Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
1.
Anal Bioanal Chem ; 413(22): 5619-5632, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-2174032

ABSTRACT

In the face of the COVID-19 pandemic, the need for rapid serological tests that allow multiplexing emerged, as antibody seropositivity can instruct about individual immunity after an infection with SARS-CoV-2 or after vaccination. As many commercial antibody tests are either time-consuming or tend to produce false negative or false positive results when only one antigen is considered, we developed an automated, flow-based chemiluminescence microarray immunoassay (CL-MIA) that allows for the detection of IgG antibodies to SARS-CoV-2 receptor-binding domain (RBD), spike protein (S1 fragment), and nucleocapsid protein (N) in human serum and plasma in less than 8 min. The CoVRapid CL-MIA was tested with a set of 65 SARS-CoV-2 serology positive or negative samples, resulting in 100% diagnostic specificity and 100% diagnostic sensitivity, thus even outcompeting commercial tests run on the same sample set. Additionally, the prospect of future quantitative assessments (i.e., quantifying the level of antibodies) was demonstrated. Due to the fully automated process, the test can easily be operated in hospitals, medical practices, or vaccination centers, offering a valuable tool for COVID-19 serosurveillance. Graphical abstract.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Immunoassay/methods , Immunoglobulin G/blood , SARS-CoV-2/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Automation, Laboratory , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immune Sera , Immunoassay/instrumentation , Lab-On-A-Chip Devices , Luminescent Measurements , Phosphoproteins/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors
2.
PLoS One ; 17(3): e0264929, 2022.
Article in English | MEDLINE | ID: covidwho-1938420

ABSTRACT

BACKGROUND: People experiencing homelessness who live in congregate shelters are at high risk of SARS-CoV2 transmission and severe COVID-19. Current screening and response protocols using rRT-PCR in homeless shelters are expensive, require specialized staff and have delays in returning results and implementing responses. METHODS: We piloted a program to offer frequent, rapid antigen-based tests (BinaxNOW) to residents and staff of congregate-living shelters in San Francisco, California, from January 15th to February 19th, 2021. We used the Reach-Effectiveness-Adoption-Implementation-Maintenance (RE-AIM) framework to evaluate the implementation. RESULTS: Reach: We offered testing at ten of twelve eligible shelters. Shelter residents and staff had variable participation across shelters; approximately half of eligible individuals tested at least once; few tested consistently during the study. Effectiveness: 2.2% of participants tested positive. We identified three outbreaks, but none exceeded 5 cases. All BinaxNOW-positive participants were isolated or left the shelters. Adoption: We offered testing to all eligible participants within weeks of the project's initiation. Implementation: Adaptations made to increase reach and improve consistency were promptly implemented. Maintenance: San Francisco Department of Public Health expanded and maintained testing with minimal support after the end of the pilot. CONCLUSION: Rapid and frequent antigen testing for SARS-CoV2 in homeless shelters is a viable alternative to rRT-PCR testing that can lead to immediate isolation of infectious individuals. Using the RE-AIM framework, we evaluated and adapted interventions to enable the expansion and maintenance of protocols.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Homeless Persons/statistics & numerical data , COVID-19/immunology , COVID-19 Testing/methods , California , Disease Outbreaks/prevention & control , Housing , Humans , Immunologic Tests/methods , Mass Screening/methods , Pilot Projects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , San Francisco
3.
Diagn Microbiol Infect Dis ; 104(3): 115763, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1914300

ABSTRACT

BACKGROUND: The gold standard for COVID-19 diagnosis-reverse-transcriptase polymerase chain reaction (RT-PCR)- is expensive and often slow to yield results whereas lateral flow tests can lack sensitivity. METHODS: We tested a rapid, lateral flow antigen (LFA) assay with artificial intelligence read (LFAIR) in subjects from COVID-19 treatment trials (N = 37; daily tests for 5 days) and from a population-based study (N = 88; single test). LFAIR was compared to RT-PCR from same-day samples. RESULTS: Using each participant's first sample, LFAIR showed 86.2% sensitivity (95% CI 73.6%-98.8) and 94.3% specificity (88.8%-99.7%) compared to RT-PCR. Adjusting for days since symptom onset and repeat testing, sensitivity was 97.8% (89.9%-99.5%) on the first symptomatic day and decreased with each additional day. Sensitivity improved with artificial intelligence (AI) read (86.2%) compared to the human eye (71.4%). CONCLUSION: LFAIR showed improved accuracy compared to LFA alone. particularly early in infection.


Subject(s)
Antigens, Viral , Artificial Intelligence , COVID-19 Serological Testing , COVID-19 , SARS-CoV-2 , Antigens, Viral/analysis , Antigens, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , Clinical Trials as Topic , Humans , Reproducibility of Results , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Time Factors
4.
PLoS One ; 17(5): e0267566, 2022.
Article in English | MEDLINE | ID: covidwho-1910605

ABSTRACT

BACKGROUND: To control COVID-19 pandemic is of critical importance to the global public health. To capture the prevalence in an accurate and timely manner and to understand the mode of nosocomial infection are essential for its preventive measure. METHODS: We recruited 685 healthcare workers (HCW's) at Tokyo Shinagawa Hospital prior to the vaccination with COVID-19 vaccine. Sera of the subjects were tested by assays for the titer of IgG against S protein's receptor binding domain (IgG (RBD)) or IgG against nucleocapsid protein (IgG (N)) of SARS-CoV-2. Together with PCR data, the positive rates by these methods were evaluated. RESULTS: Overall positive rates among HCW's by PCR, IgG (RBD), IgG (N) with a cut-off of 1.4 S/C (IgG (N)1.4), and IgG (N) with a cut-off of 0.2 S/C (IgG (N)0.2) were 3.5%, 9.5%, 6.1%, and 27.7%, respectively. Positive rates of HCW's working in COVID-19 ward were significantly higher than those of HCW's working in non-COVID-19 ward by all the four methods. Concordances of IgG (RBD), IgG (N)1.4, and IgG (N)0.2 against PCR were 97.1%, 71.4%, and 88.6%, respectively. By subtracting the positive rates of PCR from that of IgG (RBD), the rate of overall silent infection and that of HCW's in COVID-19 ward were estimated to be 6.0% and 21.1%, respectively. CONCLUSIONS: For the prevention of nosocomial infection of SARS-CoV-2, identification of silent infection is essential. For the detection of ongoing infection, periodical screening with IgG (RBD) in addition to PCR would be an effective measure. For the surveillance of morbidity in the population, on the other hand, IgG (N)0.2 could be the most reliable indicator among the three serological tests.


Subject(s)
COVID-19 Serological Testing , COVID-19 , Cross Infection , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Serological Testing/methods , Cross Infection/diagnosis , Cross Infection/epidemiology , Cross Infection/prevention & control , Humans , Immunoglobulin G , Japan , Pandemics , SARS-CoV-2 , Serologic Tests/methods , Spike Glycoprotein, Coronavirus
6.
PLoS One ; 17(2): e0262442, 2022.
Article in English | MEDLINE | ID: covidwho-1854992

ABSTRACT

In late December 2019, pneumonia cases of unknown origin were reported in Wuhan, China. This virus was named SARS-CoV2 and the clinical syndrome was named coronavirus disease 19 (COVID-19). South Africa, despite strict and early lockdown has the highest infection rate in Africa. A key component of South Africa's response to SARSCoV2 was the rapid scale-up of diagnostic testing. The Abbott SARS-CoV2 assay detects IgG antibodies against the Nucleocapsid (N) protein of the SARS-CoV2 virus. This study undertook to validate and evaluate performance criteria of the Abbott assay and to establish whether this assay would show clinical utility in our population. Positive patients (n = 391) and negative controls (n = 139) were included. The Architect-i and Alinity-i systems were analyzers that were used to perform the SARS-CoV-2 IgG assay. In-house ELISA was incorporated into the study as a confirmatory serology test. A total of number of 530 participants was tested, 87% were symptomatic with infection and 13% were asymptomatic. When compared to RT-qPCR, the sensitivity of Architect and Alinity SARS-CoV2 assays was 69.5% and 64.8%, respectively. Specificity for Architect and Alinity assays was 95% and 90.3%, respectively. The Abbott assay was also compared to in house ELISA assay, with sensitivity for the Architect and Alinity assays of 94.7% and 92.5%, respectively. Specificity for Abbott Alinity assays was 91.7% higher than Abbott Architect 88.1%. Based on the current findings testing of IgG after 14 days is recommended in South Africa and supports other studies performed around the world.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , Female , Follow-Up Studies , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Prognosis , Retrospective Studies , South Africa/epidemiology , Young Adult
8.
Virol J ; 19(1): 24, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1770554

ABSTRACT

INTRODUCTION: In this work, six SARS-CoV-2-specific antibody assays were evaluated, namely, two pan-immunoglobulin (pan-Ig) assays [Roche Elecsys Anti-SARS-CoV-2 (named "Elecsys" in this study) and the PerkinElmer SuperFlex™ Anti-SARS-CoV-2 Ab Assay (SuperFlex_Ab)], two IgM assays [SuperFlex™ Anti-SARS-CoV-2 IgM Assay (SuperFlex_IgM) and YHLO iFlash-SARS-CoV-2 IgM (iFlash_IgM)], and two IgG assays [SuperFlex™ Anti-SARS-CoV-2 IgG Assay (SuperFlex_IgG) and iFlash-SARS-CoV-2 IgG (iFlash_IgG)]. Combination assays of SuperFlex™ (SuperFlex_any) and iFlash (iFlash_any) were also evaluated. METHODS: A total of 438 residual serum samples from 54 COVID-19 patients in the COVID-19 group and 100 samples from individuals without evidence of SARS-CoV-2 infection in the negative control group were evaluated. RESULTS: In the early stage of COVID-19 infection, within 14 days of symptom onset, the seropositive rate was lower than that of the late stage 15 days after onset (65.4% vs 99.6%). In the total period, the pan-Ig and IgG assays had higher sensitivity (90.8-95.3%) than the IgM assays (36.5-40.7%). SuperFlex_Ab and SuperFlex_any had higher sensitivity than Elecsys and SuperFlex_IgG (p < 0.05). The specificity of all the assays was 100%, except for SuperFlex_IgM (99.0%). The concordance rate between each assay was higher (96.4-100%) in the late stage than in the early stage (77.4-98.1%). CONCLUSION: For the purpose of COVID-19 diagnosis, antibody testing should be performed 15 days after onset. For the purpose of epidemiological surveillance, highly sensitive assays should be used as much as possible, such as SuperFlex_Ab, iFlash_IgG and their combination. IgM assays were not suitable for these purposes.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19 , COVID-19/diagnosis , Humans , Immunoglobulin G/analysis , Immunoglobulin M/analysis , SARS-CoV-2/immunology , Sensitivity and Specificity
9.
J Immunol Methods ; 500: 113182, 2022 01.
Article in English | MEDLINE | ID: covidwho-1768318

ABSTRACT

Serology tests for SARS-CoV-2 have proven to be important tools to fight against the COVID-19 pandemic. These serological tests can be used in low-income and remote areas for patient contact tracing, epidemiologic studies and vaccine efficacy evaluations. In this study, we used a semi-stable mammalian episomal expression system to produce high quantities of the receptor-binding domain-RBD of SARS-CoV-2 in a simple and very economical way. The recombinant antigen was tested in an in-house IgG ELISA for COVID-19 with a panel of human sera. A performance comparison of this serology test with a commercial test based on the full-length spike protein showed 100% of concordance between tests. Thus, this serological test can be an attractive and inexpensive option in scenarios of limited resources to face the COVID-19 pandemic.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/economics , COVID-19 Serological Testing/economics , Costs and Cost Analysis , Enzyme-Linked Immunosorbent Assay , Genetic Engineering , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Protein Binding , Protein Interaction Domains and Motifs/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
PLoS One ; 17(3): e0263627, 2022.
Article in English | MEDLINE | ID: covidwho-1759943

ABSTRACT

BACKGROUND: Serological testing for SARS-CoV-2 plays an important role for epidemiological studies, in aiding the diagnosis of COVID-19, and assess vaccine responses. Little is known on dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. METHODS: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune-assays (LFIAs), and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. RESULTS: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increases in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly to 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested, within a median time of 11 (IQR: 9-15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6-11) vs. 15 (IQR: 13-21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibody at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. CONCLUSIONS: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of seroassays before implementation. Factors associated with failure to seroconvert needs further research.


Subject(s)
Antibody Formation , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19 Serological Testing/methods , Ethiopia/epidemiology , Female , Humans , Immunoassay , Longitudinal Studies , Male , Middle Aged , Patient Acuity , Prospective Studies , Seroepidemiologic Studies
11.
PLoS One ; 17(3): e0265016, 2022.
Article in English | MEDLINE | ID: covidwho-1745313

ABSTRACT

Serological databases represent an important source of information to perceive COVID-19 impact on health professionals involved in combating the disease. This paper describes SerumCovid, a COVID-19 serological database focused on the diagnosis of health professionals, providing a preliminary analysis to contribute to the understanding of the antibody response to the SARS-CoV-2. The study population comprises 321 samples from 236 healthcare and frontline workers fighting COVID-19 in Vitória de Santo Antão, Brazil. Samples were collected from at least six days of symptoms to more than 100 days. The used immunoenzymatic assays were Euroimmun Anti-SARS-CoV-2 ELISA IgG and IgA. The most common gender in SerumCovid is female, while the most common age group is between 30 and 39 years old. However, no statistical differences were observed in either genders or age categories. The most reported symptoms were fatigue, headaches, and myalgia. Still, some subjects presented positive results for IgA after 130 days. Based on a temporal analysis, we have not identified general patterns as subjects presented high and low values of IgA and IgG with different evolution trends. Unexpectedly, for subjects with both serological tests, the outcome of IgA and IgG tests were the same (either positive or negative) for more than 80% of the samples. Therefore, SerumCovid helps better understand how COVID-19 affected healthcare and frontline workers, which increases knowledge about the infection and enables direct prevention actions.


Subject(s)
COVID-19 Serological Testing , COVID-19/epidemiology , Health Personnel/statistics & numerical data , Adolescent , Adult , Antibodies, Viral/immunology , Brazil/epidemiology , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , Databases as Topic , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
13.
CMAJ ; 194(9): E350-E360, 2022 03 07.
Article in French | MEDLINE | ID: covidwho-1731613

ABSTRACT

CONTEXTE: La pandémie de COVID-19 a affecté de manière disproportionnée les travailleurs de la santé. Nous avons voulu mesurer la séroprévalence du SRAS-CoV-2 chez les travailleurs de la santé dans les hôpitaux du Québec, au Canada, après la première vague de la pandémie, afin d'explorer les facteurs associés à la SRAS-CoV-2-séropositivité. MÉTHODES: Entre le 6 juillet et le 24 septembre 2020, nous avons recruté des travailleurs de la santé de 10 hôpitaux, dont 8 d'une région où l'incidence de la COVID-19 était élevée (région de Montréal) et 2 de régions du Québec où l'incidence était faible. Les travailleurs de la santé admissibles étaient des médecins, des infirmières, des préposées aux bénéficiaires et des préposés à l'entretien ménager travaillant dans 4 types d'unité de soins (urgences, soins intensifs, unité hospitalière COVID-19 et unité hospitalière non-COVID-19). Les participants ont répondu à un questionnaire et subi un dépistage sérologique du SRAS-CoV-2. Nous avons identifié les facteurs ayant un lien indépendant avec une séroprévalence plus élevée. RÉSULTATS: Parmi les 2056 travailleurs de la santé recrutés, 241 (11,7 %) se sont révélés SRAS-CoV-2-positifs. Parmi eux, 171 (71,0 %) avaient déjà reçu un diagnostic de COVID-19. La séroprévalence a varié d'un hôpital à l'autre, de 2,4 %­3,7 % dans les régions où l'incidence était faible, à 17,9 %­32,0 % dans les hôpitaux ayant connu des éclosions touchant 5 travailleurs de la santé ou plus. La séroprévalence plus élevée a été associée au fait de travailler dans un hôpital où des éclosions sont survenues (rapport de prévalence ajusté 4,16, intervalle de confiance [IC] à 95 % 2,63­6,57), au fait d'être infirmière ou auxiliaire (rapport de prévalence ajusté 1,34, IC à 95 % 1,03­1,74), préposée aux bénéficiaires (rapport de prévalence ajusté 1,49, IC à 95 % 1,12­1,97) et d'ethnicité noire ou hispanique (rapport de prévalence ajusté 1,41, IC à 95 % 1,13­1,76). La séroprévalence moindre a été associée au fait de travailler dans une unité de soins intensifs (rapport de prévalence ajusté 0,47, IC à 95 % 0,30­0,71) ou aux urgences (rapport de prévalence ajusté 0,61, IC à 95 % 0,39­0,98). INTERPRÉTATION: Les travailleurs de la santé des hôpitaux du Québec ont été exposés à un risque élevé d'infection par le SRAS-CoV-2, particulièrement lors des éclosions. Il faudra travailler à mieux comprendre la dynamique de la transmission du SRAS-CoV-2 dans les milieux de soins.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/epidemiology , Health Personnel/statistics & numerical data , Pandemics , SARS-CoV-2/immunology , Seroepidemiologic Studies , Adult , COVID-19/diagnosis , COVID-19/virology , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Quebec/epidemiology , Retrospective Studies
14.
Bioanalysis ; 14(6): 325-340, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1726396

ABSTRACT

Background: With the spread of COVID-19, anti-SARS-CoV-2 antibody tests have been utilized. Herein we evaluated the analytical performance of anti-SARS-CoV-2 antibody test kits using a new reference standard prepared from COVID-19 patient sera. Methods: Fifty-seven kits in total (16 immunochromatography types, 11 ELISA types and 30 types for automated analyzers) were examined. By measuring serially diluted reference standards, the maximum dilution factor showing a positive result and its precision were investigated. Results: The measured cut-off titers varied largely depending on the antibody kit; however, the variability was small, with the titers obtained by each kit being within twofold in most cases. Conclusion: The current results suggest that a suitable kit should be selected depending on the intended purpose.


Subject(s)
COVID-19 Serological Testing/methods , Reagent Kits, Diagnostic , Antibodies, Viral/blood , Automation, Laboratory , COVID-19 Serological Testing/instrumentation , COVID-19 Serological Testing/standards , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G/blood , Japan , SARS-CoV-2/immunology
15.
Microbiol Spectr ; 10(1): e0145421, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1709090

ABSTRACT

SARS-CoV-2 seroprevalence studies may be complicated by vaccination efforts. It is important to characterize the ability of serology methods to correctly distinguish prior infection from postvaccination seroreactivity. We report the performance of the Meso Scale Discovery (MSD) V-PLEX COVID-19 Coronavirus Panel 2 IgG assay. Using serum samples from a prospective cohort of paramedics, we calculated the performance of the V-PLEX nucleocapsid ("N") assay to classify prior SARS-CoV-2 infections, defined as a (i) history of a positive SARS-CoV-2 PCR test or (ii) positive serology results using the Roche Elecsys total nucleocapsid anti-SARS-Cov-2 assay. We calculated sensitivity and specificity at the optimal threshold (defined by the highest Youden index). We compared subgroups based on vaccination status, and between models that excluded prior infections 3 to 12 months before sample collection. Of 1119 participants, 914 (81.7%) were vaccinated and 60 (5.4%) had evidence of a preceding SARS-CoV-2 infection. Overall and within vaccinated and unvaccinated subgroups, the optimal thresholds were 828 AU/mL, 827 AU/mL, and 1324 AU/mL; with sensitivities of 0.95 (95% CI: 0.94 to 0.96), 0.95 (0.94 to 0.96), 0.94 (0.92 to 0.96) and specificities of 0.88 (0.86 to 0.90), 0.87 (0.85 to 0.89), and 0.94 (0.89 to 0.98), respectively. N-assay specificity was significantly better in unvaccinated (versus vaccinated) individuals (P = 0.005). Overall optimal thresholds based on the AUC values were higher for samples from unvaccinated participants, especially when examining infections within the preceding 9 months (5855 versus 1704 AU/mL). Overall, V-PLEX nucleocapsid assay cutoff values were higher among unvaccinated individuals. Specificity was also significantly higher among unvaccinated individuals. Different thresholds were required to achieve optimal test performance, especially for detecting SARS-CoV-2 infections within the preceding 9 months. IMPORTANCE Among a cohort of adult paramedics in Canada, we investigated the performance of nucleocapsid (N) antibody detection (measured with a V-PLEX assay) to identify previous COVID-19 infections and compared differences among vaccinated and unvaccinated. Our data indicate that vaccinated and unvaccinated groups require different thresholds to achieve optimal test performance, especially for detecting COVID-19 within the preceding 9 months. Overall, specificity was significantly higher among unvaccinated, compared to vaccinated individuals.


Subject(s)
COVID-19 Serological Testing/standards , COVID-19 Vaccines/administration & dosage , COVID-19/diagnosis , Adult , Aged , Aged, 80 and over , Allied Health Personnel , COVID-19/prevention & control , COVID-19 Serological Testing/methods , COVID-19 Vaccines/classification , Canada , Cohort Studies , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Young Adult
16.
Bioanalysis ; 14(6): 317-324, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1704052

ABSTRACT

The COVID-19 pandemic continues to spread all over the world. In the process of emergency use authorization, the Center for Medical Device Evaluation of the China National Medical Products Administration issued 'Key Points of Technical Review for the Registration of SARS-CoV-2 Antigen/Antibody Detection Reagents' as the guidance of registration of antigen and antibody test reagents for the industry. In this document, clinical evaluation requirements of antigen detection reagents are elaborated. Based on the Key Points document and the authors' review practice, this article explains the evaluation methods and requirements of clinical performance of SARS-CoV-2 antigen-detecting rapid diagnostic tests, then analyzes the application scenarios and intended use of antigen detection reagents.


Subject(s)
COVID-19 Serological Testing/methods , Specimen Handling/methods , Antigens, Viral , COVID-19 Nucleic Acid Testing , China , Clinical Trials as Topic , Humans , Indicators and Reagents , Reagent Kits, Diagnostic , SARS-CoV-2/immunology
17.
Microbiol Spectr ; 10(1): e0228921, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702730

ABSTRACT

In March 2020, the Rare and Imported Pathogens Laboratory at the UK Health Security Agency (UKHSA) (formerly Public Health England [PHE]) Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing UKHSA, DHSC, and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved overall sensitivity of 91.39% (≥14 days 92.74%, ≥21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and interassay precision, correlation to neutralization, and assay linearity. IMPORTANCE Serology assays have been useful in determining those with previous SARS-CoV-2 infection in a wide range of research and serosurveillance projects. However, assays vary in their sensitivity at detecting SARS-CoV-2 antibodies. Here, we detail an extended evaluation and characterization of the Euroimmun anti-SARS-CoV-2 IgG assay, one that has been widely used within the United Kingdom on over 160,000 samples to date.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Immunoglobulin G/blood , SARS-CoV-2/immunology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Humans , Public Health , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , Sensitivity and Specificity , United Kingdom/epidemiology
18.
J Chin Med Assoc ; 84(11): 1028-1037, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1699812

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to affect countries worldwide. To inhibit the transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), testing of patients, contact tracing, and quarantine of their close contacts have been used as major nonpharmaceutical interventions. The advantages of antigen tests, such as low cost and rapid turnaround, may allow for the rapid identification of larger numbers of infectious persons. This meta-analysis aimed to evaluate the diagnostic accuracy of antigen tests for SARS-CoV-2. METHODS: We searched PubMed, Embase, Cochrane Library, and Biomed Central databases from inception to January 2, 2021. Studies evaluating the diagnostic accuracy of antigen testing for SARS-CoV-2 with reference standards were included. We included studies that provided sufficient data to construct a 2 × 2 table on a per-patient basis. Only articles in English were reviewed. Summary sensitivity and specificity for antigen tests were generated using a random-effects model. RESULTS: Fourteen studies with 8624 participants were included. The meta-analysis for antigen testing generated a pooled sensitivity of 79% (95% CI, 66%-88%; 14 studies, 8624 patients) and a pooled specificity of 100% (95% CI, 99%-100%; 14 studies, 8624 patients). The subgroup analysis of studies that reported specimen collection within 7 days after symptom onset showed a pooled sensitivity of 95% (95% CI, 78%-99%; four studies, 1342 patients) and pooled specificity of 100% (95% CI, 97%-100%; four studies, 1342 patients). Regarding the applicability, the patient selection, index tests, and reference standards of studies in our meta-analysis matched the review title. CONCLUSION: Antigen tests have moderate sensitivity and high specificity for the detection of SARS-CoV-2. Antigen tests might have a higher sensitivity in detecting SARS-CoV-2 within 7 days after symptom onset. Based on our findings, antigen testing might be an effective method for identifying contagious individuals to block SARS-CoV-2 transmission.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Humans , Sensitivity and Specificity
19.
Microbiol Spectr ; 10(1): e0161421, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1691406

ABSTRACT

The antigen-based rapid diagnostic test (Ag-RDT) using saliva specimens is fast, noninvasive, and suitable for SARS-CoV-2 self-testing, unlike nasopharyngeal swab (NPS) testing. We evaluated a novel Beanguard gargle (BG)-based virus collection method that can be applied to Ag-RDT as an alternative to the current RT-PCR with an NPS for early diagnosis of COVID-19. This clinical trial comprised 102 COVID-19-positive patients hospitalized after a governmental screening process and 100 healthy individuals. Paired NPS and BG-based saliva specimens from COVID-19 patients and healthy individuals were analyzed using NPS-RT-PCR, BG-RT-PCR, and BG-Ag-RDTs, whose diagnostic performance for detecting SARS-CoV-2 was compared. BG-Ag-RDTs showed high sensitivity (97.8%) and specificity (100%) in 45 patients within 6 days of illness and detected all cases of SARS-CoV-2 Alpha and Delta variants. In 11 asymptomatic active COVID-19 cases, both BG-Ag-RDTs and BG-RT-PCR showed sensitivities and specificities of 100%. Sensitivities of BG-Ag-RDT and BG-RT-PCR toward salivary viral detection were highly concordant, with no discrimination between symptomatic (97.0%), asymptomatic (100%), or SARS-CoV-2 variant (100%) cases. The intermolecular interactions between SARS-CoV-2 spike proteins and truncated canavalin, an active ingredient from the bean extract (BE), were observed in terms of physicochemical properties. The detachment of the SARS-CoV-2 receptor-binding domain from hACE2 increased as the BE concentration increased, allowing the release of the virus from hACE2 for early diagnosis. Using BG-based saliva specimens remarkably enhances the Ag-RDT diagnostic performance as an alternative to NPS and enables noninvasive, rapid, and accurate COVID-19 self-testing and mass screening, supporting efficient COVID-19 management. IMPORTANCE An Ag-RDT is less likely to be accepted as an initial test method for early diagnosis owing to its low sensitivity. However, our self-collection method, Ag-RDT using BG-based saliva specimens, showed significantly enhanced detection sensitivity and specificity toward SARS-CoV-2 including the Alpha and Delta variants in all patients tested within 6 days of illness. The method represents an attractive alternative to nasopharyngeal swabs for the early diagnosis of symptomatic and asymptomatic COVID-19 cases. The evidence suggests that the method could have a potential for mass screening and monitoring of COVID-19 cases.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Saliva/virology , Adult , Aged , Aged, 80 and over , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/instrumentation , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Republic of Korea , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Young Adult
20.
BMC Microbiol ; 22(1): 42, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1690974

ABSTRACT

BACKGROUND: Quantitative point-of-care testing assay for detecting antibodies is critical to COVID-19 control. In this study, we established an up-conversion phosphor technology-based point-of-care testing (UPT-POCT), a lateral flow assay, for rapid COVID-19 diagnosis, as well as prediction of seral neutralizing antibody (NAb) activity and protective effects. METHODS: UPT-POCT was developed targeting total antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. Using ELISA as a contrast method, we evaluated the quantitation accuracy with NAb and serum samples. Cutoff for serum samples was determined through 70 healthy and 140 COVID-19 patients. We evaluated the cross-reactions with antibodies against other viruses. Then, we performed multi-center clinical trials of UPT-POCT, including 782 patients with 387 clinically confirmed COVID-19 cases. Furthermore, RBD-specific antibody levels were detected using UPT-POCT and microneutralization assay for samples from both patients and vaccinees. Specifically, the antibodies of recovered patients with recurrent positive (RP) reverse transcriptase-polymerase chain reaction test results were discussed. RESULTS: The ratios of signal intensities between the test and control bands on the lateral flow strip, namely, T/C ratios, was defined as the results of UPT-POCT. T/C ratios had excellent correlations with concentrations of NAb, as well as OD values of ELISA for serum samples. The sensitivity and specificity of UPT-POCT were 89.15% and 99.75% for 782 cases in seven hospitals in China, respectively. We evaluated RBD-specific antibodies for 528 seral samples from 213 recovered and 99 RP COVID-19 patients, along with 35 seral samples from inactivated SARS-CoV-2 vaccinees, and we discovered that the total RBD-specific antibody level indicated by T/C ratios of UPT-POCT was significantly related to the NAb titers in both COVID-19 patients (r = 0.9404, n = 527; ρ = 0.6836, n = 528) and the vaccinees (r = 0.9063, ρ = 0.7642, n = 35), and it was highly relevant to the protection rate against RP (r = 0.9886, n = 312). CONCLUSION: This study reveals that the UPT-POCT for quantitative detection of total RBD-specific antibody could be employed as a surrogate method for rapid COVID-19 diagnosis and prediction of protective effects.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , China , Cross Reactions , Humans , Immunoassay , Limit of Detection , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL