Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Nat Immunol ; 23(6): 960-970, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1873528

ABSTRACT

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Spike Glycoprotein, Coronavirus
3.
Structure ; 30(5): 707-720.e5, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1829569

ABSTRACT

Because of the evolutionary variants of SARS-CoV-2, development of broad-spectrum neutralizing antibodies resilient to virus escape is urgently needed. We identified a group of high-affinity nanobodies from camels immunized with receptor-binding domain (RBD) of SARS-CoV-2 spike protein and resolved the structures of two non-competing nanobodies (NB1A7 and NB1B11) in complex with RBD using X-ray crystallography. The structures show that NB1A7 targets the highly conserved cryptic epitope shared by SARS-CoV-2 variants and some other coronaviruses and blocks ACE2 receptor attachment of the spike protein, and NB1B11 epitope overlaps with the contacting surface of ACE2 and is different from the binding site of NB1A7. These two nanobodies were covalently linked into multivalent and bi-paratopic formats, which significantly improved the avidity and neutralization potency and may further inhibit viral escape. The results contribute to the structure-guided design of antibodies against future variants of SARS-CoV-2 virus to combat coronavirus epidemics and pandemics.


Subject(s)
COVID-19 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Epitopes/metabolism , Humans , Protein Binding , SARS-CoV-2/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/chemistry
4.
Signal Transduct Target Ther ; 7(1): 139, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1815514

ABSTRACT

The SARS-CoV-2 Omicron variant shows substantial resistance to neutralization by infection- and vaccination-induced antibodies, highlighting the demands for research on the continuing discovery of broadly neutralizing antibodies (bnAbs). Here, we developed a panel of bnAbs against Omicron and other variants of concern (VOCs) elicited by vaccination of adenovirus-vectored COVID-19 vaccine (Ad5-nCoV). We also investigated the human longitudinal antibody responses following vaccination and demonstrated how the bnAbs evolved over time. A monoclonal antibody (mAb), named ZWD12, exhibited potent and broad neutralization against SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa, Delta, and Omicron by blocking the spike protein binding to the angiotensin-converting enzyme 2 (ACE2) and provided complete protection in the challenged prophylactic and therapeutic K18-hACE2 transgenic mouse model. We defined the ZWD12 epitope by determining its structure in complex with the spike (S) protein via cryo-electron microscopy. This study affords the potential to develop broadly therapeutic mAb drugs and suggests that the RBD epitope bound by ZWD12 is a rational target for the design of a broad spectrum of vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal/genetics , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Cryoelectron Microscopy , Epitopes , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Envelope Proteins
5.
Trials ; 23(1): 263, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1779666

ABSTRACT

BACKGROUND: Antiretroviral therapy (ART) has led to dramatic improvements in survival for people living with HIV, but is unable to cure infection, or induce viral control off therapy. Designing intervention trials with novel agents with the potential to confer a period of HIV remission without ART remains a key scientific and community goal. We detail the rationale, design, and outcomes of a randomised, placebo-controlled trial of two HIV-specific long-acting broadly neutralising antibodies (bNAbs): 3BNC117-LS and 10-1074-LS, which target CD4 binding site and V3 loop respectively, on post-treatment viral control. METHODS: RIO is a randomised, placebo-controlled, double-blinded prospective phase II study. Eligible individuals will have started ART within 3 months of primary HIV infection and have viral sequences that appear to be sensitive to both bNAbs. It will randomise 72 eligible participants 1:1 to the following arms via a two-stage design. In Stage 1, arm A participants are given dual long-acting (LS-variants) bNAbs infusions, followed by intensively monitored Analytical Treatment Interruption (ATI) (n = 36); in arm B, participants receive placebo infusions followed by ATI. The primary endpoint will be time to viral rebound within 36 weeks after ATI. Upon viral rebound, the participant and researcher are unblinded. Participants in arm A recommence ART and complete the study. Participants in arm B are invited to restart ART and enroll into Stage 2 where they will receive open-label LS bNAbs, followed by a second ATI 24 weeks after. Secondary and exploratory endpoints include adverse events, time to undetectable viraemia after restarting ART, immunological markers, HIV proviral DNA, serum bNAb concentrations in blood, bNAb resistance at viral rebound, and quality of life measures. DISCUSSION: The two-stage design was determined in collaboration with community involvement. This design allows all participants the option to receive bNAbs. It also tests the hypothesis that bNAbs may drive sustained HIV control beyond the duration of detectable bNAb concentrations. Community representatives were involved at all stages. This included the two-stage design, discussion on the criteria to restart ART, frequency of monitoring visits off ART, and reducing the risk of onward transmission to HIV-negative partners. It also included responding to the challenges of COVID-19. TRIAL REGISTRATION: The protocol is registered on Clinical. TRIALS: gov and EudraCT and has approval from UK Ethics and MHRA.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Broadly Neutralizing Antibodies , Clinical Trials, Phase II as Topic , Community Participation , HIV Antibodies , HIV Infections/diagnosis , HIV Infections/drug therapy , Humans , Prospective Studies , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
6.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: covidwho-1774343

ABSTRACT

Coronavirus disease 2019 pandemic continues globally with a growing number of infections, but there are currently no effective antibody drugs against the virus. In addition, 90% amino acid sequence identity between the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV S proteins attracts us to examine S2-targeted cross-neutralizing antibodies that are not yet well defined. We therefore immunized RenMab mice with the full-length S protein and constructed a high-throughput antibody discovery method based on single-cell sequencing technology to isolate SARS-CoV-2 S-targeted neutralizing antibodies and cross-neutralizing antibodies against the S2 region of SARS-CoV-2/SARS-CoV S. Diversity of antibody sequences in RenMab mice and consistency in B-cell immune responses between RenMab mice and humans enabled screening of fully human virus-neutralizing antibodies. From all the frequency >1 paired clonotypes obtained from single-cell V(D)J sequencing, 215 antibodies with binding affinities were identified and primarily bound S2. However, only two receptor-binding domain-targeted clonotypes had neutralizing activity against SARS-CoV-2. Moreover, 5' single-cell RNA sequencing indicated that these sorted splenic B cells are mainly plasmablasts, germinal center (GC)-dependent memory B-cells and GC B-cells. Among them, plasmablasts and GC-dependent memory B-cells were considered the most significant possibility of producing virus-specific antibodies. Altogether, using a high-throughput single cell-based antibody discovery approach, our study highlighted the challenges of developing S2-binding neutralizing antibodies against SARS-CoV-2 and provided a novel direction for the enrichment of antigen-specific B-cells.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
7.
Front Immunol ; 13: 773652, 2022.
Article in English | MEDLINE | ID: covidwho-1742214

ABSTRACT

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. The emergence of variants of concern (VOCs) has become one of the most pressing issues in public health. To control VOCs, it is important to know which COVID-19 convalescent sera have cross-neutralizing activity against VOCs and how long the sera maintain this protective activity. Methods: Sera of patients infected with SARS-CoV-2 from March 2020 to January 2021 and admitted to Hyogo Prefectural Kakogawa Medical Center were selected. Blood was drawn from patients at 1-3, 3-6, and 6-8 months post onset. Then, a virus neutralization assay against SARS-CoV-2 variants (D614G mutation as conventional strain; B.1.1.7, P.1, and B.1.351 as VOCs) was performed using authentic viruses. Results: We assessed 97 sera from 42 patients. Sera from 28 patients showed neutralizing activity that was sustained for 3-8 months post onset. The neutralizing antibody titer against D614G significantly decreased in sera of 6-8 months post onset compared to those of 1-3 months post onset. However, the neutralizing antibody titers against the three VOCs were not significantly different among 1-3, 3-6, and 6-8 months post onset. Discussion: Our results indicate that neutralizing antibodies that recognize the common epitope for several variants may be maintained for a long time, while neutralizing antibodies having specific epitopes for a variant, produced in large quantities immediately after infection, may decrease quite rapidly.


Subject(s)
COVID-19/immunology , SARS-CoV-2/physiology , Aged , Antibodies, Viral/blood , Broadly Neutralizing Antibodies , Cross Reactions , Female , Humans , Immunity, Humoral , Immunodominant Epitopes/immunology , Male , Middle Aged , Time Factors
8.
MAbs ; 14(1): 2047144, 2022.
Article in English | MEDLINE | ID: covidwho-1740685

ABSTRACT

There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor-binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.Abbreviations: ACE2 - angiotensin converting enzyme 2BSA - buried surface areaCDR - complementary determining regionRBD - receptor binding domainRBM - receptor-binding motifSARS-CoV-2 - severe acute respiratory syndrome coronavirus 2.


Subject(s)
Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies/metabolism , COVID-19/immunology , Lung/pathology , SARS-CoV-2/physiology , Single-Domain Antibodies/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , Binding Sites/genetics , Broadly Neutralizing Antibodies/immunology , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , Nebulizers and Vaporizers , Protein Binding , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Load
9.
Sci Rep ; 12(1): 3954, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1740473

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Chemokines/blood , Cytokines/blood , Female , Humans , Male , Middle Aged , Patient Acuity , Young Adult
10.
Science ; 375(6579): 449-454, 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1723472

ABSTRACT

Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures against SARS-CoV-2 variants and future zoonotic sarbecoviruses. We describe the isolation and characterization of a human monoclonal antibody, designated S2K146, that broadly neutralizes viruses belonging to SARS-CoV- and SARS-CoV-2-related sarbecovirus clades which use ACE2 as an entry receptor. Structural and functional studies show that most of the virus residues that directly bind S2K146 are also involved in binding to ACE2. This allows the antibody to potently inhibit receptor attachment. S2K146 protects against SARS-CoV-2 Beta challenge in hamsters and viral passaging experiments reveal a high barrier for emergence of escape mutants, making it a good candidate for clinical development. The conserved ACE2-binding residues present a site of vulnerability that might be leveraged for developing vaccines eliciting broad sarbecovirus immunity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Betacoronavirus/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/metabolism , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/immunology , Cross Reactions , Cryoelectron Microscopy , Epitopes , Humans , Immune Evasion , Mesocricetus , Models, Molecular , Molecular Mimicry , Mutation , Protein Conformation , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
Proc Natl Acad Sci U S A ; 119(11): e2122954119, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1721790

ABSTRACT

SignificanceSARS-CoV-2 continues to evolve through emerging variants, more frequently observed with higher transmissibility. Despite the wide application of vaccines and antibodies, the selection pressure on the Spike protein may lead to further evolution of variants that include mutations that can evade immune response. To catch up with the virus's evolution, we introduced a deep learning approach to redesign the complementarity-determining regions (CDRs) to target multiple virus variants and obtained an antibody that broadly neutralizes SARS-CoV-2 variants.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/pharmacology , COVID-19 Vaccines/immunology , Complementarity Determining Regions , Deep Learning , Epitopes/immunology , Humans , Immunotherapy/methods , Neutralization Tests/methods , Protein Domains , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
12.
Cell Rep Med ; 3(2): 100531, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1679775

ABSTRACT

Antibodies against the influenza virus hemagglutinin stalk afford broad protection against antigenically drifted viruses. In this issue of Cell Reports Medicine, Yegorov et al.1 identify that current vaccine formulations induce neutralizing stalk antibodies in children-a highly vulnerable population.


Subject(s)
Influenza Vaccines , Influenza, Human , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies , Child , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Seasons , Vaccines, Attenuated
14.
J Clin Invest ; 132(4)2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1705312

ABSTRACT

Many SARS-CoV-2 neutralizing antibodies (nAbs) lose potency against variants of concern. In this study, we developed 2 strategies to produce mutation-resistant antibodies. First, a yeast library expressing mutant receptor binding domains (RBDs) of the spike protein was utilized to screen for potent nAbs that are least susceptible to viral escape. Among the candidate antibodies, P5-22 displayed ultrahigh potency for virus neutralization as well as an outstanding mutation resistance profile. Additionally, P14-44 and P15-16 were recognized as mutation-resistant antibodies with broad betacoronavirus neutralization properties. P15-16 has only 1 binding hotspot, which is K378 in the RBD of SARS-CoV-2. The crystal structure of the P5-22, P14-44, and RBD ternary complex clarified the unique mechanisms that underlie the excellent mutation resistance profiles of these antibodies. Secondly, polymeric IgG enhanced antibody avidity by eliminating P5-22's only hotspot, residue F486 in the RBD, thereby potently blocking cell entry by mutant viruses. Structural and functional analyses of antibodies screened using both potency assays and the yeast RBD library revealed rare, ultrapotent, mutation-resistant nAbs against SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody Affinity , B-Lymphocytes/immunology , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/blood , Broadly Neutralizing Antibodies/genetics , COVID-19/therapy , Cloning, Molecular , Disease Models, Animal , Humans , Immunization, Passive , Immunoglobulin G/immunology , In Vitro Techniques , Lung/virology , Mice , Mice, Inbred BALB C , Mutation , Neutralization Tests , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
Virol Sin ; 37(2): 238-247, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1692813

ABSTRACT

Multiple new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have constantly emerged, as the delta and omicron variants, which have developed resistance to currently gained neutralizing antibodies. This highlights a critical need to discover new therapeutic agents to overcome the variants mutations. Despite the availability of vaccines against coronavirus disease 2019 (COVID-19), the use of broadly neutralizing antibodies has been considered as an alternative way for the prevention or treatment of SARS-CoV-2 variants infection. Here, we show that the nasal delivery of two previously characterized broadly neutralizing antibodies (F61 and H121) protected K18-hACE2 mice against lethal challenge with SARS-CoV-2 variants. The broadly protective efficacy of the F61 or F61/F121 cocktail antibodies was evaluated by lethal challenge with the wild strain (WIV04) and multiple variants, including beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) at 200 or 1000 TCID50, and the minimum antibody administration doses (5-1.25 â€‹mg/kg body weight) were also evaluated with delta and omicron challenge. Fully prophylactic protections were found in all challenged groups with both F61 and F61/H121 combination at the administration dose of 20 â€‹mg/kg body weight, and corresponding mice lung viral RNA showed negative, with almost all alveolar septa and cavities remaining normal. Furthermore, low-dose antibody treatment induced significant prophylactic protection against lethal challenge with delta and omicron variants, whereas the F61/H121 combination showed excellent results against omicron infection. Our findings indicated the potential use of broadly neutralizing monoclonal antibodies as prophylactic and therapeutic agent for protection of current emerged SARS-CoV-2 variants infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Body Weight , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
Nat Commun ; 13(1): 871, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692611

ABSTRACT

The SARS-CoV-2 Delta variant is currently the dominant circulating strain in the world. Uncovering the structural basis of the enhanced transmission and altered immune sensitivity of Delta is particularly important. Here we present cryo-EM structures revealing two conformational states of Delta spike and S/ACE2 complex in four states. Our cryo-EM analysis suggests that RBD destabilizations lead to population shift towards the more RBD-up and S1 destabilized fusion-prone state, beneficial for engagement with ACE2 and shedding of S1. Noteworthy, we find the Delta T478K substitution plays a vital role in stabilizing and reshaping the RBM loop473-490, enhancing interaction with ACE2. Collectively, increased propensity for more RBD-up states and the affinity-enhancing T478K substitution together contribute to increased ACE2 binding, providing structural basis of rapid spread of Delta. Moreover, we identify a previously generated MAb 8D3 as a cross-variant broadly neutralizing antibody and reveal that 8D3 binding induces a large K478 side-chain orientation change, suggesting 8D3 may use an "induced-fit" mechanism to tolerate Delta T478K mutation. We also find that all five RBD-targeting MAbs tested remain effective on Delta, suggesting that Delta well preserves the neutralizing antigenic landscape in RBD. Our findings shed new lights on the pathogenicity and antibody neutralization of Delta.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , COVID-19/transmission , Protein Domains/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution/genetics , Antibodies, Viral/immunology , Binding Sites , Broadly Neutralizing Antibodies/immunology , Cryoelectron Microscopy , Humans , Immunoglobulin Fab Fragments/immunology , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
17.
Sci Rep ; 12(1): 2594, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1692553

ABSTRACT

Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.


Subject(s)
Antibodies, Monoclonal/metabolism , Broadly Neutralizing Antibodies/metabolism , HIV Antibodies/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Models, Immunological , SARS-CoV-2/immunology , Animals , Dogs , Drug Repositioning , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/metabolism , Madin Darby Canine Kidney Cells , Molecular Targeted Therapy , Neutralization Tests , Polysaccharides/metabolism
19.
Adv Sci (Weinh) ; 9(11): e2105378, 2022 04.
Article in English | MEDLINE | ID: covidwho-1680239

ABSTRACT

The SARS-CoV-2 Delta (B.1.617.2) strain is a variant of concern (VOC) that has become the dominant strain worldwide in 2021. Its transmission capacity is approximately twice that of the original strain, with a shorter incubation period and higher viral load during infection. Importantly, the breakthrough infections of the Delta variant have continued to emerge in the first-generation vaccine recipients. There is thus an urgent need to develop a novel vaccine with SARS-CoV-2 variants as the major target. Here, receptor binding domain (RBD)-conjugated nanoparticle vaccines targeting the Delta variant, as well as the early and Beta/Gamma strains, are developed. Under both a single-dose and a prime-boost strategy, these RBD-conjugated nanoparticle vaccines induce the abundant neutralizing antibodies (NAbs) and significantly protect hACE2 mice from infection by the authentic SARS-CoV-2 Delta strain, as well as the early and Beta strains. Furthermore, the elicitation of the robust production of broader cross-protective NAbs against almost all the notable SARS-CoV-2 variants including the Omicron variant in rhesus macaques by the third re-boost with trivalent vaccines is found. These results suggest that RBD-based monovalent or multivalent nanoparticle vaccines provide a promising second-generation vaccine strategy for SARS-CoV-2 variants.


Subject(s)
COVID-19 , Nanoparticles , Animals , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Macaca mulatta/metabolism , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Conjugate
20.
J Struct Biol ; 214(1): 107839, 2022 03.
Article in English | MEDLINE | ID: covidwho-1668920

ABSTRACT

The antigenic epitope regions of pathogens (e.g., viruses) are recognized by antibodies (Abs) and subsequently cleared by the host immune system, thereby protecting us from disease. Some of these epitopes are conserved among different variants or subgroups of pathogens (e.g., Influenza (FLU) viruses, Coronaviruses), hence can be targeted for potential broad-neutralization. Here we report a web-based tool, Epitope Analyzer (EA), that rapidly identifies conformational epitope and paratope residues in an antigen-antibody complex structure. Furthermore, the tool provides the ways and means to analyze broadly neutralizing epitopes by comparing the equivalent epitope residues in similar antigen structures. The similarity in the epitope residues between (multiple) pairs of similar antigen molecules suggest the presence of conserved epitopes that can be targeted by broadly neutralizing antibodies. These details can be used as a guide in developing effective treatments, such as the design of novel vaccines and formulation of cocktail of broadly neutralizing antibodies, against multiple variants or subgroups of viruses. The web application can be freely accessed from the URL, http://viperdb.scripps.edu/ea.php.


Subject(s)
Antibodies, Neutralizing , Influenza, Human , Broadly Neutralizing Antibodies , Epitopes/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL