ABSTRACT
Importance: Neurologic symptoms are common in COVID-19, but the central nervous system (CNS) pathogenesis is unclear, and viral RNA is rarely detected in cerebrospinal fluid (CSF). Objective: To measure viral antigen and inflammatory biomarkers in CSF in relation to neurologic symptoms and disease severity. Design, Setting, and Participants: This cross-sectional study was performed from March 1, 2020, to June 30, 2021, in patients 18 years or older who were admitted to Sahlgrenska University Hospital, Gothenburg, Sweden, with COVID-19. All patients had CSF samples taken because of neurologic symptoms or within a study protocol. Healthy volunteer and prepandemic control groups were included. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: Outcomes included CSF SARS-CoV-2 nucleocapsid antigen (N-Ag) using an ultrasensitive antigen capture immunoassay platform and CSF biomarkers of immune activation (neopterin, ß2-microglobulin, and cytokines) and neuronal injury (neurofilament light protein [NfL]). Results: Forty-four patients (median [IQR] age, 57 [48-69] years; 30 [68%] male; 26 with moderate COVID-19 and 18 with severe COVID-19 based on the World Health Organization Clinical Progression Scale), 10 healthy controls (median [IQR] age, 58 [54-60] years; 5 [50%] male), and 41 patient controls (COVID negative without evidence of CNS infection) (median [IQR] age, 59 [49-70] years; 19 [46%] male) were included in the study. Twenty-one patients were neuroasymptomatic and 23 were neurosymptomatic (21 with encephalopathy). In 31 of 35 patients for whom data were available (89%), CSF N-Ag was detected; viral RNA test results were negative in all. Nucleocapsid antigen was significantly correlated with CSF neopterin (r = 0.38; P = .03) and interferon γ (r = 0.42; P = .01). No differences in CSF N-Ag concentrations were found between patient groups. Patients had markedly increased CSF neopterin, ß2-microglobulin, interleukin (IL) 2, IL-6, IL-10, and tumor necrosis factor α compared with controls. Neurosymptomatic patients had significantly higher median (IQR) CSF interferon γ (86 [47-172] vs 21 [17-81] fg/mL; P = .03) and had a significantly higher inflammatory biomarker profile using principal component analysis compared with neuroasymptomatic patients (0.54; 95% CI, 0.03-1.05; P = .04). Age-adjusted median (IQR) CSF NfL concentrations were higher in patients compared with controls (960 [673-1307] vs 618 [489-786] ng/L; P = .002). No differences were seen in any CSF biomarkers in moderate compared with severe disease. Conclusions and Relevance: In this study of Swedish adults with COVID-19 infection and neurologic symptoms, compared with control participants, viral antigen was detectable in CSF and correlated with CNS immune activation. Patients with COVID-19 had signs of neuroaxonal injury, and neurosymptomatic patients had a more marked inflammatory profile that could not be attributed to differences in COVID-19 severity. These results highlight the clinical relevance of neurologic symptoms and suggest that viral components can contribute to CNS immune responses without direct viral invasion.
Subject(s)
COVID-19 , Adult , Antigens, Viral , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Female , Humans , Interferon-gamma , Male , Middle Aged , Neopterin/cerebrospinal fluid , Neurofilament Proteins , RNA, Viral , SARS-CoV-2ABSTRACT
BACKGROUND: Neurological manifestations are common in patients with coronavirus disease 2019 (COVID-19), but little is known about pathophysiological mechanisms. In this single-center study, we examined neurological manifestations in 58 patients, including cerebrospinal fluid (CSF) analysis and neuroimaging findings. METHODS: The study included 58 patients with COVID-19 and neurological manifestations in whom severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction screening and on CSF analysis were performed. Clinical, laboratory, and brain magnetic resonance (MR) imaging data were retrospectively collected and analyzed. RESULTS: Patients were mostly men (66%), with a median age of 62 years. Encephalopathy was frequent (81%), followed by pyramidal dysfunction (16%), seizures (10%), and headaches (5%). CSF protein and albumin levels were increased in 38% and 23%, respectively. A total of 40% of patients displayed an elevated albumin quotient, suggesting impaired blood-brain barrier integrity. CSF-specific immunoglobulin G oligoclonal band was found in 5 patients (11%), suggesting an intrathecal synthesis of immunoglobulin G, and 26 patients (55%) presented identical oligoclonal bands in serum and CSF. Four patients (7%) had a positive CSF SARS-CoV-2 reverse-transcription polymerase chain reaction. Leptomeningeal enhancement was present on brain MR images in 20 patients (38%). CONCLUSIONS: Brain MR imaging abnormalities, especially leptomeningeal enhancement, and increased inflammatory markers in CSF are frequent in patients with neurological manifestations related to COVID-19, whereas SARS-CoV-2 detection in CSF remained scanty.
Subject(s)
Brain Diseases/cerebrospinal fluid , Brain/diagnostic imaging , COVID-19/complications , Aged , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Brain Diseases/diagnostic imaging , Brain Diseases/virology , COVID-19/cerebrospinal fluid , COVID-19/diagnostic imaging , Female , France , Humans , Inflammation/diagnosis , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective StudiesABSTRACT
Patients with coronavirus disease 2019 (COVID-19) can present with distinct neurological manifestations. This study shows that inflammatory neurological diseases were associated with increased levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12, chemokine (C-X-C motif) ligand 8 (CXCL8), and CXCL10 in the cerebrospinal fluid. Conversely, encephalopathy was associated with high serum levels of IL-6, CXCL8, and active tumor growth factor ß1. Inflammatory syndromes of the central nervous system in COVID-19 can appear early, as a parainfectious process without significant systemic involvement, or without direct evidence of severe acute respiratory syndrome coronavirus 2 neuroinvasion. At the same time, encephalopathy is mainly influenced by peripheral events, including inflammatory cytokines. ANN NEUROL 2021;89:1041-1045.
Subject(s)
COVID-19/blood , COVID-19/cerebrospinal fluid , Inflammation Mediators/blood , Inflammation Mediators/cerebrospinal fluid , Nervous System Diseases/blood , Nervous System Diseases/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , COVID-19/epidemiology , Cytokines/blood , Cytokines/cerebrospinal fluid , Humans , Nervous System Diseases/epidemiologyABSTRACT
OBJECTIVE: To explore whether hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and neurologic symptoms have evidence of CNS infection, inflammation, and injury using CSF biomarker measurements. METHODS: We assessed CSF SARS-CoV-2 RNA along with CSF biomarkers of intrathecal inflammation (CSF white blood cell count, neopterin, ß2-microglobulin, and immunoglobulin G index), blood-brain barrier integrity (albumin ratio), and axonal injury (CSF neurofilament light chain protein [NfL]) in 6 patients with moderate to severe coronavirus disease 2019 (COVID-19) and neurologic symptoms who had undergone a diagnostic lumbar puncture. Neurologic symptoms and signs included features of encephalopathies (4 of 6), suspected meningitis (1 of 6), and dysgeusia (1 of 6). SARS-CoV-2 infection was confirmed by real-time PCR analysis of nasopharyngeal swabs. RESULTS: SARS-CoV-2 RNA was detected in the plasma of 2 patients (cycle threshold [Ct] value 35.0-37.0) and in CSF at low levels (Ct 37.2, 38.0, 39.0) in 3 patients in 1 but not in a second real-time PCR assay. CSF neopterin (median 43.0 nmol/L) and ß2-microglobulin (median 3.1 mg/L) were increased in all. Median immunoglobulin G index (0.39), albumin ratio (5.35), and CSF white blood cell count (<3 cells/µL) were normal in all, while CSF NfL was elevated in 2 patients. CONCLUSION: Our results in patients with COVID-19 and neurologic symptoms suggest an unusual pattern of marked CSF inflammation in which soluble markers were increased but white cell response and other immunologic features typical of CNS viral infections were absent. While our initial hypothesis centered on CNS SARS-CoV-2 invasion, we could not convincingly detect SARS-CoV-2 as the underlying driver of CNS inflammation. These features distinguish COVID-19 CSF from other viral CNS infections and raise fundamental questions about the CNS pathobiology of SARS-CoV-2 infection.