Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add filters

Document Type
Year range
1.
J Med Virol ; 94(1): 357-365, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544349

ABSTRACT

COVID-19 is a serious respiratory disease. The ever-increasing number of cases is causing heavier loads on the health service system. Using 38 blood test indicators on the first day of admission for the 422 patients diagnosed with COVID-19 (from January 2020 to June 2021) to construct different machine learning (ML) models to classify patients into either mild or severe cases of COVID-19. All models show good performance in the classification between COVID-19 patients into mild and severe disease. The area under the curve (AUC) of the random forest model is 0.89, the AUC of the naive Bayes model is 0.90, the AUC of the support vector machine model is 0.86, and the AUC of the KNN model is 0.78, the AUC of the Logistic regression model is 0.84, and the AUC of the artificial neural network model is 0.87, among which the naive Bayes model has the best performance. Different ML models can classify patients into mild and severe cases based on 38 blood test indicators taken on the first day of admission for patients diagnosed with COVID-19.


Subject(s)
Blood Chemical Analysis , COVID-19/classification , Neural Networks, Computer , Severity of Illness Index , Support Vector Machine , Area Under Curve , COVID-19/blood , COVID-19/diagnosis , Hematologic Tests , Humans , Logistic Models , SARS-CoV-2
2.
Sci Rep ; 11(1): 21136, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1493228

ABSTRACT

The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models have been validated but few of them are implemented in daily practice. The objective of the study was to validate a machine-learning risk prediction model using easy-to-obtain parameters to help to identify patients with COVID-19 who are at higher risk of death. The training cohort included all patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020, to November 5, 2020. Afterward, the model was tested on all patients admitted to the same hospital with COVID-19 from November 6, 2020, to February 5, 2021. The primary outcome was in-hospital case-fatality risk. The out-of-sample performance of the model was estimated from the training set in terms of Area under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the results of fivefold cross validation repeated 3-times and comparing the results with those obtained on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations (SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) at 48 h after the baseline measurement was plotted against its baseline value. Among the 921 patients included in the training cohort, 120 died (13%). Variables selected for the model were age, platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, and sodium. The results of the fivefold cross-validation repeated 3-times gave AUROC of 0.87, and statistics of the classification matrix to the Youden index as follows: sensitivity 0.840, specificity 0.774, negative predictive value 0.971. Then, the model was tested on a new population (n = 1463) in which the case-fatality rate was 22.6%. The test model showed AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score (low-risk score group), the case-fatality rate was 1.6%, 17.8% in the second and third quartile (high-risk score group) and 53.5% in the fourth quartile (very high-risk score group). The three risk score groups showed good discrimination for the P/F value at admission, and a positive correlation was found for the low-risk class to P/F at 48 h after admission (adjusted R-squared = 0.48). We developed a predictive model of death for people with SARS-CoV-2 infection by including only easy-to-obtain variables (abnormal blood count, BUN, C-reactive protein, sodium and lower SpO2). It demonstrated good accuracy and high power of discrimination. The simplicity of the model makes the risk prediction applicable for patients in the Emergency Department, or during hospitalization. Although it is reasonable to assume that the model is also applicable in not-hospitalized persons, only appropriate studies can assess the accuracy of the model also for persons at home.


Subject(s)
COVID-19/mortality , Machine Learning , Pandemics , SARS-CoV-2 , Aged , Aged, 80 and over , Blood Cell Count , Blood Chemical Analysis , COVID-19/blood , Cohort Studies , Female , Hospital Mortality , Humans , Male , Middle Aged , Models, Statistical , Multivariate Analysis , Oxygen/blood , Pandemics/statistics & numerical data , ROC Curve , Risk Factors , Rome/epidemiology
3.
Microbiol Spectr ; 9(2): e0054921, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1381170

ABSTRACT

In one year of the coronavirus disease 2019 (COVID-19) pandemic, many studies have described the different metabolic changes occurring in COVID-19 patients, linking these alterations to the disease severity. However, a complete metabolic signature of the most severe cases, especially those with a fatal outcome, is still missing. Our study retrospectively analyzes the metabolome profiles of 75 COVID-19 patients with moderate and severe symptoms admitted to Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Lombardy Region, Italy) following SARS-CoV-2 infection between March and April 2020. Italy was the first Western country to experience COVID-19, and the Lombardy Region was the epicenter of the Italian COVID-19 pandemic. This cohort shows a higher mortality rate compared to others; therefore, it represents a unique opportunity to investigate the underlying metabolic profiles of the first COVID-19 patients in Italy and to identify the potential biomarkers related to the disease prognosis and fatal outcome. IMPORTANCE Understanding the metabolic alterations occurring during an infection is a key element for identifying potential indicators of the disease prognosis, which are fundamental for developing efficient diagnostic tools and offering the best therapeutic treatment to the patient. Here, exploiting high-throughput metabolomics data, we identified the first metabolic profile associated with a fatal outcome, not correlated with preexisting clinical conditions or the oxygen demand at the moment of diagnosis. Overall, our results contribute to a better understanding of COVID-19-related metabolic disruption and may represent a useful starting point for the identification of independent prognostic factors to be employed in therapeutic practice.


Subject(s)
Blood Chemical Analysis , COVID-19/epidemiology , COVID-19/mortality , Energy Metabolism/physiology , Metabolome/physiology , Aged , Aged, 80 and over , Biomarkers/blood , Comorbidity , Female , Humans , Italy/epidemiology , Male , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2
4.
Ann Emerg Med ; 78(4): 511-514, 2021 10.
Article in English | MEDLINE | ID: covidwho-1293546

ABSTRACT

Vaccine-induced thrombotic thrombocytopenia is a newly described disease process in the setting of expanding access to COVID-19 vaccination. The United States Centers for Disease Control and Prevention recommends treatment with an alternative to heparin in patients suspected of having vaccine-induced thrombotic thrombocytopenia. At this time there have been no reported outcomes from the treatment of vaccine-induced thrombotic thrombocytopenia with bivalirudin as a heparin alternative. We describe the early outcomes from the treatment of vaccine-induced thrombotic thrombocytopenia with bivalirudin as a heparin alternative. A 40-year-old Caucasian woman was found to have thrombocytopenia, cerebral venous sinus thrombosis, and pulmonary embolism following vaccination for COVID-19 with Ad26.COV2.S. She exhibited a steady rise in platelet count: 20×109/L at hospital day 0, 115×109/L at discharge on hospital day 6, and 182×109/L on outpatient follow-up on day 9. While the patient exhibited a transient drop in hemoglobin, there was no clinical evidence of bleeding. This patient did not demonstrate any clinical sequelae of thrombosis, and she reported resolution of her headache. Vaccination with Ad26.COV2.S appears to be associated with a small but significant risk for thrombotic thrombocytopenia within 13 days of receipt. The Centers for Disease Control and Prevention guidance to consider an alternative to heparin was not accompanied by specifically recommended alternatives. A single patient treated with bivalirudin for suspected vaccine-induced thrombotic thrombocytopenia subsequently experienced symptom improvement and a rise in platelet count and did not demonstrate any immediate negative outcomes. A provider may consider bivalirudin as an alternative to heparin in patients with suspected vaccine-induced thrombotic thrombocytopenia following Ad26.COV2.S vaccination, pending more definitive research.


Subject(s)
COVID-19 Vaccines/adverse effects , Fibrinolytic Agents/therapeutic use , Peptide Fragments/therapeutic use , Sinus Thrombosis, Intracranial/drug therapy , Thrombocytopenia/drug therapy , Adult , Blood Chemical Analysis , Blood Physiological Phenomena , COVID-19/prevention & control , Female , Hirudins , Humans , Pulmonary Embolism/drug therapy , Pulmonary Embolism/etiology , Recombinant Proteins/therapeutic use , Sinus Thrombosis, Intracranial/etiology , Thrombocytopenia/etiology
6.
Ann Clin Biochem ; 58(5): 411-421, 2021 09.
Article in English | MEDLINE | ID: covidwho-1181016

ABSTRACT

BACKGROUND: The COVID-19 pandemic has drastically changed the delivery of secondary care services. Self-collection of capillary blood at home can facilitate the monitoring of patients with chronic disease to support virtual clinics while mitigating the risk of SARS-CoV-2 infection and transmission. OBJECTIVE: To investigate the comparability of whole blood capillary and plasma venous samples for 15 routinely used biochemical analytes and to develop and pilot a user-friendly home-collection kit to support virtual outpatient clinical services. METHODS: To investigate the comparability of whole blood capillary and plasma venous samples for 15 routinely requested biochemical analytes, simultaneous samples of venous and capillary blood were collected in EDTA and lithium-heparin plasma separation tubes that were of 4-6 mL and 400-600 µL draw volume, respectively. Venous samples were analysed within 4 h of collection while capillary samples were kept at ambient temperature for three days until centrifugation and analysis. Analyte results that were comparable between the matrices were then piloted in a feasibility study in three outpatient clinical services. RESULTS: HbA1c, lipid profile and liver function tests were considered comparable and piloted in the patient feasibility study. The home-collect kit demonstrated good patient usability. CONCLUSION: Home collection of capillary blood could be a clinically-useful tool to deliver virtual care to patients with chronic disease.


Subject(s)
Blood Chemical Analysis/methods , Blood Specimen Collection/methods , COVID-19/blood , Pandemics , SARS-CoV-2 , Adult , Blood Chemical Analysis/instrumentation , Blood Specimen Collection/instrumentation , Capillary Tubing , Feasibility Studies , Female , Humans , London , Male , Middle Aged , Phlebotomy/instrumentation , Phlebotomy/methods , Pilot Projects , Remote Consultation , Self Care/instrumentation , Self Care/methods , Surveys and Questionnaires
7.
N Engl J Med ; 384(22): 2124-2130, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1174740

ABSTRACT

We report findings in five patients who presented with venous thrombosis and thrombocytopenia 7 to 10 days after receiving the first dose of the ChAdOx1 nCoV-19 adenoviral vector vaccine against coronavirus disease 2019 (Covid-19). The patients were health care workers who were 32 to 54 years of age. All the patients had high levels of antibodies to platelet factor 4-polyanion complexes; however, they had had no previous exposure to heparin. Because the five cases occurred in a population of more than 130,000 vaccinated persons, we propose that they represent a rare vaccine-related variant of spontaneous heparin-induced thrombocytopenia that we refer to as vaccine-induced immune thrombotic thrombocytopenia.


Subject(s)
Autoantibodies/blood , COVID-19 Vaccines/adverse effects , Platelet Factor 4/immunology , Thrombocytopenia/etiology , Thrombosis/etiology , Adult , Autoimmune Diseases/etiology , Blood Chemical Analysis , Enzyme-Linked Immunosorbent Assay , Fatal Outcome , Female , Humans , Male , Middle Aged , Platelet Aggregation , Platelet Count
8.
N Engl J Med ; 384(22): 2092-2101, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1174739

ABSTRACT

BACKGROUND: Several cases of unusual thrombotic events and thrombocytopenia have developed after vaccination with the recombinant adenoviral vector encoding the spike protein antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (ChAdOx1 nCov-19, AstraZeneca). More data were needed on the pathogenesis of this unusual clotting disorder. METHODS: We assessed the clinical and laboratory features of 11 patients in Germany and Austria in whom thrombosis or thrombocytopenia had developed after vaccination with ChAdOx1 nCov-19. We used a standard enzyme-linked immunosorbent assay to detect platelet factor 4 (PF4)-heparin antibodies and a modified (PF4-enhanced) platelet-activation test to detect platelet-activating antibodies under various reaction conditions. Included in this testing were samples from patients who had blood samples referred for investigation of vaccine-associated thrombotic events, with 28 testing positive on a screening PF4-heparin immunoassay. RESULTS: Of the 11 original patients, 9 were women, with a median age of 36 years (range, 22 to 49). Beginning 5 to 16 days after vaccination, the patients presented with one or more thrombotic events, with the exception of 1 patient, who presented with fatal intracranial hemorrhage. Of the patients with one or more thrombotic events, 9 had cerebral venous thrombosis, 3 had splanchnic-vein thrombosis, 3 had pulmonary embolism, and 4 had other thromboses; of these patients, 6 died. Five patients had disseminated intravascular coagulation. None of the patients had received heparin before symptom onset. All 28 patients who tested positive for antibodies against PF4-heparin tested positive on the platelet-activation assay in the presence of PF4 independent of heparin. Platelet activation was inhibited by high levels of heparin, Fc receptor-blocking monoclonal antibody, and immune globulin (10 mg per milliliter). Additional studies with PF4 or PF4-heparin affinity purified antibodies in 2 patients confirmed PF4-dependent platelet activation. CONCLUSIONS: Vaccination with ChAdOx1 nCov-19 can result in the rare development of immune thrombotic thrombocytopenia mediated by platelet-activating antibodies against PF4, which clinically mimics autoimmune heparin-induced thrombocytopenia. (Funded by the German Research Foundation.).


Subject(s)
Autoantibodies/blood , COVID-19 Vaccines/adverse effects , Platelet Factor 4/immunology , Thrombocytopenia/etiology , Thrombosis/etiology , Adult , Autoimmune Diseases/etiology , Blood Chemical Analysis , Disseminated Intravascular Coagulation/etiology , Enzyme-Linked Immunosorbent Assay , Fatal Outcome , Female , Humans , Intracranial Hemorrhages/etiology , Male , Middle Aged , Platelet Activation , Thrombocytopenia/immunology , Thrombosis/immunology , Young Adult
9.
Int J Mol Sci ; 22(5)2021 Mar 09.
Article in English | MEDLINE | ID: covidwho-1134169

ABSTRACT

Fibrinolysis is an important process in hemostasis responsible for dissolving the clot during wound healing. Plasmin is a central enzyme in this process via its capacity to cleave fibrin. The kinetics of plasmin generation (PG) and inhibition during fibrinolysis have been poorly understood until the recent development of assays to quantify these metrics. The assessment of plasmin kinetics allows for the identification of fibrinolytic dysfunction and better understanding of the relationships between abnormal fibrin dissolution and disease pathogenesis. Additionally, direct measurement of the inhibition of PG by antifibrinolytic medications, such as tranexamic acid, can be a useful tool to assess the risks and effectiveness of antifibrinolytic therapy in hemorrhagic diseases. This review provides an overview of available PG assays to directly measure the kinetics of plasmin formation and inhibition in human and mouse plasmas and focuses on their applications in defining the role of plasmin in diseases, including angioedema, hemophilia, rare bleeding disorders, COVID-19, or diet-induced obesity. Moreover, this review introduces the PG assay as a promising clinical and research method to monitor antifibrinolytic medications and screen for genetic or acquired fibrinolytic disorders.


Subject(s)
Blood Chemical Analysis/methods , Disease , Fibrinolysin/analysis , Fibrinolysin/metabolism , Animals , Antifibrinolytic Agents/blood , Fibrin/analysis , Fibrin/chemistry , Fibrinolytic Agents/blood , Humans , Plasminogen/analysis , Plasminogen/chemistry , Plasminogen/metabolism
10.
Pharmacol Res Perspect ; 9(2): e00743, 2021 04.
Article in English | MEDLINE | ID: covidwho-1130677

ABSTRACT

Both antiviral treatment with remdesivir and hemoadsorption using a CytoSorb® adsorption device are applied in the treatment of severe COVID-19. The CytoSorb® adsorber consists of porous polymer beads that adsorb a broad range of molecules, including cytokines but also several therapeutic drugs. In this study, we evaluated whether remdesivir and its main active metabolite GS-441524 would be adsorbed by CytoSorb® . Serum containing remdesivir or GS-441524 was circulated in a custom-made system containing a CytoSorb® device. Concentrations of remdesivir and GS-441524 before and after the adsorber were analyzed by liquid chromatography-tandem mass spectrometry. Measurements of remdesivir in the outgoing tube after the adsorber indicated almost complete removal of remdesivir by the device. In the reservoir, concentration of remdesivir showed an exponential decay and was not longer detectable after 60 mins. GS-441524 showed a similar exponential decay but, unlike remdesivir, it reached an adsorption-desorption equilibrium at ~48 µg/L. Remdesivir and its main active metabolite GS-441524 are rapidly eliminated from the perfusate by the CytoSorb® adsorber device in vitro. This should be considered in patients for whom both therapies are indicated, and simultaneous application should be avoided. In general, plasma levels of therapeutic drugs should be closely monitored under concurrent CytoSorb® therapy.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/therapy , Hemoperfusion/instrumentation , Adenosine/analogs & derivatives , Adenosine Monophosphate/blood , Adenosine Monophosphate/pharmacokinetics , Alanine/blood , Alanine/pharmacokinetics , Blood Chemical Analysis , COVID-19/blood , Chromatography, Liquid , Combined Modality Therapy , Furans/blood , Furans/pharmacokinetics , Hemoperfusion/adverse effects , Humans , Pyrroles/blood , Pyrroles/pharmacokinetics , Tandem Mass Spectrometry , Triazines/blood , Triazines/pharmacokinetics
13.
Clin Lab ; 67(2)2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1094346

ABSTRACT

BACKGROUND: COVID-19 has recently been declared an epidemic by the WHO, and there is an urgent need for affected countries and laboratories to assess and treat people at risk of COVID-19. A heat procedure has been suggested for specimen inactivation. This study was designed to evaluate the effect of serum heating on biochemical indexes, and providing a basis for accurate detection results of the COVID-19 patients. METHODS: We collected 29 normal cases of two tubes of 5 mL whole blood. One tube was analyzed directly, and the other was analyzed after heating at 56°C 30 minutes. RESULTS: A total of 34 serum biochemical index quantitative results were obtained, 28/34 indexes were not significantly affected by the heat inactivation and remained clinically interpretable. As the thermal inactivation for these indexes showed good correlation, ALB (p = 0.04, Pearson R = 0.91, 2.6% mean increase), CysC (p = 0.03, Pearson R = 0.98, 9.9% mean increase), CO2CP (p < 0.001, Pearson R = 0.96, 13% mean decrease), they were still inter-pretable. Four biochemical indexes ALP, CK, CK-MB, and insulin were inactivated and showed significant statistical differences (p < 0.001). CONCLUSIONS: Our study showed CK, CK-MB, ALP, and insulin were sensitive to heat and will be inhibited or degrade after heating, indicating that the rapid decrease of this indexes in the COVID-19 patients may be caused by sample heat inactivation. For safety and diagnostic accuracy, we recommend the use of a point-of-care device for blood gases, electrolytes, troponin, and liver and renal function tests within a ISL 2 or above biosafety cabinet with level 3 or above biosafety laboratory practice.


Subject(s)
Blood Chemical Analysis , COVID-19 , Diagnostic Errors/prevention & control , Hot Temperature/adverse effects , SARS-CoV-2 , Virus Inactivation , Alkaline Phosphatase/blood , Blood Chemical Analysis/methods , Blood Chemical Analysis/standards , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Creatine Kinase/blood , Female , Humans , Insulin/blood , Male , Middle Aged , Point-of-Care Systems , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sensitivity and Specificity
14.
Anal Sci ; 37(9): 1301-1304, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1094104

ABSTRACT

An in-hospital rapid method for quantifying the serum level of favipiravir (FPV) in the pharmacological treatment of COVID-19 was developed by an appropriate combination of a solid-phase extraction treatment and a reversed-phase HPLC/UV detection system. The quantification method was well-validated and applied to measuring the serum FPV level in a clinical practice at a general hospital that accepts COVID-19 patients. Furthermore, an analysis of data from our preliminary interaction analysis revealed, for the first time, that FPV selectively forms complexes with ferric (Fe3+) and cupric (Cu2+) ions.


Subject(s)
Amides/blood , Blood Chemical Analysis/methods , COVID-19/drug therapy , Hospitals , Pyrazines/blood , Amides/therapeutic use , COVID-19/blood , Chromatography, High Pressure Liquid , Humans , Pyrazines/therapeutic use , Time Factors
15.
Aging (Albany NY) ; 13(3): 3176-3189, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1076957

ABSTRACT

To establish an effective nomogram for predicting in-hospital mortality of COVID-19, a retrospective cohort study was conducted in two hospitals in Wuhan, China, with a total of 4,086 hospitalized COVID-19 cases. All patients have reached therapeutic endpoint (death or discharge). First, a total of 3,022 COVID-19 cases in Wuhan Huoshenshan hospital were divided chronologically into two sets, one (1,780 cases, including 47 died) for nomogram modeling and the other (1,242 cases, including 22 died) for internal validation. We then enrolled 1,064 COVID-19 cases (29 died) in Wuhan Taikang-Tongji hospital for external validation. Independent factors included age (HR for per year increment: 1.05), severity at admission (HR for per rank increment: 2.91), dyspnea (HR: 2.18), cardiovascular disease (HR: 3.25), and levels of lactate dehydrogenase (HR: 4.53), total bilirubin (HR: 2.56), blood glucose (HR: 2.56), and urea (HR: 2.14), which were finally selected into the nomogram. The C-index for the internal resampling (0.97, 95% CI: 0.95-0.98), the internal validation (0.96, 95% CI: 0.94-0.98), and the external validation (0.92, 95% CI: 0.86-0.98) demonstrated the fair discrimination ability. The calibration plots showed optimal agreement between nomogram prediction and actual observation. We established and validated a novel prognostic nomogram that could predict in-hospital mortality of COVID-19 patients.


Subject(s)
COVID-19 , Hospital Mortality , Nomograms , Age Factors , Aged , Blood Chemical Analysis/methods , Blood Chemical Analysis/statistics & numerical data , COVID-19/blood , COVID-19/diagnosis , COVID-19/mortality , COVID-19/physiopathology , Cardiovascular Diseases/epidemiology , China/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Assessment/methods , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Survival Analysis , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119241, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1065570

ABSTRACT

The present work describes development of rapid, robust, sensitive and green spectrofluorimetric method for determination of favipiravir (FAV). Different factors affecting fluorescence were carefully studied and Box Behnken Design was applied to optimize experimental parameters. The proposed method is based on measuring native fluorescence of FAV in 0.2 M borate buffer (pH 8.0) at 432 nm after excitation at 361 nm. There was a linear relationship between FAV concentration and relative fluorescence intensity over the range 40-280 ng/mL with limit of detection of 9.44 ng/mL and quantitation limit of 28.60 ng/mL. The method was successfully implemented for determination of FAV in its pharmaceutical formulation with mean % recovery of 99.26 ± 0.87. Moreover, the high sensitivity of the method allowed determination of FAV in spiked human plasma over a range of 48-192 ng/mL. The proposed spectrofluorimetric method was proved to be eco-friendly according to analytical eco-scale.


Subject(s)
Amides/blood , Antiviral Agents/blood , COVID-19/blood , COVID-19/drug therapy , Pyrazines/blood , Spectrometry, Fluorescence/methods , Amides/analysis , Amides/therapeutic use , Antiviral Agents/analysis , Antiviral Agents/therapeutic use , Blood Chemical Analysis/methods , Blood Chemical Analysis/statistics & numerical data , Humans , Limit of Detection , Pyrazines/analysis , Pyrazines/therapeutic use , SARS-CoV-2 , Sensitivity and Specificity , Spectrometry, Fluorescence/statistics & numerical data
17.
Front Public Health ; 8: 596168, 2020.
Article in English | MEDLINE | ID: covidwho-1055005

ABSTRACT

Background: Six months since the outbreak of coronavirus disease (COVID-19), the pandemic continues to grow worldwide, although the outbreak in Wuhan, the worst-hit area, has been controlled. Thus, based on the clinical experience in Wuhan, we hypothesized that there is a relationship between the patient's CO2 levels and prognosis. Methods: COVID-19 patients' information was retrospectively collected from medical records at the Leishenshan Hospital, Wuhan. Logistic and Cox regression analyses were conducted to determine the correlation between decreased CO2 levels and disease severity or mortality risk. The Kaplan-Meier curve analysis was coupled with the log-rank test to understand COVID-19 progression in patients with decreased CO2 levels. Curve fitting was used to confirm the correlation between computed tomography scores and CO2 levels. Results: Cox regression analysis showed that the mortality risk of COVID-19 patients correlated with decreased CO2 levels. The adjusted hazard ratios for decreased CO2 levels in COVID-19 patients were 8.710 [95% confidence interval (CI): 2.773-27.365, P < 0.001], and 4.754 (95% CI: 1.380-16.370, P = 0.013). The adjusted odds ratio was 0.950 (95% CI: 0.431-2.094, P = 0.900). The Kaplan-Meier survival curves demonstrated that patients with decreased CO2 levels had a higher risk of mortality. Conclusions: Decreased CO2 levels increased the mortality risk of COVID-19 patients, which might be caused by hyperventilation during mechanical ventilation. This finding provides important insights for clinical treatment recommendations.


Subject(s)
COVID-19/blood , Carbon Dioxide/blood , Hyperventilation/diagnosis , Respiration, Artificial/adverse effects , Aged , Biomarkers/blood , Blood Chemical Analysis , Blood Coagulation Tests , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Humans , Hyperventilation/etiology , Kaplan-Meier Estimate , Male , Middle Aged , Pneumonia, Viral/blood , Proportional Hazards Models , Retrospective Studies , Risk Factors
18.
Clin Lab ; 67(1)2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-1045294

ABSTRACT

BACKGROUND: Since December 2019, a series of pneumonia cases caused by COVID-19 emerged in Wuhan, Hubei Province, China. People are generally susceptible to COVID-19 because people lack immunity to this new virus. With the spread of this epidemic disease from Wuhan, a national outbreak soon appeared, and now many countries have this disease. Unfortunately, no effective drug for COVID-19 treatment has been found so far. METHODS: We designed a retrospective study based on patients admitted to The Affiliated Infectious Hospital of Soochow University from January 22, 2020, to February 25, 2020, with diagnosed COVID-19. We analyzed correlations between RT-PCR negative time and laboratory indicators, then divided all cases into 2 groups according to oxygenation index, data of RT-PCR negative time and related laboratory indicators of the two groups were com-pared. RESULTS: We collected 84 confirmed patients whose RT-PCR had turned negative, including 23 patients with the lowest oxygenation index ≤ 300 mmHg and 61 patients had > 300 mmHg. There was a positive correlation between the RT-PCR negative time and age, WBC count, LDH, SCr. There were statistically significant differences in fever numbers, WBC count, lymphocyte count, CRP, ALT, AST, albumin, LDH, SCr, D-dimer, and fibrinogen between the two groups based on the oxygenation index. CONCLUSIONS: Age, WBC count, LDH, and SCr may be related to the duration of COVID-19 disease. Fever, WBC count, lymphocyte count, CRP, ALT, AST, albumin, LDH, SCr, D-dimer, and fibrinogen are related to the severity of acute lung injury.


Subject(s)
Acute Lung Injury/diagnosis , Blood Chemical Analysis , COVID-19 Testing , COVID-19/complications , Acute Lung Injury/blood , Acute Lung Injury/virology , Adolescent , Adult , Aged , Aged, 80 and over , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , China , Creatinine/blood , Female , Fibrin Fibrinogen Degradation Products/analysis , Humans , Infant , Infant, Newborn , L-Lactate Dehydrogenase/blood , Leukocyte Count , Male , Middle Aged , Oxygen/blood , Predictive Value of Tests , Prognosis , Real-Time Polymerase Chain Reaction , Retrospective Studies , Serum Albumin, Human/analysis , Severity of Illness Index , Time Factors , Young Adult
19.
Clin Lab ; 67(1)2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-1045293

ABSTRACT

BACKGROUND: In December 2019, an outbreak of pneumonia of no identifiable cause had been widely spreading in Wuhan, Hubei Province, China. In late December 2019, the pathogen was identified as a new strain of coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its associated disease, named Coronavirus disease-19 (COVID-19). As of July 3, 2020, 10,906,822 cases have been confirmed worldwide, with 522,112 deaths, as reported by the World Health Organization. Given the developing situation with COVID-19, extensive studies are urgently needed that determine indicators of severity to provide evidence for health policymakers. This study aimed to review the currently available data on hematological parameters to predict disease severity in patients of COVID-19. METHODS: We performed a review using three electronic databases. Fourteen papers are included. In this review, we summarized the latest research highlighting the clinical features, pathogenesis, and diagnosis, with a concentration on hematological parameters that predict severity to help identify patients with severe disease. These indicators will help doctors know earlier which patients may need intensive care unit (ICU) care to manage their patients with an evidence-based protocol. RESULTS: Most reviewed studies report hematological parameters that predict disease severity, including lymphopenia and elevated fibrin fragment D. CONCLUSIONS: We recommend using these indicators in addition to others, like respiratory failure, shock, or multiple organs dysfunction syndrome, for disease classification in situations where there are insufficient ventilators or ICU beds to prioritize advanced medical services accordingly and to ensure the maximum provision of sufficient medical care.


Subject(s)
Blood Chemical Analysis , COVID-19 Testing , COVID-19/diagnosis , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/therapy , Clinical Decision-Making , Humans , Predictive Value of Tests , Prognosis , Severity of Illness Index
20.
S Afr Med J ; 110(12): 1201-1205, 2020 11 05.
Article in English | MEDLINE | ID: covidwho-994152

ABSTRACT

BACKGROUND: Globally, few studies have examined the effect of the COVID-19 pandemic on routine patient care and follow-up. OBJECTIVES: To evaluate the effect of the COVID-19 response on biochemical test requests received from outpatient departments (OPDs) and peripheral clinics serviced by the National Health Laboratory Service Chemical Pathology Laboratory at Tygerberg Hospital, Cape Town, South Africa (SA). Request volumes were used as a measure of the routine care of patients, as clinical information was not readily available. METHODS: A retrospective audit was conducted. The numbers of requests received from OPDs and peripheral clinics for creatinine, glycated haemoglobin (HbA1c), lipid profiles, thyroid-stimulating hormone (TSH), free thyroxine, free tri-iodothyronine (fT3), serum and urine protein electrophoresis, serum free light chains and neonatal total serum bilirubin were obtained from 1 March to 30 June for 2017, 2018, 2019 and 2020. RESULTS: The biggest impact was seen on lipids, creatinine, HbA1c, TSH and fT3. The percentage reduction between 1 March and 30 June 2019 and between 1 March and 30 June 2020 was 59% for lipids, 64% for creatinine and HbA1c, 80% for TSH and 81% for fT3. There was a noteworthy decrease in overall analyte testing from March to April 2020, coinciding with initiation of level 5 lockdown. Although an increase in testing was observed during June 2020, the number of requests was still lower than in June 2019. CONCLUSIONS: This study, focusing on the short-term consequences of the SA response to the COVID-19 pandemic, found that routine follow-up of patients with communicable and non-communicable diseases was affected. Future studies are necessary to evaluate the long-term consequences of the pandemic for these patient groups.


Subject(s)
COVID-19 , Clinical Laboratory Services/trends , Clinical Laboratory Techniques/trends , Delivery of Health Care , Ambulatory Care , Bilirubin/blood , Blood Chemical Analysis/trends , Blood Protein Electrophoresis , Creatinine/blood , Electrophoresis/trends , Glycated Hemoglobin A/metabolism , Humans , Lipids/blood , Retrospective Studies , SARS-CoV-2 , Thyroid Function Tests/statistics & numerical data , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood , Urinalysis/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...