Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Brain ; 145(7): 2242-2244, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1948179
2.
PLoS One ; 15(6): e0233981, 2020.
Article in English | MEDLINE | ID: covidwho-1456053

ABSTRACT

We aimed to examine aneurysm hemodynamics with intra-saccular pressure measurement, and compare the effects of coiling, stenting and stent-assisted coiling in proximal segments of intracranial circulation. A cohort of 45 patients underwent elective endovascular coil embolization (with or without stent) for intracranial aneurysm at our department. Arterial pressure transducer was used for all measurements. It was attached to proximal end of the microcatheter. Measurements were taken in the parent artery before and after embolization, at the aneurysm dome before embolization, after stent implantation, and after embolization. Stent-assisted coiling was performed with 4 different stents: LVIS and LVIS Jr (Microvention, Tustin, CA, USA), Leo (Balt, Montmorency, France), Barrel VRD (Medtronic/ Covidien, Irvine, CA, USA). Presence of the stent showed significant reverse correlation with intra-aneurysmal pressure-both systolic and diastolic-after its implantation (r = -0.70 and r = -0.75, respectively), which was further supported by correlations with stent cell size-r = 0.72 and r = 0.71, respectively (P<0.05). Stent implantation resulted in significant decrease in diastolic intra-aneurysmal pressure (p = 0.046). Systolic or mean intra-aneurysmal pressure did not differ significantly. Embolization did not significantly change the intra-aneurysmal pressure in matched pairs, regardless of the use of stent (p>0.05). In conclusion, low-profile braided stents show a potential to divert blood flow, there was significant decrease in diastolic pressure after stent placement. Flow-diverting properties were related to stent porosity. Coiling does not significantly change the intra-aneurysmal pressure, regardless of packing density.


Subject(s)
Blood Pressure , Intracranial Aneurysm/physiopathology , Stents , Aged , Arterial Pressure , Blood Circulation , Blood Vessel Prosthesis , Brain/blood supply , Brain/physiopathology , Embolization, Therapeutic , Female , Hemodynamics , Humans , Intracranial Aneurysm/therapy , Male , Middle Aged
5.
ACS Chem Neurosci ; 11(22): 3732-3740, 2020 11 18.
Article in English | MEDLINE | ID: covidwho-910316

ABSTRACT

This Article summarizes the likely benefits of central nervous system oxidative preconditioning in the reduction of COVID-19 based on its putative pathogenesis. The current COVID-19 outbreak caused a pandemic with millions of infected patients and death cases worldwide. The clinical features of severe acute respiratory syndrome coronavirus (SARS-CoV) was initially linked with respiratory disorders, but recent studies have reported alterations of neurological and cerebrovascular functions in COVID-19 patients. The main viral infection features are related to cell death, inflammation, and cytokine generation, which can be associated with the dysregulation of redox systems or oxidative stress. However, until now, there is no available and effective therapeutic approach. Thus, it is necessary to search for care and adequate protection against the disease, especially for susceptible and vulnerable groups. Preconditioning, a well-known antioxidative stress and anti-inflammatory approach, is protective against many neurological age-related disorders. COVID-19 severity and morbidity have been observed in elderly patients. The aim of the present study is to elucidate the possible protective role of oxidative preconditioning in aged patients at high risk of developing severe COVID-19 complications.


Subject(s)
Betacoronavirus , Brain/blood supply , Coronavirus Infections/therapy , Ischemic Preconditioning/methods , Oxidative Stress/physiology , Pneumonia, Viral/therapy , Betacoronavirus/metabolism , Brain/metabolism , Brain/virology , COVID-19 , Coronavirus Infections/metabolism , Humans , Ischemic Preconditioning/trends , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2
6.
Eur Rev Med Pharmacol Sci ; 24(19): 10267-10278, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-890962

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) uses Angiotensin- converting enzyme 2 (ACE2) receptors to infect host cells which may lead to coronavirus disease (COVID-19). Given the presence of ACE2 receptors in the brain and the critical role of the renin-angiotensin system (RAS) in brain functions, special attention to brain microcirculation and neuronal inflammation is warranted during COVID-19 treatment. Neurological complications reported among COVID-19 patients range from mild dizziness, headache, hypogeusia, hyposmia to severe like encephalopathy, stroke, Guillain-Barre Syndrome (GBS), CNS demyelination, infarcts, microhemorrhages and nerve root enhancement. The pathophysiology of these complications is likely via direct viral infection of the CNS and PNS tissue or through indirect effects including post- viral autoimmune response, neurological consequences of sepsis, hyperpyrexia, hypoxia and hypercoagulability among critically ill COVID-19 patients. Further, decreased deformability of red blood cells (RBC) may be contributing to inflammatory conditions and hypoxia in COVID-19 patients. Haptoglobin, hemopexin, heme oxygenase-1 and acetaminophen may be used to maintain the integrity of the RBC membrane.


Subject(s)
Brain/physiopathology , COVID-19/physiopathology , Erythrocytes/pathology , Hemolysis , Nervous System Diseases/physiopathology , Brain/blood supply , COVID-19/complications , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Models, Neurological , Molecular Targeted Therapy/methods , Nervous System Diseases/complications , Nervous System Diseases/drug therapy , Pandemics , SARS-CoV-2
7.
Neuromolecular Med ; 23(1): 184-198, 2021 03.
Article in English | MEDLINE | ID: covidwho-871558

ABSTRACT

Ergothioneine (ET) is a naturally occurring antioxidant that is synthesized by non-yeast fungi and certain bacteria. ET is not synthesized by animals, including humans, but is avidly taken up from the diet, especially from mushrooms. In the current study, we elucidated the effect of ET on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induces a dose-dependent loss of cell viability and an increase in apoptosis and necrosis in the endothelial cells. A relocalization of the tight junction proteins, zonula occludens-1 (ZO-1) and claudin-5, towards the nucleus of the cells was also observed. These effects were significantly attenuated by ET. In addition, 7KC induces marked increases in the mRNA expression of pro-inflammatory cytokines, IL-1ß IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX2), as well as COX2 enzymatic activity, and these were significantly reduced by ET. Moreover, the cytoprotective and anti-inflammatory effects of ET were significantly reduced by co-incubation with an inhibitor of the ET transporter, OCTN1 (VHCL). This shows that ET needs to enter the endothelial cells to have a protective effect and is unlikely to act via extracellular neutralizing of 7KC. The protective effect on inflammation in brain endothelial cells suggests that ET might be useful as a nutraceutical for the prevention or management of neurovascular diseases, such as stroke and vascular dementia. Moreover, the ability of ET to cross the blood-brain barrier could point to its usefulness in combatting 7KC that is produced in the CNS during neuroinflammation, e.g. after excitotoxicity, in chronic neurodegenerative diseases, and possibly COVID-19-related neurologic complications.


Subject(s)
Antioxidants/pharmacology , COVID-19/complications , Endothelial Cells/drug effects , Ergothioneine/pharmacology , Ketocholesterols/toxicity , Nervous System Diseases/prevention & control , Neuroprotective Agents/pharmacology , Antioxidants/pharmacokinetics , Apoptosis/drug effects , Biological Transport , Blood-Brain Barrier , Brain/blood supply , Brain/cytology , Cell Line , Cholesterol/metabolism , Claudin-5 , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Cytokines/biosynthesis , Cytokines/genetics , Drug Evaluation, Preclinical , Ergothioneine/pharmacokinetics , Humans , Microvessels/cytology , Nervous System Diseases/etiology , Neuroprotective Agents/pharmacokinetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Organic Cation Transport Proteins , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Symporters , Zonula Occludens-1 Protein
8.
Neurotox Res ; 39(2): 359-368, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-783069

ABSTRACT

Acute traumatic brain injury (TBI) leads to neuroinflammation, neurodegeneration, cognitive decline, psychological disorders, increased blood-brain barrier (BBB) permeability, and microvascular damage in the brain. Inflammatory mediators secreted from activated glial cells, neurons, and mast cells are implicated in the pathogenesis of TBI through secondary brain damage. Abnormalities or damage to the neurovascular unit is the indication of secondary injuries in the brain after TBI. However, the precise mechanisms of molecular and ultrastructural neurovascular alterations involved in the pathogenesis of acute TBI are not yet clearly understood. Moreover, currently, there are no precision-targeted effective treatment options to prevent the sequelae of TBI. In this study, mice were subjected to closed head weight-drop-induced acute TBI and evaluated neuroinflammatory and neurovascular alterations in the brain by immunofluorescence staining or quantitation by enzyme-linked immunosorbent assay (ELISA) procedure. Mast cell stabilizer drug cromolyn was administered to inhibit the neuroinflammatory response of TBI. Results indicate decreased level of pericyte marker platelet-derived growth factor receptor-beta (PDGFR-ß) and BBB-associated tight junction proteins junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) in the brains 7 days after weight-drop-induced acute TBI as compared with the brains from sham control mice indicating acute TBI-associated BBB/tight junction protein disruption. Further, the administration of cromolyn drug significantly inhibited acute TBI-associated decrease of PDGFR-ß, JAM-A, and ZO-1 in the brain. These findings suggest that acute TBI causes BBB/tight junction damage and that cromolyn administration could protect this acute TBI-induced brain damage as well as its long-time consequences.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain/metabolism , Cerebrovascular Disorders/metabolism , Encephalitis/metabolism , Animals , Brain/blood supply , Brain Injuries, Traumatic/complications , Cerebrovascular Disorders/etiology , Encephalitis/etiology , Male , Mice , Neurons/metabolism
9.
J Neurovirol ; 26(5): 631-641, 2020 10.
Article in English | MEDLINE | ID: covidwho-739689

ABSTRACT

A subset of patients with coronavirus 2 disease (COVID-19) experience neurological complications. These complications include loss of sense of taste and smell, stroke, delirium, and neuromuscular signs and symptoms. The etiological agent of COVID-19 is SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), an RNA virus with a glycoprotein-studded viral envelope that uses ACE2 (angiotensin-converting enzyme 2) as a functional receptor for infecting the host cells. Thus, the interaction of the envelope spike proteins with ACE2 on host cells determines the tropism and virulence of SARS-CoV-2. Loss of sense of taste and smell is an initial symptom of COVID-19 because the virus enters the nasal and oral cavities first and the epithelial cells are the receptors for these senses. Stroke in COVID-19 patients is likely a consequence of coagulopathy and injury to cerebral vascular endothelial cells that cause thrombo-embolism and stroke. Delirium and encephalopathy in acute and post COVID-19 patients are likely multifactorial and secondary to hypoxia, metabolic abnormalities, and immunological abnormalities. Thus far, there is no clear evidence that coronaviruses cause inflammatory neuromuscular diseases via direct invasion of peripheral nerves or muscles or via molecular mimicry. It appears that most of neurologic complications in COVID-19 patients are indirect and as a result of a bystander injury to neurons.


Subject(s)
Betacoronavirus/pathogenicity , Brain Diseases/complications , Coronavirus Infections/complications , Olfaction Disorders/complications , Pneumonia, Viral/complications , Pulmonary Embolism/complications , Stroke/complications , Angiotensin-Converting Enzyme 2 , Brain/blood supply , Brain/pathology , Brain/virology , Brain Diseases/immunology , Brain Diseases/pathology , Brain Diseases/virology , Bystander Effect , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Lung/blood supply , Lung/pathology , Lung/virology , Neurons/pathology , Neurons/virology , Olfaction Disorders/immunology , Olfaction Disorders/pathology , Olfaction Disorders/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pulmonary Embolism/immunology , Pulmonary Embolism/pathology , Pulmonary Embolism/virology , SARS-CoV-2 , Signal Transduction/genetics , Signal Transduction/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Stroke/immunology , Stroke/pathology , Stroke/virology
10.
Neuroradiol J ; 33(5): 368-373, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-646969

ABSTRACT

Central nervous system involvement in severe acute respiratory syndrome caused by coronavirus disease 2019 (COVID-19) has increasingly been recognised in the literature, and possible mechanisms of neuroinvasion, neurotropism and neurovirulence have been described. Neurological signs have been described in 84% of COVID-19 intensive care unit patients, and haemostatic abnormalities in such patients may play an important role, with a broad spectrum of neuroimaging findings. This report describes the magnetic resonance imaging neurovascular findings in an acutely ill patient with COVID-19, including perfusion abnormalities depicted in the arterial spin labelling technique.


Subject(s)
Brain/diagnostic imaging , Cerebrovascular Circulation , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Subarachnoid Hemorrhage/diagnostic imaging , Aged , Betacoronavirus , Brain/blood supply , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/physiopathology , Corpus Callosum , Frontal Lobe , Humans , Intracranial Hemorrhages , Magnetic Resonance Imaging , Male , Pandemics , Parietal Lobe , Perfusion Imaging , Pneumonia, Viral/complications , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Spin Labels , Subarachnoid Hemorrhage/complications , Thalamus
SELECTION OF CITATIONS
SEARCH DETAIL