ABSTRACT
Introduction: The nonstructural protein 12 (NSP12) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has a high sequence identity with common cold coronaviruses (CCC). Methods: Here, we comprehensively assessed the breadth and specificity of the NSP12-specific T-cell response after in vitro T-cell expansion with 185 overlapping 15-mer peptides covering the entire SARS-CoV-2 NSP12 at single-peptide resolution in a cohort of 27 coronavirus disease 2019 (COVID-19) patients. Samples of nine uninfected seronegative individuals, as well as five pre-pandemic controls, were also examined to assess potential cross-reactivity with CCCs. Results: Surprisingly, there was a comparable breadth of individual NSP12 peptide-specific CD4+ T-cell responses between COVID-19 patients (mean: 12.82 responses; range: 0-25) and seronegative controls including pre-pandemic samples (mean: 12.71 responses; range: 0-21). However, the NSP12-specific T-cell responses detected in acute COVID-19 patients were on average of a higher magnitude. The most frequently detected CD4+ T-cell peptide specificities in COVID-19 patients were aa236-250 (37%) and aa246-260 (44%), whereas the peptide specificities aa686-700 (50%) and aa741-755 (36%), were the most frequently detected in seronegative controls. In CCC-specific peptide-expanded T-cell cultures of seronegative individuals, the corresponding SARS-CoV-2 NSP12 peptide specificities also elicited responses in vitro. However, the NSP12 peptide-specific CD4+ T-cell response repertoire only partially overlapped in patients analyzed longitudinally before and after a SARS-CoV-2 infection. Discussion: The results of the current study indicate the presence of pre-primed, cross-reactive CCC-specific T-cell responses targeting conserved regions of SARS-CoV-2, but they also underline the complexity of the analysis and the limited understanding of the role of the SARS-CoV-2 specific T-cell response and cross-reactivity with the CCCs.
Subject(s)
COVID-19 , Common Cold , Humans , CD4-Positive T-Lymphocytes , Peptides , SARS-CoV-2 , T-LymphocytesABSTRACT
An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.
Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virologyABSTRACT
OBJECTIVES: Monitoring of SARS-CoV-2 spread and vaccination strategies have relied on antibody (Ab) status as a correlate of protection. We used QuantiFERON™ (QFN) and Activation-Induced Marker (AIM) assays to measure memory T-cell reactivity in unvaccinated individuals with prior documented symptomatic infection (late convalescents) and fully vaccinated asymptomatic donors (vaccinees). METHODS: Twenty-two convalescents and 13 vaccinees were enrolled. Serum anti-SARS-CoV-2 S1 and N Abs were measured using chemiluminescent immunoassays. QFN was performed following instructions and interferon-gamma (IFN-γ) measured by ELISA. AIM was performed on aliquots of antigen-stimulated samples from QFN tubes. SARS-CoV-2-specific memory CD4+CD25+CD134+, CD4+CD69+CD137+ and CD8+CD69+CD137+ T-cell frequencies were measured by flow cytometry. RESULTS: In convalescents, substantial agreement was observed between QFN and AIM assays. IFN-γ concentrations and AIM+ (CD69+CD137+) CD4+ T-cell frequencies correlated with each other, with Ab levels and AIM+ CD8+ T-cell frequencies, whereas AIM+ (CD25+CD134+) CD4+ T-cell frequencies correlated with age. AIM+ CD4+ T-cell frequencies increased with time since infection, whereas AIM+ CD8+ T-cell expansion was greater after recent reinfection. QFN-reactivity and anti-S1 titers were lower, whereas anti-N titers were higher, and no statistical difference in AIM-reactivity and Ab positivity emerged compared to vaccinees. CONCLUSIONS: Albeit on a limited sample size, we confirm that coordinated, cellular and humoral responses are detectable in convalescents up to 2 years after prior infection. Combining QFN with AIM may enhance detection of naturally acquired memory responses and help stratify virus-exposed individuals in T helper 1-type (TH1)-reactive (QFNpos AIMpos Abshigh), non-TH1-reactive (QFNneg AIMpos Abshigh/low), and pauci-reactive (QFNneg AIMneg Abslow).
Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Interferon-gammaABSTRACT
BACKGROUND: Idiopathic CD4 lymphocytopenia (ICL) is a clinical syndrome that is defined by CD4 lymphopenia of less than 300 cells per cubic millimeter in the absence of any primary or acquired cause of immunodeficiency. Some 30 years after its original identification, ICL has remained a disease of obscure cause, with limited evidence with respect to its prognosis or management, despite diagnostic and therapeutic innovations. METHODS: We evaluated the clinical, genetic, immunologic, and prognostic characteristics of 108 patients who were enrolled during an 11-year period. We performed whole-exome and targeted gene sequencing to identify genetic causes of lymphopenia. We also performed longitudinal linear mixed-model analyses of T-cell count trajectories and evaluated predictors of clinical events, the response to immunization against coronavirus disease 2019 (Covid-19), and mortality. RESULTS: After the exclusion of patients with genetic and acquired causes of CD4 lymphopenia, the study population included 91 patients with ICL during 374 person-years of follow-up. The median CD4+ T-cell count among the patients was 80 cells per cubic millimeter. The most prevalent opportunistic infections were diseases related to human papillomavirus (in 29%), cryptococcosis (in 24%), molluscum contagiosum (in 9%), and nontuberculous mycobacterial diseases (in 5%). A reduced CD4 count (<100 cells per cubic millimeter), as compared with a CD4 count of 101 to 300 cells, was associated with a higher risk of opportunistic infection (odds ratio, 5.3; 95% confidence interval [CI], 2.8 to 10.7) and invasive cancer (odds ratio, 2.1; 95% CI, 1.1 to 4.3) and a lower risk of autoimmunity (odds ratio, 0.5; 95% CI, 0.2 to 0.9). The risk of death was similar to that in the age- and sex-adjusted general population, but the prevalence of cancer was higher. CONCLUSIONS: Among the study patients, ICL continued to be associated with increased susceptibility to viral, encapsulated fungal, and mycobacterial diseases, as well as with a reduced response to novel antigens and an increased risk of cancer. (Funded by the National Institute of Allergy and Infectious Diseases and the National Cancer Institute; ClinicalTrials.gov number, NCT00867269.).
Subject(s)
COVID-19 , Immunologic Deficiency Syndromes , Lymphopenia , Opportunistic Infections , Primary Immunodeficiency Diseases , Humans , COVID-19/complications , Immunologic Deficiency Syndromes/complications , Lymphopenia/etiology , CD4-Positive T-Lymphocytes , CD4 Lymphocyte Count , Primary Immunodeficiency Diseases/complicationsABSTRACT
BACKGROUND: Clinical and laboratory signs of hyperinflammatory response in COVID-19 may serve as prognostic markers of the disease scenario. In real-world practice, there is an unmet need to determine the optimal timing of identifying predictors of SARS-CoV-2 adverse outcomes in the context of patient stratification to improve the effectiveness of anti-IL-6R therapy. Lymphopenia has a high informative value for the adverse prognosis of the COVID-19 course; however, the informative value of CD3+CD4+, CD3+CD8+ T-cell count remains questionable. In addition to lymphocyte phenotyping, a six-criterion additive scale (cHIS) was used in the study. AIM: To study the informative value of CD3+CD4+, CD3+CD8+ T-cell phenotyping and cHIS scale as predictors of severe COVID-19 when using IL-6R blockers. MATERIALS AND METHODS: A single-center, bi-directional study included 179 patients with SARS-CoV-2-induced community-acquired pneumonia with severe acute inflammation and progressing respiratory failure. Data were obtained from electronic patient records. Anti-IL-6R was administered in addition to standard therapy in the cohorts. The following disease outcomes were used to determine the informative value of the studied parameters: mortality and hospital discharge. Inflammatory markers were measured before and after administering anti-IL-6R, followed by monitoring. Statistical analysis was performed using SPSS (version 25.0). The quantitative indices were described using the median and interquartile range. Quantitative indices were compared using nonparametric methods: Mann-Whitney U-test, Kruskal-Wallis test. The groups were compared by qualitative characteristics using Pearson's chi-square test. Correlation analysis of quantitative indicators was performed using Spearman rank correlation. For additional analysis of the cHIS scale, odds ratio and decision tree methods were used. Differences were considered statistically significant at Ñ≤0,05. RESULTS: Immunophenotyping of lymphocytes as a predictor of the severe SARS-CoV-2 requires further research. The cHIS scale may be implemented in routine clinical practice due to its high predictive value. A cHIS score of ≥2 on the first day of admission is a critical threshold for intensification and revision of therapy. The prognosis with cHIS is logically relevant in the first three days of hospitalization. CONCLUSION: The main result of the study is the definition of target groups of patients with community-acquired SARS-CoV-2 pneumonia for the IL-6R-blockers, considering the timing of their effective use in real clinical practice.
Subject(s)
COVID-19 , Receptors, Interleukin-6 , Humans , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/diagnosis , Hospitals , Receptors, Interleukin-6/antagonists & inhibitors , SARS-CoV-2 , Lymphocyte CountABSTRACT
Introduction: Although children seem to be less susceptible to COVID-19, some of them develop a rare but serious hyperinflammatory condition called multisystem inflammatory syndrome in children (MIS-C). While several studies describe the clinical conditions of acute MIS-C, the status of convalescent patients in the months after acute MIS-C is still unclear, especially the question of persistence of changes in the specific subpopulations of immune cells in the convalescent phase of the disease. Methods: We therefore analyzed peripheral blood of 14 children with MIS-C at the onset of the disease (acute phase) and 2 to 6 months after disease onset (post-acute convalescent phase) for lymphocyte subsets and antigen-presenting cell (APC) phenotype. The results were compared with six healthy age-matched controls. Results: All major lymphocyte populations (B cells, CD4 + and CD8+ T cells, and NK cells) were decreased in the acute phase and normalized in the convalescent phase. T cell activation was increased in the acute phase, followed by an increased proportion of γ/δ-double-negative T cells (γ/δ DN Ts) in the convalescent phase. B cell differentiation was impaired in the acute phase with a decreased proportion of CD21 expressing, activated/memory, and class-switched memory B cells, which normalized in the convalescent phase. The proportion of plasmacytoid dendritic cells, conventional type 2 dendritic cells, and classical monocytes were decreased, while the proportion of conventional type 1 dendritic cells was increased in the acute phase. Importantly the population of plasmacytoid dendritic cells remained decreased in the convalescent phase, while other APC populations normalized. Immunometabolic analysis of peripheral blood mononuclear cells (PBMCs) in the convalescent MIS-C showed comparable mitochondrial respiration and glycolysis rates to healthy controls. Conclusions: While both immunophenotyping and immunometabolic analyzes showed that immune cells in the convalescent MIS-C phase normalized in many parameters, we found lower percentage of plasmablasts, lower expression of T cell co-receptors (CD3, CD4, and CD8), an increased percentage of γ/δ DN Ts and increased metabolic activity of CD3/CD28-stimulated T cells. Overall, the results suggest that inflammation persists for months after the onset of MIS-C, with significant alterations in some immune system parameters, which may also impair immune defense against viral infections.
Subject(s)
CD4-Positive T-Lymphocytes , COVID-19 , Humans , Immunophenotyping , Leukocytes, Mononuclear , Follow-Up Studies , COVID-19/metabolism , MetabolomeABSTRACT
BACKGROUND: Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a zoonotic betacoronavirus. The development of effective vaccines and control measures requires a thorough understanding of the immune response to this viral infection. METHODS: We investigated cellular immune responses up to 5 years after infection in a cohort of 59 MERS survivors by performing enzyme-linked immunospot assay and intracellular cytokine staining after stimulation of peripheral blood mononuclear cells with synthetic viral peptides. RESULTS: Memory T-cell responses were detected in 82%, 75%, 69%, 64%, and 64% of MERS survivors from 1-5 years post-infection, respectively. Although the frequency of virus-specific interferon gamma (IFN-γ)-secreting T cells tended to be higher in moderately/severely ill patients than in mildly ill patients during the early period of follow-up, there was no significant difference among the different clinical severity groups across all time points. While both CD4+ and CD8+ T cells were involved in memory T-cell responses, CD4+ T cells persisted slightly longer than CD8+ T cells. Both memory CD4+ and CD8+ T cells recognized the E/M/N proteins better than the S protein and maintained their polyfunctionality throughout the period examined. Memory T-cell responses correlated positively with antibody responses during the initial 3-4 years but not with maximum viral loads at any time point. CONCLUSIONS: These findings advance our understanding of the dynamics of virus-specific memory T-cell immunity after MERS-coronavirus infection, which is relevant to the development of effective T cell-based vaccines.
Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Immunologic Memory , Leukocytes, Mononuclear , Memory T Cells , SurvivorsABSTRACT
Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vß21.3 T cell receptor ß chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vß21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vß21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Adult , Child , Child, Preschool , Cytokines/blood , HLA-DR Antigens/immunology , Humans , Lymphocyte Activation/immunology , SARS-CoV-2/immunologyABSTRACT
BACKGROUND: Information regarding the heterologous prime-boost COVID vaccination has been fully elucidated. The study aimed to evaluate both humoral, cellular immunity and cross-reactivity against variants after heterologous vaccination. METHODS: We recruited healthcare workers previously primed with Oxford/AstraZeneca ChAdOx1-S vaccines and boosted with Moderna mRNA-1273 vaccine boost to evaluate the immunological response. Assay used: anti-spike RBD antibody, surrogate virus neutralizing antibody and interferon-γ release assay. RESULTS: All participants exhibited higher humoral and cellular immune response after the booster regardless of prior antibody level, but those with higher antibody level demonstrated stronger booster response, especially against omicron BA.1 and BA.2 variants. The pre-booster IFN-γ release by CD4+ T cells correlates with post-booster neutralizing antibody against BA.1 and BA.2 variant after adjustment with age and gender. CONCLUSIONS: A heterologous mRNA boost is highly immunogenic. The pre-existing neutralizing antibody level and CD4+ T cells response correlates with post-booster neutralization reactivity against the Omicron variant.
Subject(s)
COVID-19 , Immunity, Humoral , Humans , T-Lymphocytes , 2019-nCoV Vaccine mRNA-1273 , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , CD4-Positive T-Lymphocytes , Antibodies, ViralABSTRACT
Safety profiles and humoral responses to inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been previously assessed, but cellular immune responses to inactivated SARS-CoV-2 vaccines remain understudied. Here, we report the comprehensive characteristics of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses elicited by the BBIBP-CorV vaccine. A total of 295 healthy adults were recruited, and SARS-CoV-2-specific T-cell responses were detected after stimulation with overlapping peptide pools spanning the entire length of the envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins. Robust and durable CD4+ (p < 0.0001) and CD8+ (p < 0.0001) T-cell responses specific to SARS-CoV-2 were detected following the third vaccination, with an increase in specific CD8+ T-cells, compared to CD4+ T-cells. Cytokine profiles showed that interferon gamma and tumor necrosis factor-α were predominantly expressed with the negligible expression of interleukin (IL)-4 and IL-10, indicating a Th1- or Tc1-biased response. Compared to E and M proteins, N and S activated a higher proportion of specific T-cells with broader functions. The predominant frequency of the N antigen (49/89) was highest for CD4+ T-cell immunity. Furthermore, N19-36 and N391-408 were identified to contain dominant CD8+ and CD4+ T-cell epitopes, respectively. In addition, N19-36 -specific CD8+ T-cells were mainly effector memory CD45RA cells, whereas N391-408 -specific CD4+ T-cells were mainly effector memory cells. Therefore, this study reports comprehensive features of T-cell immunity induced by the inactivated SARS-CoV-2 vaccine BBIBP-CorV and proposes highly conserved candidate peptides which may be beneficial in vaccine optimization.
Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , CD8-Positive T-Lymphocytes , SARS-CoV-2 , CD4-Positive T-Lymphocytes , COVID-19/prevention & control , Peptides , Vaccines, InactivatedABSTRACT
Although CD4+CD25+FOXP3+ regulatory T (TREG) cells have been studied in patients with COVID-19, changes in the TREG cell population have not been longitudinally examined during the course of COVID-19. In this study, we longitudinally investigated the quantitative and qualitative changes in the TREG cell population in patients with COVID-19. We found that the frequencies of total TREG cells and CD45RA-FOXP3hi activated TREG cells were significantly increased 15-28 d postsymptom onset in severe patients, but not in mild patients. TREG cells from severe patients exhibited not only increased proliferation but also enhanced apoptosis, suggesting functional derangement of the TREG cell population during severe COVID-19. The suppressive functions of the TREG cell population did not differ between patients with severe versus mild COVID-19. The frequency of TREG cells inversely correlated with SARS-CoV-2-specific cytokine production by CD4+ T cells and their polyfunctionality in patients with mild disease, suggesting that TREG cells are major regulators of virus-specific CD4+ T cell responses during mild COVID-19. However, such correlations were not observed in patients with severe disease. Thus, in this study, we describe distinctive changes in the TREG cell population in patients with severe and mild COVID-19. Our study provides a deep understanding of host immune responses upon SARS-CoV-2 infection in regard to TREG cells.
Subject(s)
COVID-19 , T-Lymphocytes, Regulatory , Humans , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Interleukin-2 Receptor alpha Subunit , Forkhead Transcription FactorsABSTRACT
Background: The response to vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) varies depending on comorbidities. This study evaluated the clinical and immunological factors affecting the humoral response of patients with end-stage renal disease (ESRD) to the BNT162b2 vaccine. Methods: Humoral immunity was evaluated in 54 ESRD patients using serum levels of anti-receptor-binding domain (RBD) and neutralizing antibodies (NAbs), measured by a chemiluminescent immunoassay 30 (T1), 60 (T2), and 120 (T3) days after the second vaccine dose. The results were correlated to baseline patient T- and B-lymphocyte subpopulations determined by flow cytometry. Results: The proportion of seroconverted patients based on the NAb titer decreased from 83.3% at T1 to 53.7% at T3. Age was negatively correlated to the NAb titer at T1 and T2. Patients receiving hemodiafiltration had higher NAb titers at T3. Diabetes was associated with a lower response rate at T3. Univariate analysis revealed a positive correlation between the naïve CD4 T-lymphocyte population and RBD titer at T1 and the NAb titer at T3, with no association observed with naïve CD8 T lymphocytes. NAb titers at T3 were significantly correlated with late-differentiated CD4 T lymphocytes and terminally differentiated effector memory cells re-expressing CD45RA (TEMRA) CD8 T lymphocytes. RBD levels were positively correlated with naïve and memory B-lymphocyte counts at T3. Conclusions: Age, diabetes, and hemodialysis prescription had significant impacts on the response to vaccination. T- and B-lymphocyte phenotypes are major determinants of the humoral response potency to SARS-CoV-2 vaccination with BNT162b2 in patients with ESRD.
Subject(s)
COVID-19 , Kidney Failure, Chronic , Humans , Renal Dialysis , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19/prevention & control , Kidney Failure, Chronic/therapy , Vaccination , CD4-Positive T-Lymphocytes , Antibodies, ViralABSTRACT
Lymphocytes are the main orchestrators that regulate the immune response in SARS-COV-2 infection. The exhaustion of T lymphocytes is a contributing factor to lymphopenia, which is responsible for the COVID-19 adverse outcome. However, it is still not demonstrated on a large scale, including cancer patients. Peripheral blood samples were obtained from 83 SARS-CoV2 infected cancer patients, and 29 COVID-19 infected noncancer patients compared to 28 age-matched healthy controls. Lymphocyte subsets were assessed for CD3, CD4, CD8, CD56, PD-1, and CD95 using flow cytometry. The data were correlated to the patients' clinical features, COVID-19 severity and outcomes. Lymphopenia, and decreased CD4+ T cells and CD8+ T cells were significantly observed in COVID-19 cancer and noncancer patients compared to the control group (p < 0.001, for all). There was a significantly increased expression of CD95 and PD-1 on the NK cells, CD4+ T cells, and CD8+ T cells in COVID-19 cancer and noncancer patients in comparison to the control group. The increased expression of CD95 on CD8+ T cells, as well as the increased expression of PD-1 on CD8+ T cells and NK cells are significantly associated with the severity of COVID-19 infection in cancer patients. The increased expression of CD95 and PD-1 on the CD4+ T cells, CD8+ T cells, and NK cells was observed significantly in nonsurviving patients and those who were admitted to the intensive care unit in COVID-19 cancer and noncancer patients. The increased expression of PD-1 and CD95 could be possible prognostic factors for COVID-19 severity and adverse outcomes in COVID-19 cancer and noncancer patients.
Subject(s)
COVID-19 , Lymphopenia , Neoplasms , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Lymphocyte Subsets , Lymphopenia/metabolism , Neoplasms/complications , Neoplasms/metabolism , Programmed Cell Death 1 Receptor , RNA, Viral/metabolism , SARS-CoV-2 , T-Lymphocyte SubsetsABSTRACT
The emergence of SARS-CoV-2 variants with evidence of antibody escape highlight the importance of addressing whether the total CD4+ and CD8+ T cell recognition is also affected. Here, we compare SARS-CoV-2-specific CD4+ and CD8+ T cells against the B.1.1.7, B.1.351, P.1, and CAL.20C lineages in COVID-19 convalescents and in recipients of the Moderna (mRNA-1273) or Pfizer/BioNTech (BNT162b2) COVID-19 vaccines. The total reactivity against SARS-CoV-2 variants is similar in terms of magnitude and frequency of response, with decreases in the 10%-22% range observed in some assay/VOC combinations. A total of 7% and 3% of previously identified CD4+ and CD8+ T cell epitopes, respectively, are affected by mutations in the various VOCs. Thus, the SARS-CoV-2 variants analyzed here do not significantly disrupt the total SARS-CoV-2 T cell reactivity; however, the decreases observed highlight the importance for active monitoring of T cell reactivity in the context of SARS-CoV-2 evolution.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Young AdultSubject(s)
Acidosis/immunology , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/immunology , Immunity, Cellular/immunology , Pulmonary Ventilation , Renin-Angiotensin System/immunology , Acid-Base Equilibrium , Acidosis/chemically induced , Acidosis/metabolism , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , CD4-Positive T-Lymphocytes/immunology , COVID-19/metabolism , Cytokine Release Syndrome/immunology , Glucocorticoids/immunology , Glucocorticoids/metabolism , Histocompatibility Antigens Class I/immunology , Humans , Hypertension/drug therapy , Killer Cells, Natural/immunology , Natural Killer T-Cells/immunology , Renal Elimination , Renin-Angiotensin System/physiology , SARS-CoV-2/metabolism , T-Lymphocytes, Cytotoxic/immunologyABSTRACT
Pre-existing SARS-CoV-2-reactive T cells have been identified in SARS-CoV-2-unexposed individuals, potentially modulating COVID-19 and vaccination outcomes. Here, we provide evidence that functional cross-reactive memory CD4+ T cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is established in early childhood, mirroring early seroconversion with seasonal human coronavirus OC43. Humoral and cellular immune responses against OC43 and SARS-CoV-2 were assessed in SARS-CoV-2-unexposed children (paired samples at age two and six) and adults (age 26 to 83). Pre-existing SARS-CoV-2-reactive CD4+ T cell responses targeting spike, nucleocapsid, and membrane were closely linked to the frequency of OC43-specific memory CD4+ T cells in childhood. The functional quality of the cross-reactive memory CD4+ T cell responses targeting SARS-CoV-2 spike, but not nucleocapsid, paralleled OC43-specific T cell responses. OC43-specific antibodies were prevalent already at age two. However, they did not increase further with age, contrasting with the antibody magnitudes against HKU1 (ß-coronavirus), 229E and NL63 (α-coronaviruses), rhinovirus, Epstein-Barr virus (EBV), and influenza virus, which increased after age two. The quality of the memory CD4+ T cell responses peaked at age six and subsequently declined with age, with diminished expression of interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF), and CD38 in late adulthood. Age-dependent qualitative differences in the pre-existing SARS-CoV-2-reactive T cell responses may reflect the ability of the host to control coronavirus infections and respond to vaccination.
Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Child, Preschool , Adult , Child , Humans , Middle Aged , Aged , Aged, 80 and over , SARS-CoV-2 , T-Lymphocytes , Herpesvirus 4, Human , CD4-Positive T-Lymphocytes , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Cross ReactionsABSTRACT
Human cytomegalovirus (CMV) is a widespread persistent herpes virus requiring lifelong immune surveillance to maintain latency. Such long-term interactions with the immune system may be associated with deleterious effects including immune exhaustion and senescence. Regarding the COVID-19 pandemic, we asked whether CMV-specific cellular and humoral activity could influence immune responses toward SARS-CoV-2 and/or disease severity. All adults with mild (n = 15) and severe (n = 14) COVID-19 were seropositive for anti-CMV IgG, but negative for IgM antibodies. Antibody titers did not correlate with COVID-19 severity. Six patients presented elevated frequencies of CMV-specific CD4 + and CD8 + T cells producing IFNγ, IL-17, and TNFα, designated as CMV high responders (hiT CMV). In comparison to low CMV responders, hiT CMV individuals exhibited higher frequencies of SARS-CoV-2-specific CD4 + IL-17 + and CD8 + IFNγ + , IL-17 + or TNFα + T cells. These results indicate that high frequencies of CMV-specific T cells may be associated with a SARS-CoV-2-reactive profile skewed toward Th17-dominated immunity.
Subject(s)
COVID-19 , Cytomegalovirus Infections , Adult , Humans , Tumor Necrosis Factor-alpha , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Interleukin-17 , Pandemics , CD8-Positive T-Lymphocytes , Antibodies, ViralABSTRACT
People with HIV (PWH) appear to be at higher risk for suboptimal pathogen responses and for worse COVID-19 outcomes, but the effects of host factors and COVID-19 on the humoral repertoire remain unclear. We assessed the antibody isotype/subclass and Fc-receptor binding Luminex arrays of non-SARS-CoV-2 and SARS-CoV-2 humoral responses among antiretroviral therapy-treated (ART-treated) PWH. Among the entire cohort, COVID-19 infection was associated with higher cytomegalovirus (CMV) responses (vs. the COVID- cohort ), potentially signifying increased susceptibility or a consequence of persistent inflammation. Among the COVID+ participants, (a) higher BMI was associated with a striking amplification of SARS-CoV-2 responses, suggesting exaggerated inflammatory responses, and (b) lower nadir CD4 was associated with higher SARS-CoV-2 IgM and FcγRIIB binding capacity, indicating poorly functioning extrafollicular and inhibitory responses. Among the COVID-19- participants, female sex, older age, and lower nadir CD4 were associated with unique repertoire shifts. In this first comprehensive assessment of the humoral repertoire in a global cohort of PWH, we identify distinct SARS-CoV-2-specific humoral immune profiles among PWH with obesity or lower nadir CD4+ T cell count, underlining plausible mechanisms associated with worse COVID-19-related outcomes in this setting. Host factors associated with the humoral repertoire in the COVID-19- cohort enhance our understanding of these important shifts among PWH.
Subject(s)
COVID-19 , Female , Humans , Anti-Retroviral Agents , Antibodies, Viral , CD4-Positive T-Lymphocytes , SARS-CoV-2 , HIV Infections/drug therapySubject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Receptors, CXCR5 , Receptors, CXCR3ABSTRACT
OBJECTIVE: The aim of this study was to discuss the prognostic significance of peripheral interleukin-6 (IL-6) and CD4+ and CD8+ T cells in COVID-19. PATIENTS AND METHODS: Eighty-four COVID-19 patients were retrospectively analyzed and classified into three groups, including the moderate group (15 cases), the serious group (45 cases), and the critical group (24 cases). The levels of peripheral IL-6, CD4+, and CD8+ T cells and CD4+/CD8+ were determined for each group. It was assessed whether these indicators were correlated to the prognosis and death risks of COVID-19 patients. RESULTS: The three groups of COVID-19 patients differed significantly in the levels of peripheral IL-6 and CD4+ and CD8+ cells. The IL-6 levels in the critical, moderate, and serious groups were increased successively, but the changed levels of CD4+ and CD8+ T cells were just opposite to that of IL-6 (p<0.05). The peripheral IL-6 level increased dramatically in the death group, while the levels of CD4+ and CD8+ T cells decreased significantly (p<0.05). The peripheral IL-6 level was significantly correlated with the level of CD8+ T cells and CD4+/CD8+ ratio in the critical group (p<0.05). The logistic regression analysis indicated a dramatic increase in the peripheral IL-6 level in the death group (p=0.025). CONCLUSIONS: The aggressiveness and survival of COVID-19 were highly correlated with the increases in IL-6 and CD4+/CD8+ T cells. The fatalities of COVID-19 individuals remained at increased incidence due to elevated peripheral IL-6 levels.