Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
Add filters

Document Type
Year range
1.
Eur J Neurol ; 28(10): 3443-3447, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1607745

ABSTRACT

BACKGROUND AND PURPOSE: COVID-19 affects the brain in various ways, amongst which delirium is worrying. An assessment was made of whether a specific, long-lasting, COVID-19-related brain injury develops in acute respiratory distress syndrome patients after life-saving re-oxygenation. METHODS: Ten COVID+ patients (COVID+) with unusual delirium associated with neuroimaging suggestive of diffuse brain injury and seven controls with non-COVID encephalopathy were studied. The assessment took place when the intractable delirium started at weaning off ventilation support. Brain magnetic resonance imaging (MRI) was performed followed by standard cerebrospinal fluid (CSF) analyses and assessment of CSF erythropoietin concentrations (as a marker for the assessment of tissue repair), and of non-targeted CSF metabolomics using liquid chromatography high resolution mass spectrometry. RESULTS: Patients were similar as regards severity scores, but COVID+ were hospitalized longer (25 [11.75; 25] vs. 9 [4.5; 12.5] days, p = 0.03). On admission, but not at MRI and lumbar puncture performance, COVID+ were more hypoxic (p = 0.002). On MRI, there were leptomeningeal enhancement and diffuse white matter haemorrhages only in COVID+. In the latter, CSF erythropoietin concentration was lower (1.73 [1.6; 2.06] vs. 3.04 [2.9; 3.91] mIU/ml, p = 0.01), and CSF metabolomics indicated (a) increased compounds such as foodborne molecules (sesquiterpenes), molecules from industrialized beverages and micro-pollutants (diethanolamine); and (b) decreased molecules such as incomplete breakdown products of protein catabolism and foodborne molecules (glabridin). At 3-month discharge, fatigue, anxiety and depression as well as MRI lesions persisted in COVID+. CONCLUSIONS: Some COVID+ are at risk of a specific delirium. Imperfect brain repair after re-oxygenation and lifestyle factors might influence long-lasting brain injuries in a context of foodborne micro-pollutants.


Subject(s)
COVID-19 , Delirium , Environmental Pollutants , Brain/diagnostic imaging , Critical Care , Humans , SARS-CoV-2
2.
Lancet Neurol ; 20(9): 753-761, 2021 09.
Article in English | MEDLINE | ID: covidwho-1599333

ABSTRACT

BACKGROUND: The mechanisms by which any upper respiratory virus, including SARS-CoV-2, impairs chemosensory function are not known. COVID-19 is frequently associated with olfactory dysfunction after viral infection, which provides a research opportunity to evaluate the natural course of this neurological finding. Clinical trials and prospective and histological studies of new-onset post-viral olfactory dysfunction have been limited by small sample sizes and a paucity of advanced neuroimaging data and neuropathological samples. Although data from neuropathological specimens are now available, neuroimaging of the olfactory system during the acute phase of infection is still rare due to infection control concerns and critical illness and represents a substantial gap in knowledge. RECENT DEVELOPMENTS: The active replication of SARS-CoV-2 within the brain parenchyma (ie, in neurons and glia) has not been proven. Nevertheless, post-viral olfactory dysfunction can be viewed as a focal neurological deficit in patients with COVID-19. Evidence is also sparse for a direct causal relation between SARS-CoV-2 infection and abnormal brain findings at autopsy, and for trans-synaptic spread of the virus from the olfactory epithelium to the olfactory bulb. Taken together, clinical, radiological, histological, ultrastructural, and molecular data implicate inflammation, with or without infection, in either the olfactory epithelium, the olfactory bulb, or both. This inflammation leads to persistent olfactory deficits in a subset of people who have recovered from COVID-19. Neuroimaging has revealed localised inflammation in intracranial olfactory structures. To date, histopathological, ultrastructural, and molecular evidence does not suggest that SARS-CoV-2 is an obligate neuropathogen. WHERE NEXT?: The prevalence of CNS and olfactory bulb pathosis in patients with COVID-19 is not known. We postulate that, in people who have recovered from COVID-19, a chronic, recrudescent, or permanent olfactory deficit could be prognostic for an increased likelihood of neurological sequelae or neurodegenerative disorders in the long term. An inflammatory stimulus from the nasal olfactory epithelium to the olfactory bulbs and connected brain regions might accelerate pathological processes and symptomatic progression of neurodegenerative disease. Persistent olfactory impairment with or without perceptual distortions (ie, parosmias or phantosmias) after SARS-CoV-2 infection could, therefore, serve as a marker to identify people with an increased long-term risk of neurological disease.


Subject(s)
COVID-19/complications , COVID-19/diagnostic imaging , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Olfactory Mucosa/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Brain/virology , COVID-19/physiopathology , Humans , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/physiopathology , Olfaction Disorders/physiopathology , Olfaction Disorders/virology , Olfactory Mucosa/physiopathology , Olfactory Mucosa/virology , Prospective Studies , Smell/physiology
3.
Br J Radiol ; 95(1129): 20210570, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1566544

ABSTRACT

OBJECTIVE: Multisystem inflammatory syndrome in children (MIS-C) is seen as a serious delayed complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The aim of this study was to describe the most common imaging features of MIS-C associated with SARS-CoV-2. METHODS: A retrospective review was made of the medical records and radiological imaging studies of 47 children (26 male, 21 female) in the age range of 25 months-15 years who were diagnosed with MIS-C between August 2020 and March 2021. Chest radiographs were available for all 47 patients, thorax ultrasound for 6, chest CT for 4, abdominal ultrasound for 42, abdomen CT for 9, neck ultrasound for 4, neck CT for 2, brain CT for 1, and brain MRI for 3. RESULTS: The most common finding on chest radiographs was perihilar-peribronchial thickening (46%). The most common findings on abdominal ultrasonography were mesenteric inflammation (42%), and hepatosplenomegaly (38%, 28%). Lymphadenopathy was determined in four patients who underwent neck ultrasound, one of whom had deep neck infection on CT. One patient had restricted diffusion and T2 hyperintensity involving the corpus callosum splenium on brain MRI, and one patient had epididymitis related with MIS-C. CONCLUSION: Pulmonary manifestations are uncommon in MIS-C. In the abdominal imaging, mesenteric inflammation, hepatosplenomegaly, periportal edema, ascites and bowel wall thickening are the most common findings. ADVANCES IN KNOWLEDGE: The imaging findings of MIS-C are non-specific and can mimic many other pathologies. Radiologists should be aware that these findings may indicate the correct diagnosis of MIS-C.


Subject(s)
COVID-19/complications , Systemic Inflammatory Response Syndrome/diagnostic imaging , Adolescent , Brain/diagnostic imaging , COVID-19/diagnostic imaging , Child , Child, Preschool , Female , Humans , Magnetic Resonance Imaging , Male , Neck/diagnostic imaging , Neuroimaging , Radiography, Abdominal , Radiography, Thoracic , Retrospective Studies , Tomography, X-Ray Computed , Ultrasonography
5.
Clin Imaging ; 81: 107-113, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1525733

ABSTRACT

BACKGROUND: Numerous case reports and case series have described brain Magnetic Resonance Imaging (MRI) findings in Coronavirus disease 2019 (COVID-19) patients with concurrent posterior reversible encephalopathy syndrome (PRES). PURPOSE: We aim to compile and analyze brain MRI findings in patients with COVID-19 disease and PRES. METHODS: PubMed and Embase were searched on April 5th, 2021 using the terms "COVID-19", "PRES", "SARS-CoV-2" for peer-reviewed publications describing brain MRI findings in patients 21 years of age or older with evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and PRES. RESULTS: Twenty manuscripts were included in the analysis, which included descriptions of 30 patients. The average age was 57 years old. Twenty-four patients (80%) required mechanical ventilation. On brain MRI examinations, 15 (50%) and 7 (23%) of patients exhibited superimposed foci of hemorrhage and restricted diffusion respectively. CONCLUSIONS: PRES is a potential neurological complication of COVID-19 related disease. COVID-19 patients with PRES may exhibit similar to mildly greater rates of superimposed hemorrhage compared to non-COVID-19 PRES patients.


Subject(s)
COVID-19 , Posterior Leukoencephalopathy Syndrome , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Middle Aged , SARS-CoV-2
6.
Neurol Neuroimmunol Neuroinflamm ; 8(4)2021 07.
Article in English | MEDLINE | ID: covidwho-1518339

ABSTRACT

OBJECTIVE: Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) is a severe immune-mediated disorder. We aim to report the neurologic features of children with PIMS-TS. METHODS: We identified children presenting to a large children's hospital with PIMS-TS from March to June 2020 and performed a retrospective medical note review, identifying clinical and investigative features alongside short-term outcome of children presenting with neurologic symptoms. RESULTS: Seventy-five patients with PIMS-TS were identified, 9 (12%) had neurologic involvement: altered conciseness (3), behavioral changes (3), focal neurology deficits (2), persistent headaches (2), hallucinations (2), excessive sleepiness (1), and new-onset focal seizures (1). Four patients had cranial images abnormalities. At 3-month follow-up, 1 child had died, 1 had hemiparesis, 3 had behavioral changes, and 4 completely recovered. Systemic inflammatory and prothrombotic markers were higher in patients with neurologic involvement (mean highest CRP 267 vs 202 mg/L, p = 0.05; procalcitonin 30.65 vs 13.11 µg/L, p = 0.04; fibrinogen 7.04 vs 6.17 g/L, p = 0.07; d-dimers 19.68 vs 7.35 mg/L, p = 0.005). Among patients with neurologic involvement, these markers were higher in those without full recovery at 3 months (ferritin 2284 vs 283 µg/L, p = 0.05; d-dimers 30.34 vs 6.37 mg/L, p = 0.04). Patients with and without neurologic involvement shared similar risk factors for PIMS-TS (Black, Asian and Minority Ethnic ethnicity 78% vs 70%, obese/overweight 56% vs 42%). CONCLUSIONS: Broad neurologic features were found in 12% patients with PIMS-TS. By 3-month follow-up, half of these surviving children had recovered fully without neurologic impairment. Significantly higher systemic inflammatory markers were identified in children with neurologic involvement and in those who had not recovered fully.


Subject(s)
COVID-19/complications , Inflammation/complications , Nervous System Diseases/etiology , Systemic Inflammatory Response Syndrome/complications , Adolescent , Biomarkers/blood , Brain/diagnostic imaging , COVID-19/pathology , COVID-19/psychology , Child , Child Behavior Disorders/epidemiology , Child Behavior Disorders/etiology , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Inflammation/pathology , Magnetic Resonance Imaging , Male , Nervous System Diseases/pathology , Nervous System Diseases/psychology , Retrospective Studies , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/psychology , Thrombosis/blood , Thrombosis/etiology
7.
Eur J Neurol ; 28(8): 2603-2613, 2021 08.
Article in English | MEDLINE | ID: covidwho-1518029

ABSTRACT

BACKGROUND AND PURPOSE: Nasu-Hakola disease (NHD) is a rare, autosomal recessive disorder characterized by skeletal and neurological symptoms. Behavioral symptoms with cognitive impairment may mimic the behavioral variant of frontotemporal dementia (bvFTD) and other early-onset dementias. Our patients were analyzed and the literature was reviewed to delineate neurological and neuroimaging findings suggestive of NHD. METHOD: Fourteen patients carrying a pathogenic mutation in the TREM2 gene were found in our database. Demographic, clinical, laboratory and radiological data were retrieved and analyzed. RESULTS: The presenting clinical picture was behavioral changes with cognitive decline resembling bvFTD in all patients. The mean age was 37.1 ± 4.97 years and the mean duration of the disease was 8.9 ± 3.51 years. Only two patients had typical bone cysts. Seven patients had bilateral calcification of the basal ganglia in computed tomography of the brain. Magnetic resonance imaging of the brain revealed severe atrophy of the corpus callosum, enlargement of the ventricles, atrophy of the caudate nuclei and periventricular white matter changes in all patients. Symmetrical global atrophy of the brain mainly affecting frontoparietal and lateral temporal regions were observed in all cases, and 13 patients had atrophy of the hippocampus. Cerebrospinal fluid examination of 10 patients showed elevated protein levels in six and the presence of oligoclonal bands in four patients. CONCLUSION: A combination of white matter changes, enlarged ventricles, atrophy of the caudate nuclei and thinning of the corpus callosum in magnetic resonance imaging strongly suggests NHD in patients with FTD syndrome. Molecular genetic analysis should be performed in suspected cases, and families should receive genetic counseling.


Subject(s)
Frontotemporal Dementia , Lipodystrophy , Membrane Glycoproteins/genetics , Osteochondrodysplasias , Receptors, Immunologic/genetics , Subacute Sclerosing Panencephalitis , Adult , Brain/diagnostic imaging , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Humans , Magnetic Resonance Imaging , Neuroimaging
10.
BMJ Open ; 11(10): e055164, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1495477

ABSTRACT

OBJECTIVES: To report findings on brain MRI and neurocognitive function, as well as persisting fatigue at long-term follow-up after COVID-19 hospitalisation in patients identified as high risk for affection of the central nervous system. DESIGN: Ambidirectional observational cohort study. SETTING: All 734 patients from a regional population in Sweden with a laboratory-confirmed COVID-19 diagnosis admitted to hospital during the period 1 March to 31 May 2020. PARTICIPANTS: A subgroup (n=185) with persisting symptoms still interfering with daily life at a telephone follow-up 4 months after discharge were invited for a medical and neuropsychological evaluation. Thirty-five of those who were assessed with a neurocognitive test battery at the clinical visit, and presented a clinical picture concerning for COVID-19-related brain pathology, were further investigated by brain MRI. MAIN OUTCOME MEASURES: Findings on brain MRI, neurocognitive test results and reported fatigue. RESULTS: Twenty-five patients (71%) had abnormalities on MRI; multiple white matter lesions were the most common finding. Sixteen patients (46%) demonstrated impaired neurocognitive function, of which 10 (29%) had severe impairment. Twenty-six patients (74%) reported clinically significant fatigue. Patients with abnormalities on MRI had a lower Visuospatial Index (p=0.031) compared with the group with normal MRI findings. CONCLUSIONS: In this group of patients selected to undergo MRI after a clinical evaluation, a majority of patients had abnormal MRI and/or neurocognitive test results. Abnormal findings were not restricted to patients with severe disease.


Subject(s)
COVID-19 , Brain/diagnostic imaging , COVID-19 Testing , Cohort Studies , Follow-Up Studies , Hospitalization , Humans , Magnetic Resonance Imaging , SARS-CoV-2
11.
J Neural Transm (Vienna) ; 128(12): 1899-1906, 2021 12.
Article in English | MEDLINE | ID: covidwho-1491158

ABSTRACT

Encephalopathy is a neurological complication of COVID-19. The objective of this exploratory study is to investigate the link between systemic inflammation and brain microstructural changes (measured by diffusion-weighted imaging) in patients with COVID-19 encephalopathy. 20 patients with COVID-19 encephalopathy (age: 67.3 [Formula: see text] 10.0 years; 90% men) hospitalized in the Geneva University Hospitals for a SARS-CoV-2 infection between March and May 2020 were included in this retrospective cohort study. COVID-19 encephalopathy was diagnosed following a comprehensive neurobiological evaluation, excluding common causes of delirium, such as hypoxemic or metabolic encephalopathy. We investigated the correlation between systemic inflammation (measured by systemic C-reactive protein (CRP)) and brain microstructural changes in radiologically normal white matter (measured by apparent diffusion coefficient (ADC)) in nine spatially widespread regions of the white matter previously associated with delirium. Systemic inflammation (CRP = 60.8 ± 50.0 mg/L) was positively correlated with ADC values in the anterior corona radiata (p = 0.0089), genu of the corpus callosum (p = 0.0064) and external capsule (p = 0.0086) after adjusting for patients' age. No statistically significant association between CRP and ADC was found in the other six white matter regions. Our findings indicate high risk of white matter abnormalities in COVID-19 encephalopathy patients with high peripheral inflammatory markers, suggesting aggressive imaging monitoring may be warranted in these patients. Future studies should clarify a possible specificity of the spatial patterns of CRP-white matter microstructure association in COVID-19 encephalopathy patients and disentangle the role of individual cytokines on brain inflammatory mechanisms.


Subject(s)
Brain Diseases , COVID-19 , White Matter , Brain/diagnostic imaging , C-Reactive Protein , Child , Diffusion Magnetic Resonance Imaging , Female , Humans , Male , Retrospective Studies , SARS-CoV-2 , White Matter/diagnostic imaging
12.
Sci Rep ; 11(1): 20476, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1469981

ABSTRACT

The increased frequency of neurological manifestations, including central nervous system (CNS) manifestations, in patients with coronavirus disease 2019 (COVID-19) pandemic is consistent with the virus's neurotropic nature. In most patients, brain magnetic resonance imaging (MRI) is a sensitive imaging modality in the diagnosis of viral encephalitides in the brain. The purpose of this study was to determine the frequency of brain lesion patterns on brain MRI in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia patients who developed focal and non-focal neurological manifestations. In addition, it will compare the impact of the Glasgow Coma Scale (GCS) as an index of deteriorating cerebral function on positive brain MRIs in both neurological manifestations. This retrospective study included an examination of SARS-CoV-2 pneumonia patients with real-time reverse transcription polymerase chain reaction (RT-PCR) confirmation, admitted with clinicoradiologic evidence of COVID-19 pneumonia, and who were candidates for brain MRI due to neurological manifestations suggesting brain involvement. Brain imaging acquired on a 3.0 T MRI system (Skyra; Siemens, Erlangen, Germany) with a 20-channel receive head coil. Brain MRI revealed lesions in 38 (82.6%) of the total 46 patients for analysis and was negative in the remaining eight (17.4%) of all finally enclosed patients with RT-PCR confirmed SARS-CoV-2 pneumonia. Twenty-nine (63%) patients had focal neurological manifestations, while the remaining 17 (37%) patients had non-focal neurological manifestations. The patients had a highly significant difference (p = 0.0006) in GCS, but no significant difference (p = 0.4) in the number of comorbidities they had. Brain MRI is a feasible and important imaging modality in patients with SARS-CoV-2 pneumonia who develop neurological manifestations suggestive of brain involvement, particularly in patients with non-focal manifestations and a decline in GCS.


Subject(s)
Brain Diseases/etiology , Brain/diagnostic imaging , COVID-19/complications , Adult , Aged , Brain/pathology , Brain Diseases/diagnostic imaging , Brain Diseases/pathology , COVID-19/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification
13.
Sleep ; 44(9)2021 09 13.
Article in English | MEDLINE | ID: covidwho-1462491

ABSTRACT

STUDY OBJECTIVES: Emotional reactivity to negative stimuli has been investigated in insomnia, but little is known about emotional reactivity to positive stimuli and its neural representation. METHODS: We used 3 Tesla functional magnetic resonance imaging (fMRI) to determine neural reactivity during the presentation of standardized short, 10- to 40-seconds, humorous films in patients with insomnia (n = 20, 18 females, aged 27.7 +/- 8.6 years) and age-matched individuals without insomnia (n = 20, 19 females, aged 26.7 +/- 7.0 years) and assessed humor ratings through a visual analog scale. Seed-based functional connectivity was analyzed for the left and right amygdalas (lAMYG and rAMYG, respectively) networks: group-level mixed-effects analysis (FLAME; FMRIB Software Library [FSL]) was used to compare amygdala connectivity maps between groups. RESULTS: fMRI seed-based analysis of the amygdala revealed stronger neural reactivity in patients with insomnia than in controls in several brain network clusters within the reward brain network, without humor rating differences between groups (p = 0.6). For lAMYG connectivity, cluster maxima were in the left caudate (Z = 3.88), left putamen (Z = 3.79), and left anterior cingulate gyrus (Z = 4.11), whereas for rAMYG connectivity, cluster maxima were in the left caudate (Z = 4.05), right insula (Z = 3.83), and left anterior cingulate gyrus (Z = 4.29). Cluster maxima of the rAMYG network were correlated with hyperarousal scores in patients with insomnia only. CONCLUSIONS: The presentation of humorous films leads to increased brain activity in the neural reward network for patients with insomnia compared with controls, related to hyperarousal features in patients with insomnia, in the absence of humor rating group differences. These novel findings may benefit insomnia treatment interventions. CLINICAL TRIAL: The Sleepless Brain: Neuroimaging Support for a Differential Diagnosis of Insomnia (SOMNET). ClinicalTrials.gov identifier: NCT02821234; https://clinicaltrials.gov/ct2/show/NCT02821234.


Subject(s)
Sleep Initiation and Maintenance Disorders , Adult , Amygdala/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Young Adult
14.
J Alzheimers Dis ; 83(2): 523-530, 2021.
Article in English | MEDLINE | ID: covidwho-1459395

ABSTRACT

Coronavirus (COVID-19) has emerged as a human catastrophe worldwide, and it has impacted human life more detrimentally than the combined effect of World Wars I and II. Various research studies reported that the disease is not confined to the respiratory system but also leads to neurological and neuropsychiatric disorders suggesting that the virus is potent to affect the central nervous system (CNS). Moreover, the damage to CNS may continue to rise even after the COVID-19 infection subsides which may further induce a long-term impact on the brain, resulting in cognitive impairment. Neuroimaging techniques is the ideal platform to detect and quantify pathological manifestations in the brain of COVID-19 survivors. In this context, a scheme based on structural, spectroscopic, and behavioral studies could be executed to monitor the gradual changes in the brain non-invasively due to COVID-19 which may further help in quantifying the impact of COVID-19 on the mental health of the survivors. Extensive research is required in this direction for identifying the mechanism and implications of COVID-19 in the brain. Cohort studies are urgently required for monitoring the effects of this pandemic on individuals of various subtypes longitudinally.


Subject(s)
Brain/diagnostic imaging , COVID-19/complications , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/virology , Brain/pathology , Brain Mapping/methods , COVID-19/diagnostic imaging , COVID-19/pathology , Cognitive Dysfunction/pathology , Humans , Magnetic Resonance Spectroscopy , Oxidative Stress/physiology , SARS-CoV-2 , Survivors
16.
Pediatr Infect Dis J ; 41(1): e16-e18, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1447655

ABSTRACT

BACKGROUND: Coronavirus disease-2019 (COVID-19) is characterized predominantly by respiratory symptoms and has affected a small subset of children. Multisystem inflammatory syndrome in children (MIS-C) has been reported in children following COVID-19. There is increasing report that COVID-19 may also lead to neurologic manifestations. Cerebellar lesions may be observed in viral infections. CASE REPORT: We report a child with MIS-C related to severe acute respiratory syndrome coronavirus 2, who developed cerebellar lesion during the disease course. Encephalopathy was the first central nervous system symptom. His consciousness improved but he developed clinical signs of cerebellar dysfunction including ataxia, dysarthria and nystagmus. Brain magnetic resonance imaging (MRI) revealed symmetrical pathological signal changes in both cerebellar hemispheres. CONCLUSION: We demonstrated the first child with MIS-C to develop cerebellar lesion on brain MRI, suggestive of cerebellitis.


Subject(s)
Brain/diagnostic imaging , COVID-19/complications , COVID-19/diagnostic imaging , Cerebellar Diseases/diagnostic imaging , Brain Diseases/diagnostic imaging , COVID-19/physiopathology , Child, Preschool , Diagnostic Tests, Routine , Disease Progression , Humans , Magnetic Resonance Imaging/methods , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
17.
Brain Connect ; 11(7): 502-504, 2021 09.
Article in English | MEDLINE | ID: covidwho-1412259
18.
Eur J Med Genet ; 64(10): 104268, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1401450

ABSTRACT

Pathogenic variants in phosphatidylinositol glycan anchor biosynthesis class B (PIGB) gene have been first described as the cause of early infantile epileptic encephalopathy 80 (EIEE-80) in 2019. This disorder, an inherited glycosylphosphatidylinositol deficiency, is associated with a complex neurologic phenotype, including developmental delay, early-onset epilepsy and peripheral neuropathy. We report on a 5 year-old girl born from consanguineous parents, manifesting severe global developmental delay with absent speech, mixed peripheral polyneuropathy, hypotonia, bilateral equino-varo-supinated-cavus foot, early-onset scoliosis, elevated serum alkaline phosphatase and a single episode of febrile status epilepticus. Hypomyelination was documented on brain MRI. Whole-exome sequencing (WES) disclosed the likely pathogenic biallelic PIGB NM_004855.4: c.463G > C, p.(Asp155His) missense variant. In our patient, while other characteristic clinical, neuroimaging and laboratory findings (as described in the first research paper) were present, seizures were not a major clinical issue, thus contributing to our knowledge on this ultra-rare disorder.


Subject(s)
Brain/physiopathology , Developmental Disabilities/genetics , Epilepsy/genetics , Mannosyltransferases/genetics , Peripheral Nervous System Diseases/genetics , Brain/diagnostic imaging , Child , Developmental Disabilities/diagnosis , Electroencephalography , Epilepsy/diagnosis , Female , Humans , Mannosyltransferases/deficiency , Peripheral Nervous System Diseases/diagnosis , Whole Exome Sequencing
19.
Neurodegener Dis Manag ; 11(5): 387-409, 2021 10.
Article in English | MEDLINE | ID: covidwho-1394696

ABSTRACT

Teriflunomide, a once daily, oral disease-modifying therapy, has demonstrated consistent efficacy, safety and tolerability in patients with relapsing forms of multiple sclerosis (MS) and with a first clinical episode suggestive of MS treated up to 12 years. This review is an update to a previous version that examined data from the teriflunomide core clinical development program and extension studies. Data have since become available from active comparator trials with other disease-modifying therapies, treatment-related changes in brain volume (analyzed using structural image evaluation using normalization of atrophy) and real-world evidence including patient-reported outcomes. Initial data on the potential antiviral effects of teriflunomide in patients with MS, including case reports of patients infected with the 2019 novel coronavirus (SARS-CoV-2), are also presented.


Lay abstract Teriflunomide, a treatment taken orally once a day, has shown consistent effectiveness and safety in patients with relapsing forms of multiple sclerosis (MS). This review is an update to a previous version that summarized the trials from when teriflunomide was in clinical development for MS. Some of the newer studies described here compared teriflunomide with other MS treatments. Studies have shown positive effects of teriflunomide on brain volume; teriflunomide may also be effective against some viruses. People taking teriflunomide generally report stable cognition and quality of life, with no worsening of fatigue or disability. In the EU, teriflunomide has been recently approved for use in pediatric patients 10 years of age and above.


Subject(s)
Crotonates/therapeutic use , Hydroxybutyrates/therapeutic use , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Nitriles/therapeutic use , Toluidines/therapeutic use , Brain/diagnostic imaging , Brain/pathology , Humans , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Organ Size
SELECTION OF CITATIONS
SEARCH DETAIL
...