Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add filters

Document Type
Year range
1.
Anaesthesist ; 70(8): 662-670, 2021 Aug.
Article in German | MEDLINE | ID: covidwho-1575534

ABSTRACT

BACKGROUND: In the context of sepsis and septic shock, coagulopathy often occurs due to the close relationship between coagulation and inflammation. Sepsis-induced coagulopathy (SIC) is the most severe and potentially fatal form. Anticoagulants used in prophylactic or therapeutic doses are discussed to potentially exert beneficial effects in patients with sepsis and/or SIC; however, due to the lack of evidence recent guidelines are limited to recommendations for drug prophylaxis of venous thromboembolism (VTE), while treatment of SIC has not been addressed. METHODS: In order to determine the status quo of VTE prophylaxis as well as treatment of SIC in German intensive care units (ICU), we conducted a Germany-wide online survey among heads of ICUs from October 2019 to May 2020. In April 2020, the survey was supplemented by an additional block of questions on VTE prophylaxis and SIC treatment in coronavirus disease 2019 (COVID-19) patients. RESULTS: A total of 67 senior doctors took part in the survey. The majority (n = 50; 74.6%) of the responses were from ICU under the direction of an anesthesiologist and/or a department of anesthesiology. Most of the participants worked either at a university hospital (n = 31; 47.8%) or an academic teaching hospital (n = 27; 40.3%). The survey results show a pronounced heterogeneity in clinical practice with respect to the prophylaxis of VTE as well as SIC treatment. In an exemplary case of pneumogenic sepsis, low molecular weight heparins (LMWH) were by far the most frequently mentioned group of medications (n = 51; 76.1% of the responding ITS). In the majority of cases (n = 43; 64.2%), anti-FXa activity is not monitored with the use of LMWH in prophylaxis doses. Unfractionated heparin (UFH) was listed as a strategy for VTE prophylaxis in 37.3% of the responses (n = 25). In an exemplary case of abdominal sepsis 54.5% of the participants (n = 36; multiple answers possible) stated the use of UFH or LMWH and UFH with dosage controlled by PTT is used on two participating ICUs. The anti-FXa activity under prophylactic anticoagulation with LMWH is monitored in 7 participating clinics (10.6%) in abdominal sepsis. Systematic screening for sepsis-associated coagulation disorders does not take place in most hospitals and patterns in the use of anticoagulants show significant variability between ICUs. In the case of COVID-19 patients, it is particularly noticeable that in three quarters of the participating ICUs the practice of drug-based VTE prophylaxis and SIC treatment does not differ from that of non-COVID-19 patients. CONCLUSION: The heterogeneity of answers collected in the survey suggests that a systematic approach to this topic via clinical trials is urgently needed to underline individualized patient care with the necessary evidence.


Subject(s)
Anticoagulants , Blood Coagulation Disorders , Heparin, Low-Molecular-Weight/therapeutic use , Sepsis , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , COVID-19 , Germany , Heparin/therapeutic use , Humans , Intensive Care Units , Sepsis/complications
2.
Nutrients ; 13(12)2021 Nov 29.
Article in English | MEDLINE | ID: covidwho-1542693

ABSTRACT

Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Bromelains/therapeutic use , COVID-19/drug therapy , Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Neoplasms/drug therapy , Plant Proteins/therapeutic use , SARS-CoV-2 , Ananas/enzymology , Anti-Inflammatory Agents/chemistry , Anticoagulants/chemistry , Bromelains/chemistry , Cardiotonic Agents/chemistry , Fibrinolysis/drug effects , Humans , Plant Proteins/chemistry
3.
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1480798

ABSTRACT

Disseminated intravascular coagulation (DIC) is a severe condition characterized by the systemic formation of microthrombi complicated with bleeding tendency and organ dysfunction. In the last years, it represents one of the most frequent consequences of coronavirus disease 2019 (COVID-19). The pathogenesis of DIC is complex, with cross-talk between the coagulant and inflammatory pathways. The objective of this study is to investigate the anti-inflammatory action of ultramicronized palmitoylethanolamide (um-PEA) in a lipopolysaccharide (LPS)-induced DIC model in rats. Experimental DIC was induced by continual infusion of LPS (30 mg/kg) for 4 h through the tail vein. Um-PEA (30 mg/kg) was given orally 30 min before and 1 h after the start of intravenous infusion of LPS. Results showed that um-PEA reduced alteration of coagulation markers, as well as proinflammatory cytokine release in plasma and lung samples, induced by LPS infusion. Furthermore, um-PEA also has the effect of preventing the formation of fibrin deposition and lung damage. Moreover, um-PEA was able to reduce the number of mast cells (MCs) and the release of its serine proteases, which are also necessary for SARS-CoV-2 infection. These results suggest that um-PEA could be considered as a potential therapeutic approach in the management of DIC and in clinical implications associated to coagulopathy and lung dysfunction, such as COVID-19.


Subject(s)
Amides/therapeutic use , Blood Coagulation Disorders/drug therapy , Disseminated Intravascular Coagulation/drug therapy , Ethanolamines/therapeutic use , Palmitic Acids/therapeutic use , Sepsis/complications , Amides/chemistry , Amides/pharmacology , Animals , Blood Coagulation Disorders/etiology , COVID-19/pathology , COVID-19/virology , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Disseminated Intravascular Coagulation/etiology , Ethanolamines/chemistry , Ethanolamines/pharmacology , Fibrin Fibrinogen Degradation Products/metabolism , Lipopolysaccharides/toxicity , Lung/metabolism , Lung/pathology , Male , Mast Cells/cytology , Mast Cells/drug effects , Mast Cells/metabolism , Palmitic Acids/chemistry , Palmitic Acids/pharmacology , Partial Thromboplastin Time , Prothrombin Time , Rats , Rats, Sprague-Dawley , SARS-CoV-2/isolation & purification , Sepsis/pathology , Serine Proteases/metabolism
4.
Indian J Med Res ; 153(5&6): 606-618, 2021.
Article in English | MEDLINE | ID: covidwho-1468588

ABSTRACT

The ongoing pandemic of novel coronavirus 2019 is rapidly evolving, and newer organ- and system-specific manifestations are being observed. Thrombotic complications and coagulopathy are frequent manifestations of the disease, especially in sick patients, which appear to be unique and distinct from sepsis-induced coagulopathy, disseminated intravascular coagulation and other viral infection-induced coagulation abnormalities. Elevated D-dimers and fibrinogen in the early stage of the disease with minimally deranged prothrombin time and platelet counts are prominent and distinguishing features. Venous and arterial thromboses, as opposed to bleeding events, are the major clinical correlates. There is much to be known about the pathogenesis of COVID-associated coagulopathy; however, the mechanisms overlap with thrombotic microangiopathy, haemophagocytic syndrome and antiphospholipid syndrome compounded by the diffuse endothelial damage. The recommendations regarding the treatment are still evolving, but antithrombotic therapy has a definite role in positive outcomes of sick patients.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Venous Thromboembolism , Anticoagulants , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/epidemiology , Humans , SARS-CoV-2
5.
Int J Pharm ; 608: 121122, 2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1433361

ABSTRACT

Herein, we demonstrated the development and characterization of a dry powder inhaler (DPI) formulation of edoxaban (EDX); and investigated the in-vitro anticoagulation effect for the management of pulmonary or cerebral coagulopathy associated with COVID-19 infection. The formulations were prepared by mixing the inhalable micronized drug with a large carrier lactose and dispersibility enhancers, leucine, and magnesium stearate. The drug-excipient interaction was studied using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The drug and excipients showed no physical inter particulate interaction. The in-vitro drug aerosolization from the developed formulation was determined by a Twin Stage Impinger (TSI) at a flow rate of 60 ± 5 L /min. The amount of drug deposition was quantified by an established HPLC-UV method. The fine particle fraction (FPF) of EDX API from drug alone formulation was 7%, whereas the formulations with excipients increased dramatically to almost 7-folds up to 47%. The developed DPI formulation of EDX showed a promising in-vitro anticoagulation effect at a very low concentration. This novel DPI formulation of EDX could be a potential and effective inhalation therapy for managing pulmonary venous thromboembolism (VTE) associated with COVID-19 infection. Further studies are warranted to investigate the toxicity and clinical application of the inhaled EDX DPI formulation.


Subject(s)
Blood Coagulation Disorders/drug therapy , COVID-19 , Dry Powder Inhalers , Pyridines/administration & dosage , Thiazoles/administration & dosage , Administration, Inhalation , Aerosols , Blood Coagulation Disorders/virology , COVID-19/complications , Humans , Particle Size , Powders
6.
Sci Rep ; 11(1): 16290, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354111

ABSTRACT

To reveal if coagulopathies relate to the course of COVID-19, we examined 255 patients with moderate and severe COVID-19, receiving anticoagulants and immunosuppressive drugs. Coagulopathy manifested predominantly as hypercoagulability that correlated directly with systemic inflammation, disease severity, comorbidities, and mortality risk. The prolonged clotting tests in about » of cases were associated with high levels of C-reactive protein and antiphospholipid antibodies, which impeded coagulation in vitro. Contraction of blood clots was hindered in about ½ of patients, especially in severe and fatal cases, and correlated directly with prothrombotic parameters. A decrease in platelet contractility was due to moderate thrombocytopenia in combination with platelet dysfunction. Clots with impaired contraction were porous, had a low content of compressed polyhedral erythrocytes (polyhedrocytes) and an even distribution of fibrin, suggesting that the uncompacted intravital clots are more obstructive but patients could also be prone to bleeding. The absence of consumption coagulopathy suggests the predominance of local and/or regional microthrombosis rather than disseminated intravascular coagulation. The results obtained (i) confirm the importance of hemostatic disorders in COVID-19 and their relation to systemic inflammation; (ii) justify monitoring of hemostasis, including the kinetics of blood clot contraction; (iii) substantiate the active prophylaxis of thrombotic complications in COVID-19.


Subject(s)
Blood Coagulation Disorders/etiology , Blood Platelet Disorders/etiology , COVID-19/complications , Adult , Aged , Aged, 80 and over , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Platelets/ultrastructure , COVID-19/drug therapy , Female , Humans , Inflammation/etiology , Male , Middle Aged , Patient Acuity , Thrombocytopenia/etiology , Treatment Outcome , Young Adult
7.
J Thromb Haemost ; 18(7): 1747-1751, 2020 07.
Article in English | MEDLINE | ID: covidwho-1317985

ABSTRACT

BACKGROUND: Few observations exist with respect to the pro-coagulant profile of patients with COVID-19 acute respiratory distress syndrome (ARDS). Reports of thromboembolic complications are scarce but suggestive for a clinical relevance of the problem. OBJECTIVES: Prospective observational study aimed to characterize the coagulation profile of COVID-19 ARDS patients with standard and viscoelastic coagulation tests and to evaluate their changes after establishment of an aggressive thromboprophylaxis. METHODS: Sixteen patients with COVID-19 ARDS received a complete coagulation profile at the admission in the intensive care unit. Ten patients were followed in the subsequent 7 days, after increasing the dose of low molecular weight heparin, antithrombin levels correction, and clopidogrel in selected cases. RESULTS: At baseline, the patients showed a pro-coagulant profile characterized by an increased clot strength (CS, median 55 hPa, 95% interquartile range 35-63), platelet contribution to CS (PCS, 43 hPa; interquartile range 24-45), fibrinogen contribution to CS (FCS, 12 hPa; interquartile range 6-13.5) elevated D-dimer levels (5.5 µg/mL, interquartile range 2.5-6.5), and hyperfibrinogenemia (794 mg/dL, interquartile range 583-933). Fibrinogen levels were associated (R2  = .506, P = .003) with interleukin-6 values. After increasing the thromboprophylaxis, there was a significant (P = .001) time-related decrease of fibrinogen levels, D-dimers (P = .017), CS (P = .013), PCS (P = .035), and FCS (P = .038). CONCLUSION: The pro-coagulant pattern of these patients may justify the clinical reports of thromboembolic complications (pulmonary embolism) during the course of the disease. Further studies are needed to assess the best prophylaxis and treatment of this condition.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/blood , Blood Coagulation , Coronavirus Infections/blood , Pneumonia, Viral/blood , Aged , Anticoagulants/administration & dosage , Biomarkers/blood , Blood Coagulation/drug effects , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , Blood Coagulation Tests , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Fibrinolytic Agents/administration & dosage , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Prospective Studies , SARS-CoV-2 , Treatment Outcome
8.
J Thromb Haemost ; 18(7): 1752-1755, 2020 07.
Article in English | MEDLINE | ID: covidwho-1317980

ABSTRACT

A prothrombotic coagulopathy is commonly found in critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS). A unique feature of COVID-19 respiratory failure is a relatively preserved lung compliance and high Alveolar-arterial oxygen gradient, with pathology reports consistently demonstrating diffuse pulmonary microthrombi on autopsy, all consistent with a vascular occlusive etiology of respiratory failure rather than the more classic findings of low-compliance in ARDS. The COVID-19 pandemic is overwhelming the world's medical care capacity with unprecedented needs for mechanical ventilators and high rates of mortality once patients progress to needing mechanical ventilation, and in many environments including in parts of the United States the medical capacity is being exhausted. Fibrinolytic therapy has previously been used in a Phase 1 clinical trial that led to reduced mortality and marked improvements in oxygenation. Here we report a series of three patients with severe COVID-19 respiratory failure who were treated with tissue plasminogen activator. All three patients had a temporally related improvement in their respiratory status, with one of them being a durable response.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/drug therapy , Coronavirus Infections/drug therapy , Fibrinolysis/drug effects , Fibrinolytic Agents/administration & dosage , Pneumonia, Viral/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/virology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Fatal Outcome , Female , Fibrinolytic Agents/adverse effects , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Recovery of Function , SARS-CoV-2 , Thrombolytic Therapy/adverse effects , Tissue Plasminogen Activator/adverse effects , Treatment Outcome
9.
Expert Opin Ther Targets ; 25(6): 423-433, 2021 06.
Article in English | MEDLINE | ID: covidwho-1281815

ABSTRACT

INTRODUCTION: Defibrotide (DF) is a polyribonucleotide with antithrombotic, pro-fibrinolytic, and anti-inflammatory effects on endothelium. These effects and the established safety of DF present DF as a strong candidate to treat viral and post-infectious syndromes involving endothelial dysfunction. AREAS COVERED: We discuss DF and other therapeutic agents that have the potential to target endothelial components of pathogenesis in viral and post-infectious syndromes. We introduce defibrotide (DF), describe its mechanisms of action, and explore its established pleiotropic effects on the endothelium. We describe the established pathophysiology of Coronavirus Disease 2019 (COVID-19) and highlight the processes specific to COVID-19 potentially modulated by DF. We also present influenza A and viral hemorrhagic fevers, especially those caused by hantavirus, Ebola virus, and dengue virus, as viral syndromes in which DF might serve therapeutic benefit. Finally, we offer our opinion on novel treatment strategies targeting endothelial dysfunction in viral infections and their severe manifestations. EXPERT OPINION: Given the critical role of endothelial dysfunction in numerous infectious syndromes, in particular COVID-19, therapeutic pharmacology for these conditions should increasingly prioritize endothelial stabilization. Several agents with endothelial protective properties should be further studied as treatments for severe viral infections and vasculitides, especially where other therapeutic modalities have failed.


Subject(s)
COVID-19/complications , Endothelium, Vascular/drug effects , Polydeoxyribonucleotides/pharmacology , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , COVID-19/physiopathology , COVID-19/virology , Endothelium, Vascular/physiopathology , Humans , Polydeoxyribonucleotides/therapeutic use , SARS-CoV-2/isolation & purification
10.
Sci Rep ; 11(1): 13325, 2021 06 25.
Article in English | MEDLINE | ID: covidwho-1281739

ABSTRACT

COVID 19 is associated with a hypercoagulable state and frequent thromboembolic complications. For how long this acquired abnormality lasts potentially requiring preventive measures, such as anticoagulation remains to be delineated. We used viscoelastic rotational thrombelastometry (ROTEM) in a single center cohort of 13 critical ill patients and performed follow up examinations three months after discharge from ICU. We found clear signs of a hypercoagulable state due to severe hypofibrinolysis and a high rate of thromboembolic complications during the phase of acute illness. Three month follow up revealed normalization of the initial coagulation abnormality and no evidence of venous thrombosis in all thirteen patients. In our cohort the coagulation profile was completely normalized three months after COVID-19. Based on these findings, discontinuation of anticoagulation can be discussed in patients with complete venous reperfusion.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders , COVID-19 , Thrombelastography , Thromboembolism , Venous Thrombosis , Aged , Blood Coagulation , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/pathology , COVID-19/blood , COVID-19/drug therapy , COVID-19/pathology , Cohort Studies , Female , Humans , Male , Middle Aged , Severity of Illness Index , Thromboembolism/drug therapy , Thromboembolism/pathology , Venous Thrombosis/drug therapy , Venous Thrombosis/pathology
11.
Anaesthesiol Intensive Ther ; 53(2): 153-161, 2021.
Article in English | MEDLINE | ID: covidwho-1234881

ABSTRACT

Patients hospitalized in the intensive care unit (ICU) due to the COVID-19 experience a high incidence (up to 43%) of venous thromboembolic events. While laboratory findings in COVID-19-associated coagulopathy (CAC) show increased D-dimer and fibrinogen levels, the abnormalities in standard coagulation tests and platelet count are minimal. Recent studies suggest contribution of fibrinolysis shutdown to this phenomenon. Endothelial injury and alteration of its antithrombotic activity can lead to micro- and macrovascular thrombosis in the lungs, occurrence of which is associated with poor clinical outcome in critically ill patients with COVID-19. Additionally, the hypercoagulability induced by activation of coagulation pathways during the immune response to SARS-CoV-2 infection contributes to impaired organ perfusion. This, alongside with hypoxemia, leads to multiorgan failure. Various diagnostic regimens, some of which include global assays of haemostasis, are currently being published and discussed. Numerous guidelines and recommendations of scientific societies and groups of specialists have been published. However, there is no single optimal algorithm for anticoagulation treatment and monitoring specific to the ICU patients with COVID-19. The authors have attempted to summarize the data related to CAC and thrombotic disease and develop an algorithm consistent with the latest clinical practice guideline recommendations.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , COVID-19/complications , Algorithms , Blood Coagulation/drug effects , COVID-19/drug therapy , Female , Humans , Intensive Care Units , Male , Thrombosis/etiology , Thrombosis/prevention & control , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control
12.
Am J Case Rep ; 22: e930667, 2021 May 10.
Article in English | MEDLINE | ID: covidwho-1222298

ABSTRACT

BACKGROUND Coronavirus Disease 2019 (COVID-19) has been associated with a hypercoagulability state. Clinical presentation can range from asymptomatic to severe illness and mortality. Thrombotic complications in COVID-19 have been associated with mortality. The incidence of systemic hypercoagulation in COVID-19 is associated with the process of severe inflammation. The majority of severely ill patients have developed coagulopathy, and this condition is associated with poor outcomes. CASE REPORT A 72-year-old man presented with respiratory symptoms and was diagnosed with a COVID-19 infection. He presented with tachypnea, tachycardia, increased blood pressure, and 74% peripheral oxygen saturation under 15 L/min oxygen per non-rebreather mask. Initial laboratory test results showed severe hypoxemia as per blood gas analysis (pH 7.42, pCO2 23 mmHg, pO2 43 mmHg, HCO3 15 mmol/L, base deficit -9 mmol/L), with increased procalcitonin, high-sensitivity C-reactive protein, D-dimer, fibrinogen, creatine kinase myocardial band, and Troponin I. He subsequently developed thrombosis of the pulmonary arteries and multiple branches of the pulmonary vein despite therapeutic anticoagulation. We initiated heparin therapy (average dose 25 191 units per day, mean activated partial thromboplastin time, 64.35 seconds). Radiological investigations revealed multiple thromboses on pulmonary arteries and pulmonary veins, as well as multiple locations of brain infarction. Rescue thrombolytic therapy was given, but unfortunately, the patient died due to multiple end-organ failures. CONCLUSIONS Controlling coagulopathy, and thrombolytic therapy type and timing, are critical issues, and new strategies must be sought to lower its morbidity and mortality rates further.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Aged , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , Humans , Male , SARS-CoV-2 , Thrombolytic Therapy
13.
Cell Biol Int ; 45(9): 1832-1850, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1212726

ABSTRACT

December 2019 will never be forgotten in the history of medicine when an outbreak of pneumonia of unknown etiology in Wuhan, China sooner or later prompted the World Health Organization to issue a public health warning emergency. This is not the first nor will it be the last time that a member of ß-coronaviruses (CoVs) is waging a full-scale war against human health. Notwithstanding the fact that pneumonia is the primary symptom of the novel coronavirus (2019nCoV; designated as SARS-CoV-2), the emergence of severe disease mainly due to the injury of nonpulmonary organs at the shadow of coagulopathy leaves no choice, in some cases, rather than a dreadful death. Multiple casual factors such as inflammation, endothelial dysfunction, platelet and complement activation, renin-angiotensin-aldosterone system derangement, and hypoxemia play a major role in the pathogenesis of coagulopathy in coronavirus disease 2019 (COVID-19) patients. Due to the undeniable role of coagulation dysfunction in the initiation of several complications, assessment of coagulation parameters and the platelet count would be beneficial in early diagnosis and also timely prediction of disease severity. Although low-molecular-weight heparin is considered as the first-line of treatment in COVID-19-associated coagulopathy, several possible therapeutic options have also been proposed for better management of the disease. In conclusion, this review would help us to gain insight into the pathogenesis, clinical manifestation, and laboratory findings associated with COVID-19 coagulopathy and would summarize management strategies to alleviate coagulopathy-related complications.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , COVID-19/pathology , Blood Coagulation Disorders/etiology , Blood Platelets/cytology , Blood Platelets/metabolism , COVID-19/complications , COVID-19/virology , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Inflammation/etiology , SARS-CoV-2/isolation & purification , Thromboembolism/drug therapy , Thromboembolism/etiology
14.
Lancet Haematol ; 8(7): e524-e533, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1208801

ABSTRACT

COVID-19 is associated with a high incidence of thrombotic complications, which can be explained by the complex and unique interplay between coronaviruses and endothelial cells, the local and systemic inflammatory response, and the coagulation system. Empirically, an intensified dose of thrombosis prophylaxis is being used in patients admitted to hospital with COVID-19 and several guidelines on this topic have been published, although the insufficiency of high quality and direct evidence has led to weak recommendations. In this Viewpoint we summarise the pathophysiology of COVID-19 coagulopathy in the context of patients who are ambulant, admitted to hospital, and critically ill or non-critically ill, and those post-discharge from hospital. We also review data from randomised controlled trials in the past year of antithrombotic therapy in patients who are critically ill. These data provide the first high-quality evidence on optimal use of antithrombotic therapy in patients with COVID-19. Pharmacological thromboprophylaxis is not routinely recommended for patients who are ambulant and post-discharge. A first ever trial in non-critically ill patients who were admitted to hospital has shown that a therapeutic dose of low-molecular-weight heparin might improve clinical outcomes in this population. In critically ill patients, this same treatment does not improve outcomes and prophylactic dose anticoagulant thromboprophylaxis is recommended. In the upcoming months we expect numerous data from the ongoing antithrombotic COVID-19 studies to guide clinicians at different stages of the disease.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/physiopathology , COVID-19/complications , Heparin, Low-Molecular-Weight/therapeutic use , Aged , Aged, 80 and over , Blood Coagulation/physiology , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Critical Illness/therapy , Endothelial Cells/pathology , Endothelial Cells/virology , Hospitalization , Humans , Incidence , Outcome Assessment, Health Care , Patient Discharge/standards , Randomized Controlled Trials as Topic , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Systemic Inflammatory Response Syndrome/physiopathology , Venous Thromboembolism/prevention & control
15.
Expert Rev Anti Infect Ther ; 19(11): 1397-1413, 2021 11.
Article in English | MEDLINE | ID: covidwho-1174805

ABSTRACT

INTRODUCTION: SARS-CoV-2, the causative agent of COVID-19, attacks the immune system causing an exaggerated and uncontrolled release of pro-inflammatory mediators (cytokine storm). Recent studies propose an active role of coagulation disorders in disease progression. This hypercoagulability has been displayed by marked increase in D-dimer in hospitalized patients. AREAS COVERED: This review summarizes the pathogenesis of SARS-CoV-2 infection, generation of cytokine storm, the interdependence between inflammation and coagulation, its consequences and the possible management options for coagulation complications like venous thromboembolism (VTE), microthrombosis, disseminated intravascular coagulation (DIC), and systemic and local coagulopathy. We searched PubMed, Scopus, and Google Scholar for relevant reports using COVID-19, cytokine storm, and coagulation as keywords. EXPERT OPINION: A prophylactic dose of 5000-7500 units of low molecular weight heparin (LMWH) has been recommended for hospitalized COVID-19 patients in order to prevent VTE. Treatment dose of LMWH, based on disease severity, is being contemplated for patients showing a marked rise in levels of D-dimer due to possible pulmonary thrombi. Additionally, targeting PAR-1, thrombin, coagulation factor Xa and the complement system may be potentially useful in reducing SARS-CoV-2 infection induced lung injury, microvascular thrombosis, VTE and related outcomes like DIC and multi-organ failure.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Cytokine Release Syndrome , Venous Thromboembolism , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , COVID-19/complications , Cytokine Release Syndrome/virology , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Venous Thromboembolism/drug therapy , Venous Thromboembolism/virology
16.
Sci Rep ; 11(1): 6515, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1147151

ABSTRACT

High sensitivity troponin T (hsTnT) is a strong predictor of adverse outcome during SARS-CoV-2 infection. However, its determinants remain partially unknown. We aimed to assess the relationship between severity of inflammatory response/coagulation abnormalities and hsTnT in Coronavirus Disease 2019 (COVID-19). We then explored the relevance of these pathways in defining mortality and complications risk and the potential effects of the treatments to attenuate such risk. In this single-center, prospective, observational study we enrolled 266 consecutive patients hospitalized for SARS-CoV-2 pneumonia. Primary endpoint was in-hospital COVID-19 mortality. hsTnT, even after adjustment for confounders, was associated with mortality. D-dimer and CRP presented stronger associations with hsTnT than PaO2. Changes of hsTnT, D-dimer and CRP were related; but only D-dimer was associated with mortality. Moreover, low molecular weight heparin showed attenuation of the mortality in the whole population, particularly in subjects with higher hsTnT. D-dimer possessed a strong relationship with hsTnT and mortality. Anticoagulation treatment showed greater benefits with regard to mortality. These findings suggest a major role of SARS-CoV-2 coagulopathy in hsTnT elevation and its related mortality in COVID-19. A better understanding of the mechanisms related to COVID-19 might pave the way to therapy tailoring in these high-risk individuals.


Subject(s)
Blood Coagulation Disorders/diagnosis , COVID-19/pathology , Heart Diseases/diagnosis , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , C-Reactive Protein/analysis , COVID-19/complications , COVID-19/mortality , COVID-19/virology , Female , Fibrin Fibrinogen Degradation Products/analysis , Heart Diseases/etiology , Hemodynamics , Heparin, Low-Molecular-Weight/therapeutic use , Hospital Mortality , Humans , Inflammation , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Prospective Studies , Risk , SARS-CoV-2/isolation & purification , Troponin T/blood
17.
Trials ; 22(1): 202, 2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1127720

ABSTRACT

OBJECTIVES: To determine the effect of therapeutic anticoagulation, with low molecular weight heparin (LMWH) or unfractionated heparin (UFH, high dose nomogram), compared to standard care in hospitalized patients admitted for COVID-19 with an elevated D-dimer on the composite outcome of intensive care unit (ICU) admission, non-invasive positive pressure ventilation, invasive mechanical ventilation or death up to 28 days. TRIAL DESIGN: Open-label, parallel, 1:1, phase 3, 2-arm randomized controlled trial PARTICIPANTS: The study population includes hospitalized adults admitted for COVID-19 prior to the development of critical illness. Excluded individuals are those where the bleeding risk or risk of transfusion would generally be considered unacceptable, those already therapeutically anticoagulated and those who have already have any component of the primary composite outcome. Participants are recruited from hospital sites in Brazil, Canada, Ireland, Saudi Arabia, United Arab Emirates, and the United States of America. The inclusion criteria are: 1) Laboratory confirmed COVID-19 (diagnosis of SARS-CoV-2 via reverse transcriptase polymerase chain reaction as per the World Health Organization protocol or by nucleic acid based isothermal amplification) prior to hospital admission OR within first 5 days (i.e. 120 hours) after hospital admission; 2) Admitted to hospital for COVID-19; 3) One D-dimer value above the upper limit of normal (ULN) (within 5 days (i.e. 120 hours) of hospital admission) AND EITHER: a. D-Dimer ≥2 times ULN OR b. D-Dimer above ULN and Oxygen saturation ≤ 93% on room air; 4) > 18 years of age; 5) Informed consent from the patient (or legally authorized substitute decision maker). The exclusion criteria are: 1) pregnancy; 2) hemoglobin <80 g/L in the last 72 hours; 3) platelet count <50 x 109/L in the last 72 hours; 4) known fibrinogen <1.5 g/L (if testing deemed clinically indicated by the treating physician prior to the initiation of anticoagulation); 5) known INR >1.8 (if testing deemed clinically indicated by the treating physician prior to the initiation of anticoagulation); 6) patient already prescribed intermediate dosing of LMWH that cannot be changed (determination of what constitutes an intermediate dose is to be at the discretion of the treating clinician taking the local institutional thromboprophylaxis protocol for high risk patients into consideration); 7) patient already prescribed therapeutic anticoagulation at the time of screening [low or high dose nomogram UFH, LMWH, warfarin, direct oral anticoagulant (any dose of dabigatran, apixaban, rivaroxaban, edoxaban)]; 8) patient prescribed dual antiplatelet therapy, when one of the agents cannot be stopped safely; 9) known bleeding within the last 30 days requiring emergency room presentation or hospitalization; 10) known history of a bleeding disorder of an inherited or active acquired bleeding disorder; 11) known history of heparin-induced thrombocytopenia; 12) known allergy to UFH or LMWH; 13) admitted to the intensive care unit at the time of screening; 14) treated with non-invasive positive pressure ventilation or invasive mechanical ventilation at the time of screening; 15) Imminent death according to the judgement of the most responsible physician; 16) enrollment in another clinical trial of antithrombotic therapy involving hospitalized patients. INTERVENTION AND COMPARATOR: Intervention: Therapeutic dose of LMWH (dalteparin, enoxaparin, tinzaparin) or high dose nomogram of UFH. The choice of LMWH versus UFH will be at the clinician's discretion and dependent on local institutional supply. Comparator: Standard care [thromboprophylactic doses of LMWH (dalteparin, enoxaparin, tinzaparin, fondaparinux)] or UFH. Administration of LMWH, UFH or fondaparinux at thromboprophylactic doses for acutely ill hospitalized medical patients, in the absence of contraindication, is generally considered standard care. MAIN OUTCOMES: The primary composite outcome of ICU admission, non-invasive positive pressure ventilation, invasive mechanical ventilation or death at 28 days. Secondary outcomes include (evaluated up to day 28): 1. All-cause death 2. Composite of ICU admission or all-cause death 3. Composite of mechanical ventilation or all-cause death 4. Major bleeding as defined by the ISTH Scientific and Standardization Committee (ISTH-SSC) recommendation; 5. Red blood cell transfusion (>1 unit); 6. Transfusion of platelets, frozen plasma, prothrombin complex concentrate, cryoprecipitate and/or fibrinogen concentrate; 7. Renal replacement therapy; 8. Hospital-free days alive; 9. ICU-free days alive; 10. Ventilator-free days alive; 11. Organ support-free days alive; 12. Venous thromboembolism (defined as symptomatic or incidental, suspected or confirmed via diagnostic imaging and/or electrocardiogram where appropriate); 13. Arterial thromboembolism (defined as suspected or confirmed via diagnostic imaging and/or electrocardiogram where appropriate); 14. Heparin induced thrombocytopenia; 15. Trajectories of COVID-19 disease-related coagulation and inflammatory biomarkers. RANDOMISATION: Randomisation will be stratified by site and age (>65 versus ≤65 years) using a 1:1 computer-generated random allocation sequence with variable block sizes. Randomization will occur within the first 5 days (i.e. 120 hours) of participant hospital admission. However, it is recommended that randomization occurs as early as possible after hospital admission. Central randomization using an interactive web response system will ensure allocation concealment. BLINDING (MASKING): No blinding involved. This is an open-label trial. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 462 patients (231 per group) are needed to detect a 15% risk difference, from 50% in the control group to 35% in the experimental group, with power of 90% at a two-sided alpha of 0.05. TRIAL STATUS: Protocol Version Number 1.4. Recruitment began on May 11th, 2020. Recruitment is expected to be completed March 2022. Recruitment is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04362085 Date of Trial Registration: April 24, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , COVID-19/drug therapy , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/complications , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , Clinical Trials, Phase III as Topic , Fibrin Fibrinogen Degradation Products/metabolism , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Hospitalization , Humans , Intensive Care Units/statistics & numerical data , Noninvasive Ventilation/statistics & numerical data , Pragmatic Clinical Trials as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial/statistics & numerical data , SARS-CoV-2
18.
Expert Rev Respir Med ; 15(8): 1003-1011, 2021 08.
Article in English | MEDLINE | ID: covidwho-1118871

ABSTRACT

INTRODUCTION: The first patients with Coronavirus disease 2019 (COVID-19) emerged at the end of 2019. This novel viral infection demonstrated unique features that include prothrombotic clinical presentations. However, one year after the first occurrence, there remain many unanswered questions. We tried to address some of the important queries in this review. AREAS COVERED: We raised the following critical questions. 'Why is COVID-19 so hypercoagulable?', 'Why are most coagulation test results relatively normal?', 'Why is COVID-19-associated coagulopathy more thrombotic than most other infectious diseases?', 'Why is arterial thrombus formed frequently?', 'Is anticoagulant therapy for COVID-19 effective?', and 'Are there racial disparities in thrombosis in COVID-19?' EXPERT OPINION: There are commonalities and differences in the pathogeneses and clinical features between COVID-19 and other infectious diseases. Correct understanding will help discussing appropriate anticoagulation prophylaxis or treatment for thromboembolism.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Thromboembolism , Thrombosis , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , Humans , SARS-CoV-2 , Thrombosis/drug therapy , Thrombosis/etiology , Thrombosis/prevention & control
19.
Pediatr Blood Cancer ; 68(7): e28975, 2021 07.
Article in English | MEDLINE | ID: covidwho-1117443

ABSTRACT

We report the clinical and laboratory coagulation characteristics of 27 pediatric and young adult patients (2 months to 21 years) treated for symptomatic COVID-19 at a children's hospital in the Bronx, New York, between March 1 and May 31, 2020. D-Dimer was > 0.5 µg/mL (upper limit of normal) in 25 (93%) patients at admission; 11 (41%) developed peak D-dimer > 5 µg/mL during admission. Seven (26%) patients developed venous thromboembolism: three with deep vein thrombosis and four with pulmonary embolism. Requirement of increased ventilatory support was a risk factor for thrombosis (P = 0.006). Three of eight (38%) patients on prophylactic anticoagulation developed thrombosis; however, no patients developed VTE on low-molecular-weight heparin prophylaxis titrated to anti-Xa level. Manifestation of COVID-19 disease was severe or critical in 16 (59%) patients. Four (15%) patients died of COVID-19 complications: all had comorbidities. Elevated D-dimer and increased VTE rate were observed in this young cohort, particularly in those with severe respiratory complications, suggesting thrombotic coagulopathy. More data are needed to guide thromboprophylaxis in this age group.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/epidemiology , COVID-19/complications , Hospitalization/statistics & numerical data , SARS-CoV-2/isolation & purification , Venous Thromboembolism/epidemiology , Adolescent , Adult , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , COVID-19/virology , Child , Child, Preschool , Female , Humans , Infant , Male , New York/epidemiology , Risk Factors , Venous Thromboembolism/drug therapy , Venous Thromboembolism/virology , Young Adult
20.
Med Intensiva (Engl Ed) ; 45(1): 42-55, 2021.
Article in English, Spanish | MEDLINE | ID: covidwho-1065468

ABSTRACT

During the new pandemic caused by SARS-CoV-2, there is short knowledge regarding the management of different disease areas, such as coagulopathy and interpretation of D-dimer levels, its association with disseminated intravascular coagulation (DIC) and controversy about the benefit of anticoagulation. Thus, a systematic review has been performed to define the role of D-dimer in the disease, the prevalence of DIC and the usefulness of anticoagulant treatment in these patients. A literature search was performed to analyze the studies of COVID-19 patients. Four recommendations were drawn based on expert opinion and scientific knowledge, according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The present review suggests the presence of higher levels of D-dimer in those with worse prognosis, there may be an overdiagnosis of DIC in the course of the disease and there is no evidence on the benefit of starting anticoagulant treatment based only on isolated laboratory data.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/blood , COVID-19/blood , Disseminated Intravascular Coagulation/blood , Fibrin Fibrinogen Degradation Products/analysis , SARS-CoV-2 , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/mortality , COVID-19/drug therapy , COVID-19/epidemiology , COVID-19/mortality , Critical Illness , Disseminated Intravascular Coagulation/diagnosis , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/epidemiology , Humans , Medical Overuse , Observational Studies as Topic , Pandemics , Prevalence , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...