Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Biomed Pharmacother ; 142: 111953, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1322006


Currently, there are over 230 different COVID-19 vaccines under development around the world. At least three decades of scientific development in RNA biology, immunology, structural biology, genetic engineering, chemical modification, and nanoparticle technologies allowed the accelerated development of fully synthetic messenger RNA (mRNA)-based vaccines within less than a year since the first report of a SARS-CoV-2 infection. mRNA-based vaccines have been shown to elicit broadly protective immune responses, with the added advantage of being amenable to rapid and flexible manufacturing processes. This review recapitulates current advances in engineering the first two SARS-CoV-2-spike-encoding nucleoside-modified mRNA vaccines, highlighting the strategies followed to potentiate their effectiveness and safety, thus facilitating an agile response to the current COVID-19 pandemic.

Biomedical Engineering , COVID-19 Vaccines , COVID-19 , Drug Development/methods , Drug Discovery/methods , SARS-CoV-2 , Biomedical Engineering/methods , Biomedical Engineering/trends , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/classification , COVID-19 Vaccines/pharmacology , Drug Delivery Systems/methods , Humans , Immunogenicity, Vaccine , Liposomes/pharmacology , Nanoparticles , Nucleosides/pharmacology , Nucleosides/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/pharmacology
IEEE Pulse ; 12(3): 21-23, 2021.
Article in English | MEDLINE | ID: covidwho-1280250


In the wake of the COVID-19 pandemic, the need for rapid and accurate diagnostic testing across populations quickly became evident. In response, the National Institutes of Health (NIH) was determined not only to invest heavily in this area but to change the process by which grant proposals were reviewed and funded in order to spur faster development of viable technologies. The Rapid Acceleration of Diagnostics (RADx) initiative was designed to speed innovation, commercialization, and implementation of potential COVID-19 diagnostic technology. As part of this effort, the RADx Tech initiative focuses on the development, validation, and commercialization of innovative point-of-care, home-based, and clinical lab-based tests that can detect SARS-CoV-2. This effort was enabled through the NIH's National Institute of Biomedical Imaging and Bioengineering (NIBIB) Point-of-Care Technology Research Network (POCTRN).

Biomedical Engineering/economics , COVID-19 Testing/economics , COVID-19 , National Institutes of Health (U.S.)/economics , Pandemics , Point-of-Care Systems/economics , SARS-CoV-2 , Biomedical Engineering/trends , COVID-19/diagnosis , COVID-19/economics , COVID-19/epidemiology , Humans , United States
Neuron ; 109(4): 571-575, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1087172


Recent research resolves the challenging problem of building biophysically plausible spiking neural models that are also capable of complex information processing. This advance creates new opportunities in neuroscience and neuromorphic engineering, which we discussed at an online focus meeting.

Biomedical Engineering/trends , Models, Neurological , Neural Networks, Computer , Neurosciences/trends , Biomedical Engineering/methods , Forecasting , Humans , Neurons/physiology , Neurosciences/methods