Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
MAbs ; 14(1): 2060724, 2022.
Article in English | MEDLINE | ID: covidwho-1774258

ABSTRACT

As of early 2022, the coronavirus disease 2019 (COVID-19) pandemic remains a substantial global health concern. Different treatments for COVID-19, such as anti-COVID-19 neutralizing monoclonal antibodies (mAbs), have been developed under tight timelines. Not only mAb product and clinical development but also chemistry, manufacturing, and controls (CMC) process development at pandemic speed are required to address this highly unmet patient need. CMC development consists of early- and late-stage process development to ensure sufficient mAb manufacturing yield and consistent product quality for patient safety and efficacy. Here, we report a case study of late-stage cell culture process development at pandemic speed for mAb1 and mAb2 production as a combination therapy for a highly unmet patient treatment. We completed late-stage cell culture process characterization (PC) within approximately 4 months from the cell culture process definition to the initiation of the manufacturing process performance qualification (PPQ) campaign for mAb1 and mAb2, in comparison to a standard one-year PC timeline. Different strategies were presented in detail at different PC steps, i.e., pre-PC risk assessment, scale-down model development and qualification, formal PC experiments, and in-process control strategy development for a successful PPQ campaign that did not sacrifice quality. The strategies we present may be applied to accelerate late-stage process development for other biologics to reduce timelines.


Subject(s)
COVID-19 , Pandemics , Animals , CHO Cells , COVID-19/prevention & control , Cell Culture Techniques , Cricetinae , Cricetulus , Humans
2.
J Biotechnol ; 349: 53-64, 2022 Apr 10.
Article in English | MEDLINE | ID: covidwho-1757476

ABSTRACT

In recent years, acceleration of development timelines has become a major focus within the biopharmaceutical industry to bring innovative therapies faster to patients. However, in order to address a high unmet medical need even faster further acceleration potential has to be identified to transform "speed-to-clinic" concepts into "warp-speed" development programs. Recombinant Chinese hamster ovary (CHO) cell lines are the predominant expression system for monoclonal antibodies (mAbs) and are routinely generated by random transgene integration (RTI) of the genetic information into the host cell genome. This process, however, exhibits considerable challenges such as the requirement for a time-consuming clone screening process to identify a suitable clonally derived manufacturing cell line. Hence, RTI represents an error prone and tedious method leading to long development timelines until availability of Good Manufacturing Practice (GMP)-grade drug substance (DS). Transposase-mediated semi-targeted transgene integration (STI) has been recently identified as a promising alternative to RTI as it allows for a more rapid generation of high-performing and stable production cell lines. In this report, we demonstrate how a STI technology was leveraged to develop a very robust DS manufacturing process based on a stable pool cell line at unprecedented pace. Application of the novel strategy resulted in the manufacturing of GMP-grade DS at 2,000 L scale in less than three months paving the way for a start of Phase I clinical trials only six months after transfection. Finally, using a clonally derived production cell line, which was established from the parental stable pool, we were able to successfully implement a process with an increased mAb titer of up to 5 g per liter at the envisioned commercial scale (12,000 L) within eight months.


Subject(s)
Antibodies, Monoclonal , Sexually Transmitted Diseases , Acceleration , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Sexually Transmitted Diseases/drug therapy , Transposases
3.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-1715396

ABSTRACT

Interferon-ß (IFN-ß) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-ß activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-ß interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-ß binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B-IFN-ß interaction. S100B monomerization increases its affinity to IFN-ß by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-ß and S100B (5-25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-ß activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases.


Subject(s)
Interferon-beta/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Animals , CHO Cells , Calcium/metabolism , Cell Line, Tumor , Cricetulus , Humans , MCF-7 Cells , Nervous System Diseases/metabolism , Protein Binding/physiology
4.
J Virol ; 96(3): e0082621, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1691430

ABSTRACT

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.


Subject(s)
Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/virology , Adenoviruses, Human/classification , Adenoviruses, Human/physiology , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Host-Pathogen Interactions , Membrane Cofactor Protein/metabolism , Adenoviruses, Human/ultrastructure , Animals , Biomarkers , Blood Cell Count , CHO Cells , Cell Line , Coxsackie and Adenovirus Receptor-Like Membrane Protein/chemistry , Cricetulus , Disease Models, Animal , Gene Expression , Humans , Membrane Cofactor Protein/chemistry , Membrane Cofactor Protein/genetics , Mice, Transgenic , Models, Biological , Models, Molecular , Mutagenesis , Protein Binding , Protein Conformation , Serogroup , Sialic Acids/metabolism , Sialic Acids/pharmacology , Structure-Activity Relationship
5.
PLoS One ; 17(2): e0263328, 2022.
Article in English | MEDLINE | ID: covidwho-1677585

ABSTRACT

Patients on dialysis are at risk of severe course of SARS-CoV-2 infection. Understanding the neutralizing activity and coverage of SARS-CoV-2 variants of vaccine-elicited antibodies is required to guide prophylactic and therapeutic COVID-19 interventions in this frail population. By analyzing plasma samples from 130 hemodialysis and 13 peritoneal dialysis patients after two doses of BNT162b2 or mRNA-1273 vaccines, we found that 35% of the patients had low-level or undetectable IgG antibodies to SARS-CoV-2 Spike (S). Neutralizing antibodies against the vaccine-matched SARS-CoV-2 and Delta variant were low or undetectable in 49% and 77% of patients, respectively, and were further reduced against other emerging variants. The fraction of non-responding patients was higher in SARS-CoV-2-naïve hemodialysis patients immunized with BNT162b2 (66%) than those immunized with mRNA-1273 (23%). The reduced neutralizing activity correlated with low antibody avidity. Patients followed up to 7 months after vaccination showed a rapid decay of the antibody response with an average 21- and 10-fold reduction of neutralizing antibodies to vaccine-matched SARS-CoV-2 and Delta variant, which increased the fraction of non-responders to 84% and 90%, respectively. These data indicate that dialysis patients should be prioritized for additional vaccination boosts. Nevertheless, their antibody response to SARS-CoV-2 must be continuously monitored to adopt the best prophylactic and therapeutic strategy.


Subject(s)
Antibodies, Neutralizing/immunology , Neutralization Tests , Renal Dialysis , SARS-CoV-2/immunology , Vaccination , Animals , Antibodies, Neutralizing/blood , Antibody Affinity , CHO Cells , COVID-19 Vaccines/immunology , Case-Control Studies , Cricetulus , Dose-Response Relationship, Immunologic , Follow-Up Studies , HEK293 Cells , Humans , Immunoglobulin G/blood , Risk Factors , /immunology
6.
Int J Mol Sci ; 23(1)2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1613826

ABSTRACT

Nucleic acid aptamers specific to S-protein and its receptor binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2) virions are of high interest as potential inhibitors of viral infection and recognizing elements in biosensors. Development of specific therapy and biosensors is complicated by an emergence of new viral strains bearing amino acid substitutions and probable differences in glycosylation sites. Here, we studied affinity of a set of aptamers to two Wuhan-type RBD of S-protein expressed in Chinese hamster ovary cell line and Pichia pastoris that differ in glycosylation patterns. The expression system for the RBD protein has significant effects, both on values of dissociation constants and relative efficacy of the aptamer binding. We propose glycosylation of the RBD as the main force for observed differences. Moreover, affinity of a several aptamers was affected by a site of biotinylation. Thus, the robustness of modified aptamers toward new virus variants should be carefully tested.


Subject(s)
Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Immobilized Nucleic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , Binding Sites , CHO Cells , Cricetulus , Glycosylation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2 , Saccharomycetales/genetics
7.
Biosci Rep ; 41(12)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1592575

ABSTRACT

Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and ß-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Endotoxins/pharmacology , Peptide Fragments/pharmacology , Spike Glycoprotein, Coronavirus/pharmacology , Alphacoronavirus , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , CD13 Antigens/metabolism , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cricetulus , Endotoxins/toxicity , Hemolysis/drug effects , Humans , Molecular Docking Simulation , Peptide Fragments/chemical synthesis , Peptide Fragments/toxicity , Protein Conformation, alpha-Helical , Sheep, Domestic , Spike Glycoprotein, Coronavirus/toxicity , Structure-Activity Relationship
8.
Cell Rep ; 38(3): 110256, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1588136

ABSTRACT

Inoculation against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing worldwide. However, the emergence of SARS-CoV-2 variants could cause immune evasion. We developed a bivalent nanoparticle vaccine that displays the receptor binding domains (RBDs) of the D614G and B.1.351 strains. With a prime-boost or a single-dose strategy, this vaccine elicits a robust neutralizing antibody and full protection against infection with the authentic D614G or B.1.351 strain in human angiotensin-converting enzyme 2 transgene mice. Interestingly, 8 months after inoculation with the D614G-specific vaccine, a new boost with this bivalent vaccine potently elicits cross-neutralizing antibodies for SARS-CoV-2 variants in rhesus macaques. We suggest that the D614G/B.1.351 bivalent vaccine could be used as an initial single dose or a sequential enforcement dose to prevent infection with SARS-CoV-2 and its variants.


Subject(s)
COVID-19/prevention & control , Cross Protection , SARS-CoV-2/immunology , Vaccines, Combined/therapeutic use , Animals , CHO Cells , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Chlorocebus aethiops , Cricetulus , Cross Protection/immunology , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Nanoparticles , Vaccination/methods , Vaccines, Combined/chemical synthesis , Vaccines, Combined/immunology , Vero Cells
9.
MAbs ; 14(1): 2005507, 2022.
Article in English | MEDLINE | ID: covidwho-1585297

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a serious public health crisis worldwide, and considering the novelty of the disease, preventative and therapeutic measures alike are urgently needed. To accelerate such efforts, the development of JS016, a neutralizing monoclonal antibody directed against the SARS-CoV-2 spike protein, was expedited from a typical 12- to 18-month period to a 4-month period. During this process, transient Chinese hamster ovary cell lines are used to support preclinical, investigational new drug-enabling toxicology research, and early Chemistry, Manufacturing and Controls development; mini-pool materials to supply Phase 1 clinical trials; and a single-clone working cell bank for late-stage and pivotal clinical trials were successively adopted. Moreover, key process performance and product quality investigations using a series of orthogonal and state-of-the-art techniques were conducted to demonstrate the comparability of products manufactured using these three processes, and the results indicated that, despite observed variations in process performance, the primary and high-order structures, purity and impurity profiles, biological and immunological functions, and degradation behaviors under stress conditions were largely comparable. The study suggests that, in particular situations, this strategy can be adopted to accelerate the development of therapeutic biopharmaceuticals and their access to patients.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antibody Affinity/immunology , Antibody Specificity/immunology , CHO Cells , COVID-19/prevention & control , COVID-19/virology , Chromatography, High Pressure Liquid/methods , Circular Dichroism , Clone Cells , Cricetinae , Cricetulus , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Isoelectric Point , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism
10.
Emerg Microbes Infect ; 11(1): 212-226, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1585243

ABSTRACT

The recent emergence of COVID-19 variants has necessitated the development of new vaccines that stimulate the formation of high levels of neutralizing antibodies against S antigen variants. A new strategy involves the intradermal administration of heterologous vaccines composed of one or two doses of inactivated vaccine and a booster dose with the mutated S1 protein (K-S). Such vaccines improve the immune efficacy by increasing the neutralizing antibody titers and promoting specific T cell responses against five variants of the RBD protein. A viral challenge test with the B.1.617.2 (Delta) variant confirmed that both administration schedules (i.e. "1 + 1" and "2 + 1") ensured protection against this strain. These results suggest that the aforementioned strategy is effective for protecting against new variants and enhances the anamnestic immune response in the immunized population.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CHO Cells , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Chlorocebus aethiops , Cricetulus , Female , Humans , Macaca mulatta , Mice , Mice, Transgenic , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Vero Cells
11.
Molecules ; 26(22)2021 Nov 22.
Article in English | MEDLINE | ID: covidwho-1534202

ABSTRACT

The 5',8-cyclo-2'-deoxypurines (cdPus) affect the DNA structure. When these bulky structures are a part of clustered DNA lesions (CDL), they affect the repair of the other lesions within the cluster. Mitochondria are crucial for cell survival and have their own genome, hence, are highly interesting in the context of CDL repair. However, no studies are exploring this topic. Here, the initial stages of mitochondrial base excision repair (mtBER) were considered-the strand incision and elongation. The repair of a single lesion (apurinic site (AP site)) accompanying the cdPu within the double-stranded CDL has been investigated for the first time. The type of cdPu, its diastereomeric form, and the interlesion distance were taken into consideration. For these studies, the established experimental model of short oligonucleotides (containing AP sites located ≤7 base pairs to the cdPu in both directions) and mitochondrial extracts of the xrs5 cells were used. The obtained results have shown that the presence of cdPus influenced the processing of an AP site within the CDL. Levels of strand incision and elongation were higher for oligos containing RcdA and ScdG than for those with ScdA and RcdG. Investigated stages of mtBER were more efficient for DNA containing AP sites located on 5'-end side of cdPu than on its 3'-end side. In conclusion, the presence of cdPus in mtDNA structure may affect mtBER (processing the second mutagenic lesion within the CDL). As impaired repair processes may lead to serious biological consequences, further studies concerning the mitochondrial repair of CDL are highly demanded.


Subject(s)
DNA Damage , DNA Repair , DNA, Mitochondrial/metabolism , Oligonucleotides , Purine Nucleosides , Animals , CHO Cells , Cricetulus , Oligonucleotides/chemistry , Oligonucleotides/pharmacology , Purine Nucleosides/chemistry , Purine Nucleosides/pharmacology
12.
Biotechnol Bioeng ; 119(2): 663-666, 2022 02.
Article in English | MEDLINE | ID: covidwho-1525413

ABSTRACT

Therapeutic proteins, including monoclonal antibodies, are typically manufactured using clonally derived, stable host cell lines, since consistent and predictable cell culture performance is highly desirable. However, selecting and preparing banks of stable clones takes considerable time, which inevitably extends overall development timelines for new therapeutics by delaying the start of subsequent activities, such as the scale-up of manufacturing processes. In the context of the coronavirus disease 2019 (COVID-19) pandemic, with its intense pressure for accelerated development strategies, we used a novel transposon-based Leap-In Transposase® system to rapidly generate high-titer stable pools and then used them directly for large scale-manufacturing of an anti-severe acute respiratory syndrome coronavirus 2 monoclonal antibody under cGMP. We performed the safety testing of our non-clonal cell bank, then used it to produce material at a 200L-scale for preclinical safety studies and formulation development work, and thereafter at 2000L scale for supply of material for a Phase 1 clinical trial. Testing demonstrated the comparability of critical product qualities between the two scales and, more importantly, that our final clinical trial product met all pre-set product quality specifications. The above expediated approach provided clinical trial material within 4.5 months, in comparison to 12-14 months for production of clinical trial material via the conventional approach.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , CHO Cells , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Clinical Trials, Phase I as Topic/methods , Clinical Trials, Phase I as Topic/standards , Cricetulus , Pandemics , Transposases , Viral Load
13.
Biosci Rep ; 41(12)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1526113

ABSTRACT

Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and ß-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Endotoxins/pharmacology , Peptide Fragments/pharmacology , Spike Glycoprotein, Coronavirus/pharmacology , Alphacoronavirus , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , CD13 Antigens/metabolism , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cricetulus , Endotoxins/toxicity , Hemolysis/drug effects , Humans , Molecular Docking Simulation , Peptide Fragments/chemical synthesis , Peptide Fragments/toxicity , Protein Conformation, alpha-Helical , Sheep, Domestic , Spike Glycoprotein, Coronavirus/toxicity , Structure-Activity Relationship
14.
J Virol ; 96(3): e0082621, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1522911

ABSTRACT

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.


Subject(s)
Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/virology , Adenoviruses, Human/classification , Adenoviruses, Human/physiology , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Host-Pathogen Interactions , Membrane Cofactor Protein/metabolism , Adenoviruses, Human/ultrastructure , Animals , Biomarkers , Blood Cell Count , CHO Cells , Cell Line , Coxsackie and Adenovirus Receptor-Like Membrane Protein/chemistry , Cricetulus , Disease Models, Animal , Gene Expression , Humans , Membrane Cofactor Protein/chemistry , Membrane Cofactor Protein/genetics , Mice, Transgenic , Models, Biological , Models, Molecular , Mutagenesis , Protein Binding , Protein Conformation , Serogroup , Sialic Acids/metabolism , Sialic Acids/pharmacology , Structure-Activity Relationship
15.
J Infect Dis ; 224(3): 415-419, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1526165

ABSTRACT

Mutagenic ribonucleosides can act as broad-based antiviral agents. They are metabolized to the active ribonucleoside triphosphate form and concentrate in genomes of RNA viruses during viral replication. ß-d-N4-hydroxycytidine (NHC, initial metabolite of molnupiravir) is >100-fold more active than ribavirin or favipiravir against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with antiviral activity correlated to the level of mutagenesis in virion RNA. However, NHC also displays host mutational activity in an animal cell culture assay, consistent with RNA and DNA precursors sharing a common intermediate of a ribonucleoside diphosphate. These results indicate highly active mutagenic ribonucleosides may hold risk for the host.


Subject(s)
Antiviral Agents/pharmacology , Cytidine/analogs & derivatives , Mutagens/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/adverse effects , CHO Cells/drug effects , Cells, Cultured , Cricetulus , Cytidine/adverse effects , Cytidine/pharmacology , Dose-Response Relationship, Drug , Mutagenesis/drug effects , Mutagens/adverse effects , SARS-CoV-2/genetics , Virus Replication/drug effects
16.
Clin Immunol ; 233: 108888, 2021 12.
Article in English | MEDLINE | ID: covidwho-1517099

ABSTRACT

Human interferon alpha (hIFN-α) administration constitutes the current FDA approved therapy for chronic Hepatitis B and C virus infections. Additionally, hIFN-α treatment efficacy was recently demonstrated in patients with COVID-19. Thus, hIFN-α constitutes a therapeutic alternative for those countries where vaccination is inaccessible and for people who did not respond effectively to vaccination. However, hIFN-α2b exhibits a short plasma half-life resulting in the occurrence of severe side effects. To optimize the cytokine's pharmacokinetic profile, we developed a hyperglycosylated IFN, referred to as GMOP-IFN. Given the significant number of reports showing neutralizing antibodies (NAb) formation after hIFN-α administration, here we applied the DeFT (De-immunization of Functional Therapeutics) approach to develop functional, de-immunized versions of GMOP-IFN. Two GMOP-IFN variants exhibited significantly reduced ex vivo immunogenicity and null antiproliferative activity, while preserving antiviral function. The results obtained in this work indicate that the new de-immunized GMOP-IFN variants constitute promising candidates for antiviral therapy.


Subject(s)
Hepatitis B, Chronic/immunology , Hepatitis C, Chronic/immunology , Interferon-alpha/immunology , Recombinant Proteins/immunology , Adult , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Antiviral Agents/immunology , Antiviral Agents/pharmacology , CHO Cells , COVID-19/drug therapy , COVID-19/immunology , COVID-19/virology , Cattle , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Cricetinae , Cricetulus , Drug Stability , HEK293 Cells , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Humans , Interferon-alpha/genetics , Interferon-alpha/pharmacology , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/physiology
17.
Vaccine ; 39(48): 7001-7011, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1488001

ABSTRACT

COVID-19 pandemic has severely impacted the public health and social economy worldwide. A safe, effective, and affordable vaccine against SARS-CoV-2 infections/diseases is urgently needed. We have been developing a recombinant vaccine based on a prefusion-stabilized spike trimer of SARS-CoV-2 and formulated with aluminium hydroxide and CpG 7909. The spike protein was expressed in Chinese hamster ovary (CHO) cells, purified, and prepared as a stable formulation with the dual adjuvant. Immunogenicity studies showed that candidate vaccines elicited robust neutralizing antibody responses and substantial CD4+ T cell responses in both mice and non-human primates. And vaccine-induced neutralizing antibodies persisted at high level for at least 6 months. Challenge studies demonstrated that candidate vaccine reduced the viral loads and inflammation in the lungs of SARS-CoV-2 infected golden Syrian hamsters significantly. In addition, the vaccine-induced antibodies showed cross-neutralization activity against B.1.1.7 and B.1.351 variants. These data suggest candidate vaccine is efficacious in preventing SARS-CoV-2 infections and associated pneumonia, thereby justifying ongoing phase I/II clinical studies in China (NCT04982068 and NCT04990544).


Subject(s)
COVID-19 Vaccines , COVID-19 , Alum Compounds , Aluminum Hydroxide , Animals , Antibodies, Neutralizing , Antibodies, Viral , CHO Cells , Cricetinae , Cricetulus , Humans , Mice , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
18.
J Pharmacol Exp Ther ; 379(1): 96-107, 2021 10.
Article in English | MEDLINE | ID: covidwho-1483965

ABSTRACT

In the wake of the COVID-19 pandemic, drug repurposing has been highlighted for rapid introduction of therapeutics. Proposed drugs with activity against SARS-CoV-2 include compounds with positive charges at physiologic pH, making them potential targets for the organic cation secretory transporters of kidney and liver, i.e., the basolateral organic cation transporters, OCT1 and OCT2; and the apical multidrug and toxin extruders, MATE1 and MATE2-K. We selected several compounds proposed to have in vitro activity against SARS-CoV-2 (chloroquine, hydroxychloroquine, quinacrine, tilorone, pyronaridine, cetylpyridinium, and miramistin) to test their interaction with OCT and MATE transporters. We used Bayesian machine learning models to generate predictions for each molecule with each transporter and also experimentally determined IC50 values for each compound against labeled substrate transport into CHO cells that stably expressed OCT2, MATE1, or MATE2-K using three structurally distinct substrates (atenolol, metformin and 1-methyl-4-phenylpyridinium) to assess the impact of substrate structure on inhibitory efficacy. For the OCTs substrate identity influenced IC50 values, although the effect was larger and more systematic for OCT2. In contrast, inhibition of MATE1-mediated transport was largely insensitive to substrate identity. Unlike MATE1, inhibition of MATE2-K was influenced, albeit modestly, by substrate identity. Maximum unbound plasma concentration/IC50 ratios were used to identify potential clinical DDI recommendations; all the compounds interacted with the OCT/MATE secretory pathway, most with sufficient avidity to represent potential DDI issues for secretion of cationic drugs. This should be considered when proposing cationic agents as repurposed antivirals. SIGNIFICANCE STATEMENT: Drugs proposed as potential COVID-19 therapeutics based on in vitro activity data against SARS-CoV-2 include compounds with positive charges at physiological pH, making them potential interactors with the OCT/MATE renal secretory pathway. We tested seven such molecules as inhibitors of OCT1/2 and MATE1/2-K. All the compounds blocked transport activity regardless of substrate used to monitor activity. Suggesting that plasma concentrations achieved by normal clinical application of the test agents could be expected to influence the pharmacokinetics of selected cationic drugs.


Subject(s)
Antiviral Agents/pharmacology , Organic Cation Transport Proteins/metabolism , SARS-CoV-2/drug effects , Animals , Benzalkonium Compounds/pharmacology , CHO Cells , Cetylpyridinium/pharmacology , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Cricetinae , Cricetulus , Naphthyridines/pharmacology , Organic Cation Transport Proteins/drug effects , Quinacrine/pharmacology , Tilorone/pharmacology
19.
MAbs ; 13(1): 1987180, 2021.
Article in English | MEDLINE | ID: covidwho-1483313

ABSTRACT

The global health crisis and economic tolls of COVID-19 necessitate a panoply of strategies to treat SARS-CoV-2 infection. To date, few treatment options exist, although neutralizing antibodies against the spike glycoprotein have proven to be effective. Because infection is initiated at the mucosa and propagates mainly at this site throughout the course of the disease, blocking the virus at the mucosal milieu should be effective. However, administration of biologics to the mucosa presents a substantial challenge. Here, we describe bifunctional molecules combining single-domain variable regions that bind to the polymeric Ig receptor (pIgR) and to the SARS-CoV-2 spike protein via addition of the ACE2 extracellular domain (ECD). The hypothesis behind this design is that pIgR will transport the molecule from the circulation to the mucosal surface where the ACE ECD would act as a decoy receptor for the nCoV2. The bifunctional molecules bind SARS-Cov-2 spike glycoprotein in vitro and efficiently transcytose across the lung epithelium in human tissue-based analyses. Designs featuring ACE2 tethered to the C-terminus of the Fc do not induce antibody-dependent cytotoxicity against pIgR-expressing cells. These molecules thus represent a potential therapeutic modality for systemic administration of neutralizing anti-SARS-CoV-2 molecules to the mucosa.


Subject(s)
Antibodies, Viral , COVID-19/drug therapy , Receptors, Polymeric Immunoglobulin , SARS-CoV-2/immunology , Single-Chain Antibodies , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , CHO Cells , COVID-19/genetics , COVID-19/immunology , Cricetulus , Dogs , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Mouth Mucosa/immunology , Protein Domains , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/immunology , Receptors, Polymeric Immunoglobulin/therapeutic use , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacokinetics , Single-Chain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Swine
20.
Nat Protoc ; 16(11): 5339-5356, 2021 11.
Article in English | MEDLINE | ID: covidwho-1454802

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 spike protein is a critical component of coronavirus disease 2019 vaccines and diagnostics and is also a therapeutic target. However, the spike protein is difficult to produce recombinantly because it is a large trimeric class I fusion membrane protein that is metastable and heavily glycosylated. We recently developed a prefusion-stabilized spike variant, termed HexaPro for six stabilizing proline substitutions, that can be expressed with a yield of >30 mg/L in ExpiCHO cells. This protocol describes an optimized workflow for expressing and biophysically characterizing rationally engineered spike proteins in Freestyle 293 and ExpiCHO cell lines. Although we focus on HexaPro, this protocol has been used to purify over a hundred different spike variants in our laboratories. We also provide guidance on expression quality control, long-term storage, and uses in enzyme-linked immunosorbent assays. The entire protocol, from transfection to biophysical characterization, can be completed in 7 d by researchers with basic tissue cell culture and protein purification expertise.


Subject(s)
Gene Expression Regulation, Viral/physiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL