ABSTRACT
Coinfections/mixed infections are common in the respiratory tract. Many times existing organisms have similar risk factors and clinical features that make the diagnosis difficult. Coronavirus diagnosed in 2019 (COVID-19) and tuberculosis (TB) are two such diseases. Patients with TB have lower cellular immunity and impaired pulmonary function. In such environment, atypical organisms, can infect and make the outcome unfavorable. A 21-year-old malnourished (body mass index- 15 kg/m2) girl presented with fever and cough for 10 days. Sputum for Cartridge Based Nucleic Acid Amplification Test demonstrated Mycobacterium tuberculosis with no rifampin resistance. Fever persisted (100-101°F) and saturation was dropping even after 10 days of antitubercular treatment. A repeat reverse transcription-polymerase chain reaction was done and was positive. In view of persistent symptoms after 20 days, bronchoscopy was done, and cultures showed Bordetella bronchiseptica. Fever and symptoms resolved completely after initiation of the sensitive drug. Diagnostic delay in coinfections can lead to increased morbidity and mortality.
Subject(s)
Bordetella , COVID-19 , Coinfection , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Female , Humans , Young Adult , Adult , Coinfection/diagnosis , Tuberculosis, Pulmonary/microbiology , Delayed Diagnosis , Tuberculosis/complications , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Mycobacterium tuberculosis/genetics , Sputum/microbiologyABSTRACT
Patients infected with severe acute respiratory syndrome coronavirus 2 might have bacterial and fungal superinfections develop. We describe a clinical case of coronavirus disease with pulmonary aspergillosis associated with Bordetella hinzii pneumonia in an immunocompetent patient in France. B. hinzii infections are rare in humans and develop secondary to immunosuppression or debilitating diseases.
Subject(s)
Bordetella , COVID-19 , Pneumonia , Humans , SARS-CoV-2Subject(s)
Bordetella Infections , Bordetella , COVID-19 , Pneumonia , Bordetella Infections/drug therapy , COVID-19/complications , Humans , SARS-CoV-2ABSTRACT
PURPOSE: The purpose of this study was to characterize the nasopharyngeal microbiota of infants with possible and confirmed pertussis compared to healthy controls. METHODS: This prospective study included all infants <1 year with microbiologically confirmed diagnosis of pertussis attended at a University Hospital over a 12-month period. For each confirmed case, up to 2 consecutive patients within the same age range and meeting the clinical case definition of pertussis but testing PCR-negative were included as possible cases. A third group of asymptomatic infants (healthy controls) were also included. Nasopharyngeal microbiota was characterized by sequencing the V3-V4 region of the 16S rRNA gene. Common respiratory DNA/RNA viral co-infection was tested by multiplex PCR. RESULTS: Twelve confirmed cases, 21 possible cases and 9 healthy controls were included. Confirmed whooping cough was primarily driven by detection of Bordetella with no other major changes on nasopharyngeal microbiota. Possible cases had limited abundance or absence of Bordetella and a distinctive microbiota with lower bacterial richness and diversity and higher rates of viral co-infection than both confirmed cases and healthy controls. Bordetella reads determined by 16S rRNA gene sequencing were found in all 12 confirmed cases (100%), 3 out of the 21 possible cases (14.3%) but in any healthy control. CONCLUSION: This study supports the usefulness of 16S rRNA gene sequencing for improved sensitivity on pertussis diagnosis compared to real-time PCR and to understand other microbial changes occurring in the nasopharynx in children <1 year old with suspected whooping cough compared to healthy controls.
Subject(s)
Microbiota , Whooping Cough/microbiology , Bordetella/genetics , Bordetella/isolation & purification , Bordetella/pathogenicity , Case-Control Studies , Female , Humans , Infant , Male , Nasal Cavity/microbiology , Pharynx/microbiology , RNA, Ribosomal, 16S/genetics , Whooping Cough/diagnosisABSTRACT
BACKGROUND: Bordetella avium, an aerobic bacterium that rarely causes infection in humans, is a species of Bordetella that generally inhabits the respiratory tracts of turkeys and other birds. It causes a highly contagious bordetellosis. Few reports describe B. avium as a causative agent of eye-related infections. CASE PRESENTATION: We report a case of acute infectious endophthalmitis associated with infection by B. avium after open trauma. After emergency vitrectomy and subsequent broad-spectrum antibiotic treatment, the infection was controlled successfully, and the patient's vision improved. CONCLUSIONS: B. avium can cause infection in the human eye, which can manifest as acute purulent endophthalmitis. Nanopore targeted sequencing technology can quickly identify this organism. Emergency vitrectomy combined with lens removal and silicone oil tamponade and the early application of broad-spectrum antibiotics are key for successful treatment.
Subject(s)
Bordetella avium , Bordetella , Cataract Extraction , Endophthalmitis , Endophthalmitis/diagnosis , Endophthalmitis/drug therapy , Endophthalmitis/surgery , Humans , VitrectomyABSTRACT
Patients with severe acute respiratory syndrome coronavirus 2 infection may have bacterial co-infections, including pneumonia and bacteremia. Bordetella hinzii infections are rare, may be associated with exposure to poultry, and have been reported mostly among immunocompromised patients. We describe B. hinzii pneumonia and bacteremia in a severe acute respiratory syndrome coronavirus 2 patient.