT

During the first half of 2021, and due to the SARS-CoV-2 pandemic preventing in-person meetings, the European Bioanalysis Forum organized four workshops as live interactive online meetings. The themes discussed at the workshops were carefully selected to match the cyberspace dynamics of the meeting format. The first workshop was a training day on challenges related to immunogenicity. The second one focused on biomarkers and continued the important discussion on integrating the principles of Context of Use (CoU) in biomarker research. The third workshop was dedicated to technology, that is, cutting-edge development in cell-based and ligand-binding assays and automation strategies. The fourth was on progress and the continued scientific and regulatory challenges related to peptide and protein analysis with MS. In all four workshops, the European Bioanalysis Forum included a mixture of scientific and regulatory themes, while reminding the audience of important strategic aspects and our responsibility toward the patient.


Subject(s)
Chemistry Techniques, Analytical , Mass Spectrometry , Proteins/analysis , Proteins/immunology , Automation , Biomarkers/analysis , Humans , Proteins/chemistry
7.
Int J Mol Med ; 47(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1448967

ABSTRACT

Circular RNAs (circRNAs) are a class of non­coding RNAs with a circular, covalent structure that lack both 5' ends and 3' poly(A) tails, which are stable and specific molecules that exist in eukaryotic cells and are highly conserved. The role of circRNAs in viral infections is being increasingly acknowledged, since circRNAs have been discovered to be involved in several viral infections (such as hepatitis B virus infection and human papilloma virus infection) through a range of circRNA/microRNA/mRNA regulatory axes. These findings have prompted investigations into the potential of circRNAs as targets for the diagnosis and treatment of viral infection­related diseases. The aim of the present review was to systematically examine and discuss the role of circRNAs in several common viral infections, as well as their potential as diagnostic markers and therapeutic targets.


Subject(s)
MicroRNAs/genetics , RNA, Circular/physiology , RNA, Messenger/genetics , Virus Diseases/genetics , Biomarkers/analysis , Humans , RNA, Circular/genetics , Virus Diseases/diagnosis , Virus Diseases/therapy , Virus Diseases/virology
8.
Front Immunol ; 12: 715072, 2021.
Article in English | MEDLINE | ID: covidwho-1430697

ABSTRACT

Background: Prediction of the severity of COVID-19 at its onset is important for providing adequate and timely management to reduce mortality. Objective: To study the prognostic value of damage parameters and cytokines as predictors of severity of COVID-19 using an extensive immunologic profiling and unbiased artificial intelligence methods. Methods: Sixty hospitalized COVID-19 patients (30 moderate and 30 severe) and 17 healthy controls were included in the study. The damage indicators high mobility group box 1 (HMGB1), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), extensive biochemical analyses, a panel of 47 cytokines and chemokines were analyzed at weeks 1, 2 and 7 along with clinical complaints and CT scans of the lungs. Unbiased artificial intelligence (AI) methods (logistic regression and Support Vector Machine and Random Forest algorithms) were applied to investigate the contribution of each parameter to prediction of the severity of the disease. Results: On admission, the severely ill patients had significantly higher levels of LDH, IL-6, monokine induced by gamma interferon (MIG), D-dimer, fibrinogen, glucose than the patients with moderate disease. The levels of macrophage derived cytokine (MDC) were lower in severely ill patients. Based on artificial intelligence analysis, eight parameters (creatinine, glucose, monocyte number, fibrinogen, MDC, MIG, C-reactive protein (CRP) and IL-6 have been identified that could predict with an accuracy of 83-87% whether the patient will develop severe disease. Conclusion: This study identifies the prognostic factors and provides a methodology for making prediction for COVID-19 patients based on widely accepted biomarkers that can be measured in most conventional clinical laboratories worldwide.


Subject(s)
COVID-19/pathology , Diagnosis, Computer-Assisted/methods , Severity of Illness Index , Support Vector Machine , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Biomarkers/analysis , Cytokines/blood , Female , HMGB1 Protein/blood , Humans , L-Lactate Dehydrogenase/blood , Macrophages/immunology , Male , Middle Aged , Monocytes/immunology , Prognosis , Prospective Studies , SARS-CoV-2
9.
Biomark Med ; 15(15): 1435-1449, 2021 10.
Article in English | MEDLINE | ID: covidwho-1430630

ABSTRACT

COVID-19 has become a global health concern, due to the high transmissible nature of its causal agent and lack of proper treatment. Early diagnosis and nonspecific medical supports of the patients appeared to be effective strategy so far to combat the pandemic caused by COVID-19 outbreak. Biomarkers can play pivotal roles in timely and proper diagnosis of COVID-19 patients, as well as for distinguishing them from other pulmonary infections. Besides, biomarkers can help in reducing the rate of mortality and evaluating viral pathogenesis with disease prognosis. This article intends to provide a broader overview of the roles and uses of different biomarkers in the early diagnosis of COVID-19, as well as in the classification of COVID-19 patients into multiple risk groups.


Subject(s)
Biomarkers/analysis , COVID-19/diagnosis , C-Reactive Protein/analysis , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , COVID-19 Testing , Humans , Lymphocyte Count , Platelet Count , Procalcitonin/analysis , Prognosis , Prospective Studies , SARS-CoV-2/isolation & purification , Serum Amyloid A Protein/analysis , Severity of Illness Index
10.
J Mass Spectrom ; 56(10): e4782, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1410026

ABSTRACT

The human respiratory system is a highly complex matrix that exhales many volatile organic compounds (VOCs). Breath-exhaled VOCs are often "unknowns" and possess low concentrations, which make their analysis, peak digging and data processing challenging. We report a new methodology, applied in a proof-of-concept experiment, for the detection of VOCs in breath. For this purpose, we developed and compared four complementary analysis methods based on solid-phase microextraction and thermal desorption (TD) tubes with two GC-mass spectrometer (MS) methods. Using eight model compounds, we obtained an LOD range of 0.02-20 ng/ml. We found that in breath analysis, sampling the exhausted air from Tedlar bags is better when TD tubes are used, not only because of the preconcentration but also due to the stability of analytes in the TD tubes. Data processing (peak picking) was based on two data retrieval approaches with an in-house script written for comparison and differentiation between two populations: sick and healthy. We found it best to use "raw" AMDIS deconvolution data (.ELU) rather than its NIST (.FIN) identification data for comparison between samples. A successful demonstration of this method was conducted in a pilot study (n = 21) that took place in a closed hospital ward (Covid-19 ward) with the discovery of four potential markers. These preliminary findings, at the molecular level, demonstrate the capabilities of our method and can be applied in larger and more comprehensive experiments in the omics world.


Subject(s)
Breath Tests/methods , COVID-19/diagnosis , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Biomarkers/analysis , COVID-19 Testing/methods , Female , Humans , Male , Pilot Projects , SARS-CoV-2/isolation & purification , Software , Solid Phase Microextraction/methods
11.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: covidwho-1409701

ABSTRACT

Takotsubo syndrome (TTS), recognized as stress's cardiomyopathy, or as left ventricular apical balloon syndrome in recent years, is a rare pathology, described for the first time by Japanese researchers in 1990. TTS is characterized by an interindividual heterogeneity in onset and progression, and by strong predominance in postmenopausal women. The clear causes of these TTS features are uncertain, given the limited understanding of this intriguing syndrome until now. However, the increasing frequency of TTS cases in recent years, and particularly correlated to the SARS-CoV-2 pandemic, leads us to the imperative necessity both of a complete knowledge of TTS pathophysiology for identifying biomarkers facilitating its management, and of targets for specific and effective treatments. The suspect of a genetic basis in TTS pathogenesis has been evidenced. Accordingly, familial forms of TTS have been described. However, a systematic and comprehensive characterization of the genetic or epigenetic factors significantly associated with TTS is lacking. Thus, we here conducted a systematic review of the literature before June 2021, to contribute to the identification of potential genetic and epigenetic factors associated with TTS. Interesting data were evidenced, but few in number and with diverse limitations. Consequently, we concluded that further work is needed to address the gaps discussed, and clear evidence may arrive by using multi-omics investigations.


Subject(s)
COVID-19/complications , Epigenesis, Genetic/immunology , Genetic Heterogeneity , Genetic Predisposition to Disease , Takotsubo Cardiomyopathy/genetics , Biomarkers/analysis , COVID-19/immunology , COVID-19/virology , DNA Copy Number Variations/immunology , Genetic Loci/immunology , Heart Ventricles/immunology , Heart Ventricles/pathology , Humans , Medical History Taking , Polymorphism, Single Nucleotide/immunology , SARS-CoV-2/immunology , Takotsubo Cardiomyopathy/diagnosis , Takotsubo Cardiomyopathy/immunology , Takotsubo Cardiomyopathy/pathology
12.
J Cardiovasc Med (Hagerstown) ; 22(11): 828-831, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1406806

ABSTRACT

AIMS: Controversial data have been published regarding the prognostic role of cardiac troponins in patients who need hospitalization because of coronavirus disease 2019 (COVID-19). The aim of the study was to assess the role of high-sensitivity troponin plasma levels and of respiratory function at admission on all-cause deaths in unselected patients hospitalized because of COVID-19. METHODS: We pooled individual patient data from observational studies that assessed all-cause mortality of unselected patients hospitalized for COVID-19. The individual data of 722 patients were included. The ratio of partial pressure arterial oxygen to fraction of inspired oxygen (PaO2/FiO2) and high-sensitivity troponins was reported at admission in all patients. This meta-analysis was registered on PROSPERO (CRD42020213209). RESULTS: After a median follow-up of 14 days, 180 deaths were observed. At multivariable regression analysis, age [hazard ratio (HR) 1.083, 95% confidence interval (CI) 1.061-1.105, P < 0.0001], male sex (HR 2.049, 95% CI 1.319-3.184, P = 0.0014), moderate-severe renal dysfunction (estimated glomerular filtration rate  < 30 mL/min/m2) (HR 2.108, 95% CI 1.237-3.594, P = 0.0061) and lower PaO2/FiO2 (HR 0.901, 95% CI 0.829-0.978, P = 0.0133) were the independent predictors of death. A linear increase in the HR was associated with decreasing values of PaO2/FiO2 below the normality threshold. On the contrary, the HR curve for troponin plasma levels was near-flat with large CI for values above the normality thresholds. CONCLUSION: In unselected patients hospitalized for COVID-19, mortality is mainly driven by male gender, older age and respiratory failure. Elevated plasma levels of high-sensitivity troponins are not an independent predictor of worse survival when respiratory function is accounted for.


Subject(s)
COVID-19 , Oxygen/analysis , Respiratory Function Tests/methods , Troponin/blood , Age Factors , Biomarkers/analysis , Biomarkers/blood , Blood Gas Analysis/methods , Breath Tests/methods , COVID-19/blood , COVID-19/diagnosis , COVID-19/mortality , Humans , Prognosis , Risk Assessment/methods , SARS-CoV-2 , Sex Factors
13.
Pathol Res Pract ; 227: 153610, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401790

ABSTRACT

The coronavirus disease 2019(COVID-19) is recognized as systemic inflammatory response syndrome. It was demonstrated that a rapid increase of cytokines in the serum of COVID-19 patients is associated with the severity of disease. However, the mechanisms of the cytokine release are not clear. By using immunofluorescence staining we found that the number of CD11b positive immune cells including macrophages in the spleens of died COVID-19 patients, was significantly higher than that of the control patients. The incidence of apoptosis as measured by two apoptotic markers, TUNEL and cleaved caspase-3, in COVID-19 patients' spleen cells is higher than that in control patients. By double immunostaining CD11b or CD68 and SARS-CoV-2 spike protein, it was found that up to 67% of these immune cells were positive for spike protein, suggesting that viral infection might be associated with apoptosis in these cells. Besides, we also stained the autophagy-related molecules (p-Akt、p62 and BCL-2) in spleen tissues, the results showed that the number of positive cells was significantly higher in COVID-19 group. And compared with non-COVID-19 patients, autophagy may be inhibited in COVID-19 patients. Our research suggest that SARS-CoV-2 may result in a higher rate of apoptosis and a lower rate of autophagy of immune cells in the spleen of COVID-19 patients. These discoveries may increase our understanding of the pathogenesis of COVID-19.


Subject(s)
Apoptosis , Autophagy , COVID-19/pathology , SARS-CoV-2/pathogenicity , Spleen/pathology , Antigens, CD/analysis , Antigens, Differentiation, Myelomonocytic/analysis , Autopsy , Biomarkers/analysis , CD11b Antigen/analysis , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Caspase 3/analysis , Host-Pathogen Interactions , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Phosphorylation , Proto-Oncogene Proteins c-akt/analysis , Proto-Oncogene Proteins c-bcl-2/analysis , SARS-CoV-2/immunology , Sequestosome-1 Protein/analysis , Spike Glycoprotein, Coronavirus/analysis , Spleen/immunology , Spleen/virology
14.
ACS Appl Mater Interfaces ; 13(36): 43696-43707, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1392772

ABSTRACT

Graphene is a two-dimensional semiconducting material whose application for diagnostics has been a real game-changer in terms of sensitivity and response time, variables of paramount importance to stop the COVID-19 spreading. Nevertheless, strategies for the modification of docking recognition and antifouling elements to obtain covalent-like stability without the disruption of the graphene band structure are still needed. In this work, we conducted surface engineering of graphene through heterofunctional supramolecular-covalent scaffolds based on vinylsulfonated-polyamines (PA-VS). In these scaffolds, one side binds graphene through multivalent π-π interactions with pyrene groups, and the other side presents vinylsulfonated pending groups that can be used for covalent binding. The construction of PA-VS scaffolds was demonstrated by spectroscopic ellipsometry, Raman spectroscopy, and contact angle measurements. The covalent binding of -SH, -NH2, or -OH groups was confirmed, and it evidenced great chemical versatility. After field-effect studies, we found that the PA-VS-based scaffolds do not disrupt the semiconducting properties of graphene. Moreover, the scaffolds were covalently modified with poly(ethylene glycol) (PEG), which improved the resistance to nonspecific proteins by almost 7-fold compared to the widely used PEG-monopyrene approach. The attachment of recognition elements to PA-VS was optimized for concanavalin A (ConA), a model lectin with a high affinity to glycans. Lastly, the platform was implemented for the rapid, sensitive, and regenerable recognition of SARS-CoV-2 spike protein and human ferritin in lab-made samples. Those two are the target molecules of major importance for the rapid detection and monitoring of COVID-19-positive patients. For that purpose, monoclonal antibodies (mAbs) were bound to the scaffolds, resulting in a surface coverage of 436 ± 30 ng/cm2. KD affinity constants of 48.4 and 2.54 nM were obtained by surface plasmon resonance (SPR) spectroscopy for SARS-CoV-2 spike protein and human ferritin binding on these supramolecular scaffolds, respectively.


Subject(s)
Biomarkers/analysis , COVID-19/diagnosis , Graphite/chemistry , Immunoassay/methods , Spike Glycoprotein, Coronavirus/analysis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Ethylenes/chemistry , Ferritins/immunology , Ferritins/metabolism , Humans , Point-of-Care Systems , Polyamines/chemistry , Polyethylene Glycols/chemistry , Pyrenes/chemistry , Quantum Theory , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Semiconductors , Spike Glycoprotein, Coronavirus/immunology , Sulfonic Acids/chemistry , Surface Plasmon Resonance
15.
Cytometry A ; 97(9): 887-890, 2020 09.
Article in English | MEDLINE | ID: covidwho-1384155

ABSTRACT

In patients with severe SARS-CoV-2 infection, the development of cytokine storm induces extensive lung damage, and monocytes play a role in this pathological process. Non-classical (NC) and intermediate (INT) monocytes are known to be involved during viral and bacterial infections. In this study, 30 patients with different manifestations of acute SARS-CoV-2 infection were investigated with a flow cytometric study of NC, INT, and classical (CL) monocytes. Significantly reduced NC and INT monocytes and a downregulated HLA-DR were found in acute patients with severe SARS-CoV-2 symptoms. Conversely in patients with moderate symptoms NC and INT monocytes and CD11b expression were increased. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Monocytes/immunology , Pneumonia, Viral/immunology , Aged , Betacoronavirus/pathogenicity , Biomarkers/analysis , CD11b Antigen/analysis , COVID-19 , Cell Separation , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , Flow Cytometry , Host Microbial Interactions , Humans , Leukocytes , Male , Middle Aged , Monocytes/virology , Pandemics , Phenotype , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index
16.
Expert Rev Proteomics ; 18(8): 707-717, 2021 08.
Article in English | MEDLINE | ID: covidwho-1380972

ABSTRACT

INTRODUCTION: Active matrix metalloproteinase (aMMP)-8 utilized in point-of-care testing (POCT) is regarded as a potential biomarker for periodontal and peri-implant diseases. Various host and microbial factors eventually influence the expression, degranulation, levels and activation of aMMP-8. The type of oral fluids (saliva, mouthrinse, gingival crevicular, and peri-implant sulcular fluids [GCF/PISF], respectively) affect the analysis. AREAS COVERED: With this background, we aimed to review here the recent studies on practical, inexpensive, noninvasive and quantitative mouthrinse and GCF/PISF chair-side POCT lateral flow aMMP-8 immunoassays (PerioSafe and ImplantSafe/ORALyzer) and how they help to detect, predict, monitor the course, treatment and prevention of periodontitis and peri-implantitis. The correlations of aMMP-8 POCT to other independent and catalytic activity assays of MMP-8 are also addressed. EXPERT OPINION: The mouthrinse aMMP-8 POCT can also detect prediabetes/diabetes and tissue destructive oral side-effects due to the head and neck cancers' radiotherapy. Chlorhexidine and doxycycline can inhibit collagenolytic human neutrophil and GCF aMMP-8. Furthermore, by a set of case-series we demonstrate the potential of mouthrinse aMMP-8 POCT to real-time/online detect periodontitis as a potential risk disease for coronavirus disease 2019 (COVID-19). The clinical interdisciplinary utilization of aMMP-8 POCT requires additional oral, medical, and interdisciplinary studies.


Subject(s)
COVID-19/enzymology , Matrix Metalloproteinase 8/metabolism , Pandemics , SARS-CoV-2 , Biomarkers/analysis , Biomarkers/metabolism , COVID-19/complications , COVID-19/drug therapy , Diabetes Mellitus/diagnosis , Diabetes Mellitus/enzymology , Doxycycline/therapeutic use , Humans , Immunoassay/methods , Matrix Metalloproteinase 8/analysis , Mouthwashes , Oral Hygiene , Peri-Implantitis/diagnosis , Peri-Implantitis/enzymology , Periodontitis/complications , Periodontitis/diagnosis , Periodontitis/enzymology , Point-of-Care Testing , Radiotherapy/adverse effects , Risk Factors
17.
J Leukoc Biol ; 110(3): 425-431, 2021 09.
Article in English | MEDLINE | ID: covidwho-1375609

ABSTRACT

The immune response plays a critical role in the pathophysiology of SARS-CoV-2 infection ranging from protection to tissue damage and all occur in the development of acute respiratory distress syndrome (ARDS). ARDS patients display elevated levels of inflammatory cytokines and innate immune cells, and T and B cell lymphocytes have been implicated in this dysregulated immune response. Mast cells are abundant resident cells of the respiratory tract and are able to release different inflammatory mediators rapidly following stimulation. Recently, mast cells have been associated with tissue damage during viral infections, but their role in SARS-CoV-2 infection remains unclear. In this study, we examined the profile of mast cell activation markers in the serum of COVID-19 patients. We noticed that SARS-CoV-2-infected patients showed increased carboxypeptidase A3 (CPA3) and decreased serotonin levels in their serum when compared with symptomatic SARS-CoV-2-negative patients. CPA3 levels correlated with C-reactive protein, the number of circulating neutrophils, and quick SOFA. CPA3 in serum was a good biomarker for identifying severe COVID-19 patients, whereas serotonin was a good predictor of SARS-CoV-2 infection. In summary, our results show that serum CPA3 and serotonin levels are relevant biomarkers during SARS-CoV-2 infection. This suggests that mast cells and basophils are relevant players in the inflammatory response in COVID-19 and may represent targets for therapeutic intervention.


Subject(s)
COVID-19/diagnosis , Carboxypeptidases A/metabolism , Inflammation Mediators/metabolism , Inflammation/diagnosis , Mast Cells/immunology , SARS-CoV-2/isolation & purification , Serotonin/metabolism , Biomarkers/analysis , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Mast Cells/pathology , Severity of Illness Index
18.
PLoS One ; 16(8): e0256744, 2021.
Article in English | MEDLINE | ID: covidwho-1374154

ABSTRACT

INTRODUCTION: Coronavirus Disease 2019 is a primarily respiratory illness that can cause thrombotic disorders. Elevation of D-dimer is a potential biomarker for poor prognosis in COVID-19, though optimal cutoff value for D-dimer to predict mortality has not yet been established. This study aims to assess the accuracy of admission D-dimer in the prognosis of COVID-19 and to establish the optimal cutoff D-dimer value to predict hospital mortality. METHODS: Clinical and laboratory parameters and outcomes of confirmed COVID-19 cases admitted to four hospitals in Kathmandu were retrospectively analyzed. Admitted COVID-19 cases with recorded D-dimer and definitive outcomes were included consecutively. D-dimer was measured using immunofluorescence assay and reported in Fibrinogen Equivalent Unit (µg/ml). The receiver operating characteristic curve was used to determine the accuracy of D-dimer in predicting mortality, and to calculate the optimal cutoff value, based on which patients were divided into two groups and predictive value of D-dimer for mortality was measured. RESULTS: 182 patients were included in the study out of which 34(18.7%) died during the hospital stay. The mean admission D-dimer among surviving patients was 1.067 µg/ml (±1.705 µg/ml), whereas that among patients who died was 3.208 µg/ml (±2.613 µg/ml). ROC curve for D-dimer and mortality gave an area under the curve of 0.807 (95% CI 0.728-0.886, p<0.001). Optimal cutoff value for D-dimer was 1.5 µg/ml (sensitivity 70.6%, specificity 78.4%). On Cox proportional hazards regression analysis, the unadjusted hazard ratio for high D-dimer was 6.809 (95% CI 3.249-14.268, p<0.001), and 5.862 (95% CI 2.751-12.489, p<0.001) when adjusted for age. CONCLUSION: D-dimer value on admission is an accurate biomarker for predicting mortality in patients with COVID-19. 1.5 µg/ml is the optimal cutoff value of admission D-dimer for predicting mortality in COVID-19 patients.


Subject(s)
Biomarkers/analysis , COVID-19/diagnosis , Fibrin Fibrinogen Degradation Products/analysis , Adult , Aged , Area Under Curve , COVID-19/mortality , COVID-19/virology , Female , Hospital Mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Proportional Hazards Models , ROC Curve , Retrospective Studies , SARS-CoV-2/isolation & purification
20.
PLoS One ; 16(8): e0256357, 2021.
Article in English | MEDLINE | ID: covidwho-1372010

ABSTRACT

Torquetenovirus (TTV) is present in biological fluids from healthy individuals and measurement of its titer is used to assess immune status in individuals with chronic infections and after transplants. We assessed if the titer of TTV in saliva varied with the presence of SARS-CoV-2 in the nasopharynx and could be a marker of COVID-19 status. Saliva from 91 individuals positive for SARS-CoV-2 in nasal-oropharyngeal samples, and from 126 individuals who were SARS-CoV-2-negative, all with mild respiratory symptoms, were analyzed. Both groups were similar in age, gender, symptom duration and time after symptom initiation when saliva was collected. Titers of TTV and SARS-CoV-2 were assessed by gene amplification. Loss of smell (p = 0.0001) and fever (p = 0.0186) were more prevalent in SARS-CoV-2-positive individuals, while sore throat (p = 0.0001), fatigue (p = 0.0037) and diarrhea (p = 0.0475) were more frequent in the SARS-CoV-2 negative group. The saliva TTV and nasal-oropharyngeal SARS-CoV-2 titers were correlated (p = 0.0085). The TTV level decreased as symptoms resolved in the SARS-CoV-2 infected group (p = 0.0285) but remained unchanged in the SARS-CoV-2 negative controls. In SARS-CoV-2 positive subjects who provided 2-4 saliva samples and in which TTV was initially present, the TTV titer always decreased over time as symptoms resolved. We propose that sequential TTV measurement in saliva is potentially useful to assess the likelihood of symptom resolution in SARS-CoV-2-positive individuals and to predict prognosis.


Subject(s)
Biomarkers/analysis , COVID-19/diagnosis , Saliva/virology , Torque teno virus/isolation & purification , Adult , COVID-19/virology , DNA, Viral/metabolism , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Polymerase Chain Reaction , Prognosis , SARS-CoV-2/isolation & purification , Torque teno virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...