Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Trials ; 21(1): 574, 2020 Jun 26.
Article in English | MEDLINE | ID: covidwho-617182

ABSTRACT

OBJECTIVES: To assess whether high doses of Low Molecular Weight Heparin (LMWH) (i.e. Enoxaparin 70 IU/kg twice daily) compared to standard prophylactic dose (i.e., Enoxaparin 4000 IU once day), in hospitalized patients with COVID19 not requiring Invasive Mechanical Ventilation [IMV], are: a)more effective in preventing clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first: 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were receiving standard oxygen therapy5.IMV in patients who at randomisation were receiving non-invasive mechanical ventilationb)Similar in terms of major bleeding risk TRIAL DESIGN: Multicentre, randomised controlled, superiority, open label, parallel group, two arms (1:1 ratio), in-hospital study. PARTICIPANTS: Inpatients will be recruited from 7 Italian Academic and non-Academic Internal Medicine Units, 2 Infectious Disease Units and 1 Respiratory Disease Unit. INCLUSION CRITERIA (ALL REQUIRED): 1. Age > 18 and < 80 years 2. Positive SARS-CoV-2 diagnostic (on pharyngeal swab of deep airways material) 3. Severe pneumonia defined by the presence of at least one of the following criteria: a.Respiratory Rate ≥25 breaths /minb.Arterial oxygen saturation≤93% at rest on ambient airc.PaO2/FiO2 ≤300 mmHg 4. Coagulopathy, defined by the presence of at least one of the following criteria: a.D-dimer >4 times the upper level of normal reference rangeb.Sepsis-Induced Coagulopathy (SIC) score >4 5. No need of IMV EXCLUSION CRITERIA: 1. Age <18 and >80 years 2. IMV 3. Thrombocytopenia (platelet count < 80.000 mm3) 4. Coagulopathy: INR >1.5, aPTT ratio > 1.4 5. Impaired renal function (eGFR calculated by CKD-EPI Creatinine equation < 30 ml/min) 6. Known hypersensitivity to enoxaparin 7. History of heparin induced thrombocytopenia 8. Presence of an active bleeding or a pathology susceptible of bleeding in presence of anticoagulation (e.g. recent haemorrhagic stroke, peptic ulcer, malignant cancer at high risk of haemorrhage, recent neurosurgery or ophthalmic surgery, vascular aneurysms, arteriovenous malformations) 9. Concomitant anticoagulant treatment for other indications (e.g. atrial fibrillation, venous thromboembolism, prosthetic heart valves) 10. Concomitant double antiplatelet therapy 11. Administration of therapeutic doses of LMWH, fondaparinux, or unfractionated heparin (UFH) for more than 72 hours before randomization; prophylactic doses are allowed 12. Pregnancy or breastfeeding or positive pregnancy test 13. Presence of other severe diseases impairing life expectancy (e.g. patients are not expected to survive 28 days given their pre-existing medical condition) 14. Lack or withdrawal of informed consent INTERVENTION AND COMPARATOR: Control Group (Low-Dose LMWH): patients in this group will be administered Enoxaparin (Inhixa®) at standard prophylactic dose (i.e., 4000 UI subcutaneously once day). Intervention Group (High-Dose LMWH): patients in this group will be administered Enoxaparin (Inhixa®) at dose of 70 IU/kg every 12 hours, as reported in the following table. This dose is commonly used in Italy when a bridging strategy is required for the management of surgery or invasive procedures in patients taking anti-vitamin K oral anticoagulants Body Weight (kg)Enoxaparin dose every 12 hours (IU)<50200050-69400070-89600090-1108000>11010000 The treatment with Enoxaparin will be initiated soon after randomization (maximum allowed starting time 12h after randomization). The treatment will be administered every 12 hours in the intervention group and every 24 hours in the control group. Treatments will be administered in the two arms until hospital discharge or the primary outcomes detailed below occur. MAIN OUTCOMES: Primary Efficacy Endpoint: Clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first: 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were in standard oxygen therapy by delivery interfaces5.Need for IMV, in patients who at randomisation were in Cpap or NIV Time to the occurrence of each of these events will be recorded. Clinical worsening will be analysed as a binary outcome as well as a time-to-event one. Secondary Efficacy Endpoints: Any of the following events occurring within the hospital stay 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were in standard oxygen therapy by delivery interfaces5.Need for IMV in patients who at randomisation were in Cpap or NIV6.Improvement of laboratory parameters of disease severity, including: o D-dimer levelo Plasma fibrinogen levelso Mean Platelet Volumeo Lymphocyte/Neutrophil ratioo IL-6 plasma levels MORTALITY AT 30 DAYS: Information about patients' status will be sought in those who are discharged before 30 days on Day 30 from randomisation. Time to the occurrence of each of these events will be recorded. Each of these events will be analysed as a binary outcome and as a time-to-event one. Primary safety endpoint: Major bleeding, defined as an acute clinically overt bleeding associated with one or more of the following: Decrease in haemoglobin of 2 g/dl or more;Transfusion of 2 or more units of packed red blood cells;Bleeding that occurs in at least one of the following critical sites [intracranial, intraspinal, intraocular (within the corpus of the eye; thus, a conjunctival bleed is not an intraocular bleed), pericardial, intra-articular, intramuscular with compartment syndrome, or retroperitoneal];Bleeding that is fatal (defined as a bleeding event that was the primary cause of death or contributed directly to death);Bleeding that necessitates surgical intervention Time to the occurrence of each of these events will be recorded. Each of these events will be analysed as a binary outcome and as a time-to-event one. Secondary safety endpoint: Clinically Relevant non-major bleeding, defined as an acute clinically overt bleeding that does not meet the criteria for major and consists of: 1.Any bleeding compromising hemodynamic2.Spontaneous hematoma larger than 25 cm2, or 100 cm2 if there was a traumatic cause3.Intramuscular hematoma documented by ultrasonography4.Epistaxis or gingival bleeding requiring tamponade or other medical intervention5.Bleeding from venipuncture for >5 minutes6.Haematuria that was macroscopic and was spontaneous or lasted for more than 24 hours after invasive procedures7.Haemoptysis, hematemesis or spontaneous rectal bleeding requiring endoscopy or other medical intervention8.Any other bleeding requiring temporary cessation of a study drug. Time to the occurrence of each of these events will be recorded. Each of these events will be analysed as a binary outcome and as a time-to-event one. RANDOMISATION: Randomisation (with a 1:1 randomisation ratio) will be centrally performed by using a secure, web-based system, which will be developed by the Methodological and Statistical Unit at the Azienda Ospedaliero-Universitaria of Modena. Randomisation stratified by 4 factors: 1) Gender (M/F); 2) Age (<75/≥75 years); 3) BMI (<30/≥30); 4) Comorbidities (0-1/>2) with random variable block sizes will be generated by STATA software. The web-based system will guarantee the allocation concealment. Blinding (masking) The study is conceived as open-label: patients and all health-care personnel involved in the study will be aware of the assigned group. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The target sample size is based on the hypothesis that LMWH administered at high doses versus low doses will significantly reduce the risk of clinical worsening. The overall sample size in this study is expected to be 300 with 150 in the Low-Dose LMWH control group and 150 in the High-Dose LMWH intervention group, recruited over 10-11 months. Assuming an alpha of 5% (two tailed) and a percentage of patients who experience clinical worsening in the control group being between 25% and 30%, the study will have 80% power to detect at least 50% relative reduction in the risk of death between low and high doses of heparin. TRIAL STATUS: Protocol version 1.2 of 11/05/2020. Recruitment start (expected): 08/06/2020 Recruitment finish (expected): 30/04/2021 Trial registration EudraCT 2020-001972-13, registered on April 17th, 2020 Full protocol The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anticoagulants/therapeutic use , Betacoronavirus , Blood Coagulation Disorders/drug therapy , Coronavirus Infections/drug therapy , Heparin, Low-Molecular-Weight/therapeutic use , Heparin/therapeutic use , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Adolescent , Adult , Aged , Heparin/adverse effects , Heparin, Low-Molecular-Weight/adverse effects , Hospitalization , Humans , Middle Aged , Pandemics , Respiration, Artificial , Young Adult
2.
Emerg Microbes Infect ; 9(1): 1514-1522, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-611844

ABSTRACT

We previously made the hypothesis that STING contributes to COVID-19. The present review detail new arguments for over-activation of STING pathways in COVID-19, following the description of hyper-coagulability and Kawasaki-like diseases in children. Indeed, Kawasaki disease is induced by overreaction of innate cells following exposition to various viruses, including herpes viruses which trigger STING. It predisposes to diffuse vasculitis and aneurysms, whereas STING is over-expressed in arterial aneurisms. The redness at the inoculation site of bacillus Calmette-Guérin, a specific feature of Kawasaki disease, is reproduced by activation of the STING pathway, which is inhibited upstream by aspirin, intravenous immunoglobulins, and Vitamin-D. SARS-CoV2 binding to ACE2 can lead to excessive angiotensin II signaling, which activates the STING pathway in mice. Over-activation of the STING-pathway promotes hyper-coagulability through release of interferon-ß and tissue factor by monocytes-macrophages. Aspirin and dipyridamole, besides their anti-platelet activity, also reduce tissue factor procoagulant activity, and aspirin inhibits the STING pathway upstream of STING. Aspirin and dipyridamole may be used, in combination with drugs blocking downstream the activation of the STING pathway, like inhibitors of IL-6R and JAK/STAT pathways. The risk of bleeding should be low as bleeding has not been reported in severe COVID-19 patients.


Subject(s)
Coronavirus Infections/complications , Membrane Proteins/metabolism , Mucocutaneous Lymph Node Syndrome/etiology , Pneumonia, Viral/complications , Angiotensin II/metabolism , Animals , Aspirin/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Dipyridamole/therapeutic use , Humans , Immunoglobulins, Intravenous/therapeutic use , Interferons/metabolism , Mice , Mucocutaneous Lymph Node Syndrome/metabolism , Pandemics , Platelet Aggregation Inhibitors/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Signal Transduction , Thrombosis/drug therapy , Thrombosis/metabolism , Thrombosis/virology
3.
G Ital Cardiol (Rome) ; 21(7): 483-488, 2020 Jul.
Article in Italian | MEDLINE | ID: covidwho-611790

ABSTRACT

On March 11, 2020, just after 2 months from the first cases of coronavirus disease 2019 (COVID-19) in China, the Director-General of the World Health Organization stated that COVID-19 has to be considered as a pandemic. Italian doctors were the first protagonists, after the Chinese ones, in the management of this disease. Clinical observations showed that, in addition to the respiratory infection, a systemic inflammatory response occurs, which leads to coagulation disorders and consequent venous thromboembolism as well as other thrombotic complications. We here review the available literature on this issue to better understand the pathophysiological mechanisms of coagulopathy useful to draw future clinical and therapeutic conclusions.


Subject(s)
Blood Coagulation Disorders/epidemiology , Coronavirus Infections/epidemiology , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Venous Thromboembolism/epidemiology , Viremia/epidemiology , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/physiopathology , Cause of Death , Comorbidity , Coronavirus Infections/diagnosis , Female , Humans , Incidence , Italy , Male , Pneumonia, Viral/diagnosis , Risk Assessment , Survival Analysis , Venous Thromboembolism/diagnosis , Venous Thromboembolism/drug therapy , Viremia/diagnosis , World Health Organization
4.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L211-L217, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-595634

ABSTRACT

Coronavirus disease 2019 (COVID-19), the clinical syndrome associated with infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted nearly every country in the world. Despite an unprecedented focus of scientific investigation, there is a paucity of evidence-based pharmacotherapies against this disease. Because of this lack of data-driven treatment strategies, broad variations in practice patterns have emerged. Observed hypercoagulability in patients with COVID-19 has created debate within the critical care community on the therapeutic utility of heparin. We seek to provide an overview of the data supporting the therapeutic use of heparin, both unfractionated and low molecular weight, as an anticoagulant for the treatment of SARS-CoV-2 infection. Additionally, we review preclinical evidence establishing biological plausibility for heparin and synthetic heparin-like drugs as therapies for COVID-19 through antiviral and anti-inflammatory effects. Finally, we discuss known adverse effects and theoretical off-target effects that may temper enthusiasm for the adoption of heparin as a therapy in COVID-19 without confirmatory prospective randomized controlled trials. Despite previous failures of anticoagulants in critical illness, plausibility of heparin for COVID-19 is sufficiently robust to justify urgent randomized controlled trials to determine the safety and effectiveness of this therapy.


Subject(s)
Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Blood Coagulation Disorders/drug therapy , Coronavirus Infections/drug therapy , Heparin/therapeutic use , Pneumonia, Viral/drug therapy , Blood Coagulation Disorders/epidemiology , Blood Coagulation Disorders/virology , Coronavirus Infections/complications , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/transmission , Pneumonia, Viral/virology
5.
J Thromb Thrombolysis ; 50(2): 298-301, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-437398

ABSTRACT

This study investigates the association between the treatment with heparin and mortality in patients admitted with Covid-19. Routinely recorded, clinical data, up to the 24th of April 2020, from the 2075 patients with Covid-19, admitted in 17 hospitals in Spain between the 1st of March and the 20th of April 2020 were used. The following variables were extracted for this study: age, gender, temperature, and saturation of oxygen on admission, treatment with heparin, hydroxychloroquine, azithromycin, steroids, tocilizumab, a combination of lopinavir with ritonavir, and oseltamivir, together with data on mortality. Multivariable logistic regression models were used to investigate the associations. At the time of collecting the data, 301 patients had died, 1447 had been discharged home from the hospitals, 201 were still admitted, and 126 had been transferred to hospitals not included in the study. Median follow up time was 8 (IQR 5-12) days. Heparin had been used in 1734 patients. Heparin was associated with lower mortality when the model was adjusted for age and gender, with OR (95% CI) 0.55 (0.37-0.82) p = 0.003. This association remained significant when saturation of oxygen < 90%, and temperature > 37 °C were added to de model with OR 0.54 (0.36-0.82) p = 0.003, and also when all the other drugs were included as covariates OR 0.42 (0.26-0.66) p < 0.001. The association between heparin and lower mortality observed in this study can be acknowledged by clinicians in hospitals and in the community. Randomized controlled trials to assess the causal effects of heparin in different therapeutic regimes are required.


Subject(s)
Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Blood Coagulation Disorders/drug therapy , Blood Coagulation/drug effects , Coronavirus Infections/drug therapy , Heparin/therapeutic use , Pneumonia, Viral/drug therapy , Aged , Anticoagulants/adverse effects , Antiviral Agents/adverse effects , Betacoronavirus/pathogenicity , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/virology , Coronavirus Infections/blood , Coronavirus Infections/mortality , Coronavirus Infections/virology , Female , Heparin/adverse effects , Hospital Mortality , Host-Pathogen Interactions , Humans , Male , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Risk Assessment , Risk Factors , Spain , Time Factors , Treatment Outcome
9.
J Hand Surg Am ; 45(6): 518-522, 2020 06.
Article in English | MEDLINE | ID: covidwho-228547

ABSTRACT

As coronavirus 2019 (COVID-19) continues to cause an immense burden on the global health care systems, it is crucial to understand the breadth of this disease process. Recent reports identified hypercoagulability in a subset of critically ill patients and extremity ischemia in an even smaller cohort. Because abnormal coagulation parameters and extremity ischemia have been shown to correlate with poor disease prognosis, understanding how to treat these patients is crucial. To better describe the identification and management of this phenomenon, we present 2 cases of critically ill patients with COVID-19 who developed fingertip ischemia while in the intensive care unit.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Fingers/blood supply , Ischemia/drug therapy , Ischemia/etiology , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Adult , Aged , Betacoronavirus , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/physiopathology , Combined Modality Therapy , Coronavirus Infections/therapy , Critical Care/methods , Critical Illness/therapy , Disease Progression , Fatal Outcome , Female , Follow-Up Studies , Humans , Intensive Care Units , Ischemia/physiopathology , Male , Pandemics , Patient Discharge , Peripheral Vascular Diseases/diagnosis , Peripheral Vascular Diseases/drug therapy , Peripheral Vascular Diseases/etiology , Pneumonia, Viral/therapy , Risk Assessment , Sampling Studies
10.
Anaesthesia ; 75(8): 1105-1113, 2020 08.
Article in English | MEDLINE | ID: covidwho-134623

ABSTRACT

As COVID-19 disease escalates globally, optimising patient outcome during this catastrophic healthcare crisis is the number one priority. The principles of patient blood management are fundamental strategies to improve patient outcomes and should be given high priority in this crisis situation. The aim of this expert review is to provide clinicians and healthcare authorities with information regarding how to apply established principles of patient blood management during the COVID-19 pandemic. In particular, this review considers the impact of the COVID-19 pandemic on blood supply and specifies important aspects of donor management. We discuss how preventative and control measures implemented during the COVID-19 crisis could affect the prevalence of anaemia, and highlight issues regarding the diagnosis and treatment of anaemia in patients requiring elective or emergency surgery. In addition, we review aspects related to patient blood management of critically ill patients with known or suspected COVID-19, and discuss important alterations of the coagulation system in patients hospitalised due to COVID-19. Finally, we address special considerations pertaining to supply-demand and cost-benefit issues of patient blood management during the COVID-19 pandemic.


Subject(s)
Betacoronavirus , Blood Donors/supply & distribution , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Anemia/complications , Anemia/diagnosis , Anemia/therapy , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Elective Surgical Procedures , Emergencies , Humans , Operative Blood Salvage , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Preoperative Care/methods
11.
Thromb Haemost ; 120(6): 937-948, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-101973

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused a global pandemic in just a few months, causing millions infected. Nearly 20% of COVID-19 patients present severe coagulation abnormalities, which may occur in almost all of the severe and critical ill COVID-19 cases. Concomitant venous thromboembolism (VTE), a potential cause of unexplained deaths, has been frequently reported in COVID-19 cases, but its management is still challenging due to the complexity between antithrombotic therapy and coagulation disorders. Based on frontline practical experience and comprehensive literature review, here a panel of experts and physicians from China and Europe developed an evidence and opinion-based consensus on the prophylaxis and management of VTE associated with COVID-19. This statement aims for clinicians treating COVID-19 and provides practical recommendations in detailed situations, for example, how to choose thromboprophylactic measures for patients with diverse severity of disease and bleeding risk, or which kind of anticoagulant should be prescribed. With limited experience on COVID19-associated VTE, this expert consensus statement should be helpful for clinicians worldwide with specific suggestions.


Subject(s)
Coronavirus Infections/complications , Pneumonia, Viral/complications , Venous Thromboembolism/prevention & control , Venous Thromboembolism/therapy , Anticoagulants/therapeutic use , Betacoronavirus , Blood Coagulation Disorders/drug therapy , China/epidemiology , Consensus , Coronavirus Infections/blood , Coronavirus Infections/therapy , Critical Illness , Europe/epidemiology , Fibrin Fibrinogen Degradation Products/analysis , Hemorrhage/prevention & control , Humans , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/therapy , Pulmonary Embolism/complications , Pulmonary Embolism/prevention & control , Registries , Risk Assessment , Risk Factors , Treatment Outcome , Venous Thromboembolism/complications , Venous Thrombosis/complications , Venous Thrombosis/prevention & control
12.
J Thromb Haemost ; 18(7): 1747-1751, 2020 07.
Article in English | MEDLINE | ID: covidwho-72064

ABSTRACT

BACKGROUND: Few observations exist with respect to the pro-coagulant profile of patients with COVID-19 acute respiratory distress syndrome (ARDS). Reports of thromboembolic complications are scarce but suggestive for a clinical relevance of the problem. OBJECTIVES: Prospective observational study aimed to characterize the coagulation profile of COVID-19 ARDS patients with standard and viscoelastic coagulation tests and to evaluate their changes after establishment of an aggressive thromboprophylaxis. METHODS: Sixteen patients with COVID-19 ARDS received a complete coagulation profile at the admission in the intensive care unit. Ten patients were followed in the subsequent 7 days, after increasing the dose of low molecular weight heparin, antithrombin levels correction, and clopidogrel in selected cases. RESULTS: At baseline, the patients showed a pro-coagulant profile characterized by an increased clot strength (CS, median 55 hPa, 95% interquartile range 35-63), platelet contribution to CS (PCS, 43 hPa; interquartile range 24-45), fibrinogen contribution to CS (FCS, 12 hPa; interquartile range 6-13.5) elevated D-dimer levels (5.5 µg/mL, interquartile range 2.5-6.5), and hyperfibrinogenemia (794 mg/dL, interquartile range 583-933). Fibrinogen levels were associated (R2  = .506, P = .003) with interleukin-6 values. After increasing the thromboprophylaxis, there was a significant (P = .001) time-related decrease of fibrinogen levels, D-dimers (P = .017), CS (P = .013), PCS (P = .035), and FCS (P = .038). CONCLUSION: The pro-coagulant pattern of these patients may justify the clinical reports of thromboembolic complications (pulmonary embolism) during the course of the disease. Further studies are needed to assess the best prophylaxis and treatment of this condition.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/blood , Blood Coagulation , Coronavirus Infections/blood , Pneumonia, Viral/blood , Aged , Anticoagulants/administration & dosage , Biomarkers/blood , Blood Coagulation/drug effects , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , Blood Coagulation Tests , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Fibrinolytic Agents/administration & dosage , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Prospective Studies , Treatment Outcome
14.
J Thromb Haemost ; 18(7): 1752-1755, 2020 07.
Article in English | MEDLINE | ID: covidwho-42076

ABSTRACT

A prothrombotic coagulopathy is commonly found in critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS). A unique feature of COVID-19 respiratory failure is a relatively preserved lung compliance and high Alveolar-arterial oxygen gradient, with pathology reports consistently demonstrating diffuse pulmonary microthrombi on autopsy, all consistent with a vascular occlusive etiology of respiratory failure rather than the more classic findings of low-compliance in ARDS. The COVID-19 pandemic is overwhelming the world's medical care capacity with unprecedented needs for mechanical ventilators and high rates of mortality once patients progress to needing mechanical ventilation, and in many environments including in parts of the United States the medical capacity is being exhausted. Fibrinolytic therapy has previously been used in a Phase 1 clinical trial that led to reduced mortality and marked improvements in oxygenation. Here we report a series of three patients with severe COVID-19 respiratory failure who were treated with tissue plasminogen activator. All three patients had a temporally related improvement in their respiratory status, with one of them being a durable response.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/drug therapy , Coronavirus Infections/drug therapy , Fibrinolysis/drug effects , Fibrinolytic Agents/administration & dosage , Pneumonia, Viral/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/virology , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Fatal Outcome , Female , Fibrinolytic Agents/adverse effects , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Recovery of Function , Thrombolytic Therapy/adverse effects , Tissue Plasminogen Activator/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL