Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Medicine (Baltimore) ; 100(41): e27537, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1501207


ABSTRACT: The corona virus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, had health and economic results that profoundly affected communities worldwide. Investigating the seroprevalence of SARS-Cov-2 in blood donors is of a significant clinical and scientific value as it adds to knowledge about local herd immunity levels.To study the prevalence of SARS-Cov-2 infection among blood donors at a tertiary referral hospital in the north of Jordan.This is a prospective study that included all blood donors between September 2020 and March 2021. Donors' IgG antibodies were qualitatively immunoassayed to determine the antibody status against SARS-CoV-2. The Elecsys Anti-SARS-CoV-2 technique was utilized.One thousand samples were tested by total antibody against SARS-CoV-2. The median age was 29 years, 96.7% were males. The seroprevalence was 14.5%, and 80% of the positive participants did not report previous COVID-19 infection. The seroprevalence of COVID-19 antibodies was less among smokers and those with an O blood group and higher among donors with an AB blood group.The prevalence of COVID-19 among healthy young blood donors at a tertiary teaching health facility in the north of Jordan was 14.5%. Smokers and those with an O blood group were less likely to be seropositive, as opposed to donors with an AB blood group.

Blood Donors/statistics & numerical data , COVID-19/epidemiology , Adult , Blood Group Antigens/immunology , Female , Humans , Jordan/epidemiology , Male , Pandemics , Prevalence , Prospective Studies , SARS-CoV-2
J Mol Med (Berl) ; 99(8): 1023-1031, 2021 08.
Article in English | MEDLINE | ID: covidwho-1237475


SARS-CoV-2 causes the respiratory syndrome COVID-19 and is responsible for the current pandemic. The S protein of SARS-CoV-2-mediating virus binding to target cells and subsequent viral uptake is extensively glycosylated. Here we focus on how glycosylation of both SARS-CoV-2 and target cells crucially impacts SARS-CoV-2 infection at different levels: (1) virus binding and entry to host cells, with glycosaminoglycans of host cells acting as a necessary co-factor for SARS-CoV-2 infection by interacting with the receptor-binding domain of the SARS-CoV-2 spike glycoprotein, (2) innate and adaptive immune response where glycosylation plays both a protective role and contributes to immune evasion by masking of viral polypeptide epitopes and may add to the cytokine cascade via non-fucosylated IgG, and (3) therapy and vaccination where a monoclonal antibody-neutralizing SARS-CoV-2 was shown to interact also with a distinct glycan epitope on the SARS-CoV-2 spike protein. These evidences highlight the importance of ensuring that glycans are considered when tackling this disease, particularly in the development of vaccines, therapeutic strategies and serological testing.

COVID-19/metabolism , Host-Pathogen Interactions , SARS-CoV-2/physiology , Adaptive Immunity , Animals , Blood Group Antigens/immunology , Blood Group Antigens/metabolism , COVID-19/immunology , COVID-19/therapy , Exocytosis , Glycosylation , Humans , Immunity, Innate , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Virus Replication