Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Allergy Clin Immunol ; 146(2): 315-324.e7, 2020 08.
Article in English | MEDLINE | ID: covidwho-592253

ABSTRACT

BACKGROUND: More than 300 million people carry a diagnosis of asthma, with data to suggest that they are at a higher risk for infection or adverse outcomes from severe acute respiratory syndrome coronavirus 2. Asthma is remarkably heterogeneous, and it is currently unclear how patient-intrinsic factors may relate to coronavirus disease 2019. OBJECTIVE: We sought to identify and characterize subsets of patients with asthma at increased risk for severe acute respiratory syndrome coronavirus 2 infection. METHODS: Participants from 2 large asthma cohorts were stratified using clinically relevant parameters to identify factors related to angiotensin-converting enzyme-2 (ACE2) expression within bronchial epithelium. ACE-2-correlated gene signatures were used to interrogate publicly available databases to identify upstream signaling events and novel therapeutic targets. RESULTS: Stratifying by type 2 inflammatory biomarkers, we identified subjects who demonstrated low peripheral blood eosinophils accompanied by increased expression of the severe acute respiratory syndrome coronavirus 2 receptor ACE2 in bronchial epithelium. Genes highly correlated with ACE2 overlapped with type 1 and 2 IFN signatures, normally induced by viral infections. T-cell recruitment and activation within bronchoalveolar lavage cells of ACE2-high subjects was reciprocally increased. These patients demonstrated characteristics corresponding to risk factors for severe coronavirus disease 2019, including male sex, history of hypertension, low peripheral blood, and elevated bronchoalveolar lavage lymphocytes. CONCLUSIONS: ACE2 expression is linked to upregulation of viral response genes in a subset of type 2-low patients with asthma with characteristics resembling known risk factors for severe coronavirus disease 2019. Therapies targeting the IFN family and T-cell-activating factors may therefore be of benefit in a subset of patients.


Subject(s)
Asthma/epidemiology , Asthma/genetics , Coronavirus Infections/epidemiology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Receptors, Virus/genetics , Adolescent , Adult , Asthma/classification , Asthma/immunology , Betacoronavirus/genetics , Betacoronavirus/immunology , Biomarkers/metabolism , Bronchi/immunology , Bronchi/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cohort Studies , Coronavirus Infections/virology , Eosinophils/immunology , Eosinophils/pathology , Female , Gene Expression Profiling , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Male , Middle Aged , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/virology , Protein Interaction Mapping , Receptors, Virus/immunology , Risk Factors , Severity of Illness Index , T-Lymphocytes/classification , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Transcriptome , United States/epidemiology
2.
J Renin Angiotensin Aldosterone Syst ; 21(2): 1470320320928872, 2020.
Article in English | MEDLINE | ID: covidwho-543313

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus family member that triggers a respiratory disease similar to severe acute respiratory syndrome coronavirus (SARS-CoV). SARS-CoV and SARS-CoV-2 are very similar to each other in many respects, such as structure, genetics, and pathobiology. We hypothesized that coronaviruses could affect pulmonary tissues via integration with the critical immune genes after their interaction with renin-angiotensin system (RAS) elements. The aim of the present bioinformatics study was to assess expression changes of the RAS and non-RAS genes, particularly immune response genes, in the lung epithelial cells after infection with SARS-CoV. METHODS: Linear regression, hierarchical clustering, pathway analysis, and network analysis were performed using the E-GEOD-17400 data set. RESULTS: The whole-genome expression data of the lung epithelial cells infected with SARS-CoV for 12, 24, and 48 hours were analyzed, and a total of 15 RAS family and 29 immune genes were found to be highly correlated with the exposure time to the virus in the studied groups. CONCLUSION: RAS genes are important at the initiation of the infections caused by coronavirus family members and may have a strong relationship with the exchange of immune genes in due course following the infection.


Subject(s)
Betacoronavirus/physiology , Bronchi/pathology , Coronavirus Infections/genetics , Epithelial Cells/metabolism , Epithelial Cells/virology , Inflammation/genetics , Pneumonia, Viral/genetics , Renin-Angiotensin System/genetics , Cluster Analysis , Gene Expression Regulation , Gene Regulatory Networks , Genome, Human , Humans , Inflammation/pathology , Linear Models , Pandemics , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Nature ; 583(7818): 834-838, 2020 07.
Article in English | MEDLINE | ID: covidwho-261141

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Lung/virology , Mesocricetus/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Aerosols , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , Coronavirus Infections/immunology , Duodenum/virology , Fomites/virology , Housing, Animal , Kidney/virology , Male , Mesocricetus/immunology , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/immunology , RNA, Viral/analysis , Viral Load , Weight Loss
4.
Nature ; 583(7818): 830-833, 2020 07.
Article in English | MEDLINE | ID: covidwho-220333

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/virology , Lung/pathology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Transgenes , Animals , Antigens, Viral/immunology , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , Coronavirus Infections/immunology , Disease Models, Animal , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immunoglobulin G/immunology , Lung/immunology , Lung/virology , Lymphocytes/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Male , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/immunology , Receptors, Complement 3d/genetics , Receptors, Complement 3d/metabolism , Virus Replication , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL