Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 895
Filter
Add filters

Document Type
Year range
3.
Front Immunol ; 12: 732756, 2021.
Article in English | MEDLINE | ID: covidwho-1597480

ABSTRACT

Coronavirus disease 2019 (COVID-19), which started out as an outbreak of pneumonia, has now turned into a pandemic due to its rapid transmission. Besides developing a vaccine, rapid, accurate, and cost-effective diagnosis is essential for monitoring and combating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its related variants on time with precision and accuracy. Currently, the gold standard for detection of SARS-CoV-2 is Reverse Transcription Polymerase Chain Reaction (RT-PCR), but it lacks accuracy, is time-consuming and cumbersome, and fails to detect multi-variant forms of the virus. Herein, we have summarized conventional diagnostic methods such as Chest-CT (Computed Tomography), RT-PCR, Loop Mediated Isothermal Amplification (LAMP), Reverse Transcription-LAMP (RT-LAMP), as well new modern diagnostics such as CRISPR-Cas-based assays, Surface Enhanced Raman Spectroscopy (SERS), Lateral Flow Assays (LFA), Graphene-Field Effect Transistor (GraFET), electrochemical sensors, immunosensors, antisense oligonucleotides (ASOs)-based assays, and microarrays for SARS-CoV-2 detection. This review will also provide an insight into an ongoing research and the possibility of developing more economical tools to tackle the COVID-19 pandemic.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Molecular Diagnostic Techniques/methods , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , Humans , Immunoassay/methods , Nucleic Acid Amplification Techniques/methods , Oligonucleotide Probes/genetics , Pandemics , RNA, Viral/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/physiology , Sensitivity and Specificity
4.
Sci Rep ; 11(1): 24065, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1585806

ABSTRACT

COVID-19 is a respiratory disease that causes infection in both lungs and the upper respiratory tract. The World Health Organization (WHO) has declared it a global pandemic because of its rapid spread across the globe. The most common way for COVID-19 diagnosis is real-time reverse transcription-polymerase chain reaction (RT-PCR) which takes a significant amount of time to get the result. Computer based medical image analysis is more beneficial for the diagnosis of such disease as it can give better results in less time. Computed Tomography (CT) scans are used to monitor lung diseases including COVID-19. In this work, a hybrid model for COVID-19 detection has developed which has two key stages. In the first stage, we have fine-tuned the parameters of the pre-trained convolutional neural networks (CNNs) to extract some features from the COVID-19 affected lungs. As pre-trained CNNs, we have used two standard CNNs namely, GoogleNet and ResNet18. Then, we have proposed a hybrid meta-heuristic feature selection (FS) algorithm, named as Manta Ray Foraging based Golden Ratio Optimizer (MRFGRO) to select the most significant feature subset. The proposed model is implemented over three publicly available datasets, namely, COVID-CT dataset, SARS-COV-2 dataset, and MOSMED dataset, and attains state-of-the-art classification accuracies of 99.15%, 99.42% and 95.57% respectively. Obtained results confirm that the proposed approach is quite efficient when compared to the local texture descriptors used for COVID-19 detection from chest CT-scan images.


Subject(s)
COVID-19/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , COVID-19 Testing/methods , Deep Learning , Heuristics , Humans , Neural Networks, Computer , Tomography, X-Ray Computed
7.
Ann Med ; 53(1): 337-344, 2021 12.
Article in English | MEDLINE | ID: covidwho-1575678

ABSTRACT

BACKGROUND: To minimise the risk of COVID-19 transmission, an ambulant screening protocol for COVID-19 in patients before admission to the hospital was implemented, combining the SARS CoV-2 reverse-transcriptase polymerase chain reaction (RT-PCR) on a nasopharyngeal swab, a chest computed tomography (CT) and assessment of clinical symptoms. The aim of this study was to evaluatethe diagnostic yield and the proportionality of this pre-procedural screeningprotocol. METHODS: In this mono-centre, prospective, cross-sectional study, all patients admitted to the hospital between 22nd April 2020 until 14th May 2020 for semi-urgent surgery, haematological or oncological treatment, or electrophysiological investigationunderwent a COVID-19 screening 2 days before their procedure. At a 2-week follow-up, the presence of clinical symptoms was evaluated by telephone as a post-hoc evaluation of the screening approach.Combined positive RT-PCR assay and/or positive chest CT was used as gold standard. Post-procedural outcomes of all patients diagnosed positive for COVID-19 were assessed. RESULTS: In total,528 patients were included of which 20 (3.8%) were diagnosed as COVID-19 positive and 508 (96.2%) as COVID-19 negative. 11 (55.0%) of COVID-19 positive patients had only a positive RT-PCR assay, 3 (15.0%) had only a positive chest CT and 6 (30%) had both a positive RT-PCR assay and chest CT. 10 out of 20 (50.0%) COVID-19 positive patients reported no single clinical symptom at the screening. At 2 week follow-up, 50% of these patients were still asymptomatic. 37.5% of all COVID-19 negative patients were symptomatic at screening. In the COVID-19 negative group without symptoms at screening, 78 (29.3%) patients developed clinical symptoms at a 2-week follow-up. CONCLUSION: This study suggests that routine chest CT and assessment of self-reported symptoms have limited value in the preprocedural COVID-19 screening due to low sensitivity and/or specificity.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Mass Screening/methods , Patient Admission , Adult , Aged , COVID-19/epidemiology , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Tomography, X-Ray Computed
8.
J Med Internet Res ; 23(2): e26107, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1574541

ABSTRACT

BACKGROUND: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. OBJECTIVE: We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. METHODS: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. RESULTS: Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01). CONCLUSIONS: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/physiopathology , Heart Rate/physiology , Wearable Electronic Devices , Adult , COVID-19/virology , Circadian Rhythm/physiology , Female , Health Personnel , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
10.
Viruses ; 13(12)2021 12 13.
Article in English | MEDLINE | ID: covidwho-1572664

ABSTRACT

Purpose of Review Given the rapid development of diagnostic approaches to test for and diagnose infection with SARS-CoV-2 and its associated variants including Omicron (B.1.1.529), many options are available to diagnose infection. Multiple established diagnostic companies are now providing testing platforms whereas initially, testing was being performed with simple PCR-based tests using standard laboratory reagents. Recent Findings Additional testing platforms continue to be developed, including those to detect specific variants, but challenges with testing, including obtaining testing reagents and other related supplies, are frequently encountered. With time, the testing supply chain has improved, and more established companies are providing materials to support these testing efforts. In the United States (U.S.), the need for rapid assay development and subsequent approval through the attainment of emergency use authorization (EUA) has superseded the traditional arduous diagnostic testing approval workflow mandated by the FDA. Through these efforts, the U.S. has been able to continue to significantly increase its testing capabilities to address this pandemic; however, challenges still remain due to the diversity of the performance characteristics of tests being utilized and newly discovered viral variants. Summary This review provides an overview of the current diagnostic testing landscape, with pertinent information related to SARS-CoV-2 virology, variants and antibody responses that are available to diagnose infection in the U.S.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , Antigens, Viral , COVID-19/physiopathology , Diagnostic Tests, Routine , Humans , Pandemics , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , United States
11.
BMC Med Genomics ; 14(Suppl 6): 289, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1571758

ABSTRACT

BACKGROUND: Virus screening and viral genome reconstruction are urgent and crucial for the rapid identification of viral pathogens, i.e., tracing the source and understanding the pathogenesis when a viral outbreak occurs. Next-generation sequencing (NGS) provides an efficient and unbiased way to identify viral pathogens in host-associated and environmental samples without prior knowledge. Despite the availability of software, data analysis still requires human operations. A mature pipeline is urgently needed when thousands of viral pathogen and viral genome reconstruction samples need to be rapidly identified. RESULTS: In this paper, we present a rapid and accurate workflow to screen metagenomics sequencing data for viral pathogens and other compositions, as well as enable a reference-based assembler to reconstruct viral genomes. Moreover, we tested our workflow on several metagenomics datasets, including a SARS-CoV-2 patient sample with NGS data, pangolins tissues with NGS data, Middle East Respiratory Syndrome (MERS)-infected cells with NGS data, etc. Our workflow demonstrated high accuracy and efficiency when identifying target viruses from large scale NGS metagenomics data. Our workflow was flexible when working with a broad range of NGS datasets from small (kb) to large (100 Gb). This took from a few minutes to a few hours to complete each task. At the same time, our workflow automatically generates reports that incorporate visualized feedback (e.g., metagenomics data quality statistics, host and viral sequence compositions, details about each of the identified viral pathogens and their coverages, and reassembled viral pathogen sequences based on their closest references). CONCLUSIONS: Overall, our system enabled the rapid screening and identification of viral pathogens from metagenomics data, providing an important piece to support viral pathogen research during a pandemic. The visualized report contains information from raw sequence quality to a reconstructed viral sequence, which allows non-professional people to screen their samples for viruses by themselves (Additional file 1).


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Computational Biology/methods , Genome, Viral , Genomics , Metagenomics , SARS-CoV-2/genetics , Algorithms , Animals , Automation , Coronavirus Infections/genetics , High-Throughput Nucleotide Sequencing , Humans , Mass Screening/methods , Pandemics , Pangolins , Reference Values , Software , Transcriptome , Workflow
12.
Clin Chem ; 67(11): 1545-1553, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1561050

ABSTRACT

BACKGROUND: We evaluated the analytical sensitivity and specificity of 4 rapid antigen diagnostic tests (Ag RDTs) for severe acute respiratory syndrome coronavirus 2, using reverse transcription quantitative PCR (RT-qPCR) as the reference method and further characterizing samples using droplet digital quantitative PCR (ddPCR) and a mass spectrometric antigen test. METHODS: Three hundred fifty (150 negative and 200 RT-qPCR positive) residual PBS samples were tested for antigen using the BD Veritor lateral flow (LF), ACON LF, ACON fluorescence immunoassay (FIA), and LumiraDx FIA. ddPCR was performed on RT-qPCR-positive samples to quantitate the viral load in copies/mL applied to each Ag RDT. Mass spectrometric antigen testing was performed on PBS samples to obtain a set of RT-qPCR-positive, antigen-positive samples for further analysis. RESULTS: All Ag RDTs had nearly 100% specificity compared to RT-qPCR. Overall analytical sensitivity varied from 66.5% to 88.3%. All methods detected antigen in samples with viral load >1 500 000 copies/mL RNA, and detected ≥75% of samples with viral load of 500 000 to 1 500 000 copies/mL. The BD Veritor LF detected only 25% of samples with viral load between 50 000 to 500 000 copies/mL, compared to 75% for the ACON LF device and >80% for LumiraDx and ACON FIA. The ACON FIA detected significantly more samples with viral load <50 000 copies/mL compared to the BD Veritor. Among samples with detectable antigen and viral load <50 000 copies/mL, sensitivity of the Ag RDT varied between 13.0% (BD Veritor) and 78.3% (ACON FIA). CONCLUSIONS: Ag RDTs differ significantly in analytical sensitivity, particularly at viral load <500 000 copies/mL.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , Point-of-Care Testing , Humans , Mass Spectrometry , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/immunology , Sensitivity and Specificity , Viral Load
13.
Pan Afr Med J ; 39: 228, 2021.
Article in French | MEDLINE | ID: covidwho-1551883

ABSTRACT

Introduction: the COVID-19 pandemic causes biological diagnostic problems that remain relevant in low-income countries in general and in Cameroon in particular. Rapids tests that reliably detect SARS-CoV-2 virus antigen present themselves as an important alternative in several contexts. The objective of our study was to evaluate the diagnostic performance of two rapid diagnostic tests BIOSYNEX® COVID-19 Ag BSS and BIOSYNEX® COVID-19 Ag + BSS, compared to each other and to the AmpliQuick® SARS-CoV-2 PCR test. Methods: a cross-sectional and comparative study was carried out from April 27 to May 29, 2021 in the city of Douala in Cameroon. The samples consisted of nasopharyngeal swabs received at the molecular biology laboratory of the Douala Gyneco-obstetric and pediatric hospital, whatever their origin. The socio-demographic parameters (age, profession, football players, travelers, others), marital status, nationality), comorbidity and known status of COVID-19, were recorded on the collection sites. The main collection sites were the Deïdo Health District and the Douala Gyneco-Obstetric and Pediatric Hospital. We performed the diagnosis of COVID-19 using the rapid diagnostic test (RDT) BIOSYNEX® COVID-19 Ag BSS and RDT BIOSYNEX® COVID-19 Ag + BSS compared to each other and to the AmpliQuick® SARS-CoV-2 polymerase chain reaction (PCR) test on each sample. Statistical analysis of the data was performed using Microsoft Excel and SPSS version 17 software. To determine the sensitivity of the two RDTs, the Bayesian latent class model was performed on the median with a 95% confidence interval with p<0.05 as the significant level. An ethical clearance was sought and obtained from the University of Douala Institutional Ethics Committee. Results: a total of 1813 participants were included in our study, with a predominance of men (1226, 68.68 %) and the most represented age group was that of 31 to 40 years (568, 31.33 %). Most of the participants were married (888, 53.46%) and only a few had a known COVID-19 status (75, 5.47%). The two rapid tests on our study population show much closed COVID-19 prevalence values, respectively 2.03 for BIOSYNEX® COVID-19 Ag BSS and 2.17 for BIOSYNEX® COVID-19 Ag + BSS. RDT BIOSYNEX® COVID-19 Ag + BSS showed higher sensitivity 94.1% vs. 87.5% for RDT BIOSYNEX® COVID-19 Ag BSS with almost identical specificity 98.9% for RDT BIOSYNEX® COVID-19 Ag + BSS vs. 98.7% for RDT BIOSYNEX® COVID-19 Ag BSS compared to AmpliQuick® SARS-CoV-2. BIOSYNEX® COVID-19 Ag + BSS RDT showed a negative predictive value of 99.9% compared to BIOSYNEX® COVID-19 Ag BSS RDT. There is a 99.9% agreement between the RDT BIOSYNEX® COVID-19 Ag BSS and the RDT BIOSYNEX® COVID-19 Ag + BSS. Conclusion: the RDT BIOSYNEX®COVID-19 Ag + BSS and RDT BIOSYNEX® COVID-19 Ag BSS can be used for the diagnosis of SARS-CoV-2 and can have an important contribution in the context of mass screenings and screening in remote areas.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , COVID-19/diagnosis , Polymerase Chain Reaction/methods , Adolescent , Adult , Aged , Cameroon , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Predictive Value of Tests , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
14.
J Med Virol ; 93(12): 6696-6702, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544322

ABSTRACT

The pandemic of COVID-19 has caused enormous fatalities worldwide. Serological assays are important for detection of asymptomatic or mild cases of COVID-19, and sero-prevalence and vaccine efficacy studies. Here, we evaluated and compared the performance of seven commercially available enzyme-linked immunosorbent assay (ELISA)s for detection of anti-severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) immunoglobulin G (IgG). The ELISAs were evaluated with a characterized panel of 100 serum samples from qRT-PCR confirmed COVID-19 patients, collected 14 days post onset disease, 100 SARS-CoV-2 negative samples and compared the results with that of neutralization assay. Results were analysed by creating the receiver operating characteristic curve of all the assays in reference to the neutralization assay. All kits, were found to be suitable for detection of IgG against SARS-CoV-2 with high accuracy. The DiaPro COVID-19 IgG ELISA showed the highest sensitivity (98%) among the kits. The assays demonstrated high sensitivity and specificity in detecting the IgG antibodies against SARS-CoV-2. However, the presence of IgG antibodies does not always correspond to neutralizing antibodies. Due to their good accuracy indices, these assays can also aid in tracing mild infections, in cohort studies and in pre-vaccine evaluations.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/blood , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Humans , Immunoglobulin G/immunology , Neutralization Tests , Reagent Kits, Diagnostic , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
15.
J Med Virol ; 93(12): 6693-6695, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544321

ABSTRACT

We aimed to compare reverse transcription-polymerase chain reaction (RT-PCR) results of nasopharyngeal aspiration (NA) and nasopharyngeal swab (NS) samples in the diagnosis of coronavirus disease 2019. NS was obtained with a dacron swab and NA was performed by aspiration cannula. The sampling was performed by an otolaryngologist to ensure standardized correct sampling from the nasopharynx. RT-PCR was performed for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The level of agreement between the result of NA and NS samples for each patient was analyzed. The Ct values were compared. Thirty-three patients were enrolled in the study with a mean age of 56.3 years. Thirteen subjects resulted negative with both NS and NA; 20 subjects resulted positive with NA and 18 subjects resulted positive with NS. The mean values of Ct for NA samples and NS samples were 24.6 ± 5.9 and 24 ± 6.7, respectively. There was no statistical difference between Ct values of NA and NS samples (p = 0.48). RT-PCR for SARS-Cov2 performed with NA sample and NS sample showed a strong correlation regarding the positivity/negativity and the Ct values.


Subject(s)
COVID-19 Testing/methods , Nasopharynx/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Specimen Handling/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
16.
J Med Virol ; 93(12): 6686-6692, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544320

ABSTRACT

To control the spread of the coronavirus disease 2019 (COVID-19) epidemics, it is necessary to have easy-to-use, reliable diagnostic tests available. The nasopharyngeal sampling method being often uncomfortable, nasal sampling could prove to be a viable alternative to the reference sampling method. We performed a multicentre, prospective validation study of the COVID-VIRO® test, using a nasal swab sampling method, in a point-of-care setting. In addition, we performed a multicentre, prospective, and usability study to validate the use of the rapid antigen nasal diagnostic test by laypersons. In March 2021, 239 asymptomatic and symptomatic patients were included in the validation study. Compared with reverse-transcription polymerase chain reaction on nasopharyngeal samples, the sensitivity and specificity of the COVID-VIRO® Antigen test combined with a nasal sampling method were evaluated as 96.88% and 100%, respectively. A total of 101 individuals were included in the usability study. Among these, 99% of the participants rated the instructions material as good, 98% of the subjects executed the test procedure well, and 98% of the participants were able to correctly interpret the test results. This study validates the relevance of COVID-VIRO® as a diagnostic tool from nasal specimens as well as its usability in the general population. COVID-VIRO® diagnostic performances and ease of use make it suitable for widespread utilization.


Subject(s)
COVID-19 Testing/methods , Diagnostic Tests, Routine/methods , Self-Testing , Adult , Antigens, Viral/blood , Humans , Male , Point-of-Care Testing , Prospective Studies , SARS-CoV-2/immunology , Sensitivity and Specificity
17.
J Med Virol ; 93(12): 6808-6812, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544312

ABSTRACT

Real-time polymerase chain reaction (PCR) for SARS-CoV-2 is the mainstay of COVID-19 diagnosis, yet there are conflicting reports on its diagnostic performance. Wide ranges of false-negative PCR tests have been reported depending on clinical presentation, the timing of testing, specimens tested, testing method, and reference standard used. We aimed to estimate the frequency of discordance between initial nasopharyngeal (NP) PCR and repeat NP sampling PCR and serology in acutely ill patients admitted to the hospital. Panel diagnosis of COVID-19 infection is further utilized in discordance analysis. Included in the study were 160 patients initially tested by NP PCR with repeat NP sampling PCR and/or serology performed. The percent agreement between initial and repeat PCR was 96.7%, while the percent agreement between initial PCR and serology was 98.9%. There were 5 (3.1%) cases with discordance on repeat testing. After discordance analysis, 2 (1.4%) true cases tested negative on initial PCR. Using available diagnostic methods, discordance on repeat NP sampling PCR and/or serology is a rare occurrence.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Nasopharynx/virology , SARS-CoV-2/genetics , Adult , COVID-19 Testing/methods , Female , Humans , Male , Real-Time Polymerase Chain Reaction/methods , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Specimen Handling/methods
18.
J Med Virol ; 93(12): 6582-6587, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544305

ABSTRACT

The purpose of this study was to evaluate the SARS-CoV-2 immunoglobulin M/immunoglobulin G (IgM/IgG) rapid antibody test results in symptomatic patients with COVID-19 and their chest computed tomography (CT) data. A total of 320 patients admitted to our hospital for different durations due to COVID-19 were included in the study. Serum samples were obtained within 0-7 days from COVID-19 patients confirmed by reverse-transcription polymerase chain reaction (RT-PCR) and chest CT scan. According to the SARS-CoV-2 RT-PCR results, the patients included in the study were divided into two groups: PCR positive group (n = 46) and PCR negative group (n = 274). The relationship between chest CT and rapid antibody test results were compared statistically. Of the 320 COVID-19 serum samples, IgM, IgG, and IgM/IgG were detected in 8.4%, 0.3%, and 11.6% within 1 week, respectively. IgG/IgM antibodies were not detected in 79.7% of the patients. In the study, 249 (77.8%) of 320 patients had positive chest CT scans. Four (5.6%) of 71 patients with negative chest CT scans had IgM and two (2.8%) were both IgM/IgG positive. IgM was detected in 23 (9.2%), IgG in one (0.4%), and IgM/IgG in 35 (14%) of chest CT scan positive patients. The rate of CT findings in patients with antibody positivity was found to be significantly higher than those with antibody negativity. The results of the present study show the accurate and equivalent performance of serological antibody assays and chest CT in detecting SARS-CoV-2 within 0-7 days from the onset of COVID19 symptoms. When RT-PCR is not available, we believe that the combination of immunochromatographic test and chest CT scan can increase diagnostic sensitivity for COVID-19.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/diagnostic imaging , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Radiography, Thoracic , Retrospective Studies , Tomography, X-Ray Computed , Young Adult
19.
J Med Virol ; 93(12): 6794-6797, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544304

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has affected all inhabited continents, and India is currently experiencing a devastating second wave of coronavirus disease-2019 (COVID-19). Here, we examined the duration of clearance of SARS-CoV-2 in respiratory samples from 207 infected cases by real-time reverse-transcription polymerase chain reaction (RT-PCR). A substantial proportion of COVID-19 positive cases with cycle threshold (Ct) values more than or equal to 31 (45.7%) were subsequently tested negative for SARS-CoV-2 RNA within 7 days of initial detection of the viral load. A total of 60% of all the patients with COVID-19, irrespective of their Ct values, cleared SARS-CoV-2 RNA within 14 days of the initial detection. Longitudinal assessment of RT-PCR test results in individuals requiring 15-30 days to clear SARS-CoV-2 RNA showed a significant reduction of the viral load in samples with high or intermediate viral loads (Ct values ≤ 25 and between 26 and 30, respectively) but the follow-up group with low viral RNA (Ct values ≥ 31) exhibited a stable viral load. Together, these results suggest that COVID-19 positive cases with Ct values more than or equal to 31 require reduced duration to clear SARS-CoV-2, and thus, a shorter isolation period for this group might be considered to facilitate adequate space in the COVID Care Centres and reduce the burden on healthcare infrastructure.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Viral Load/genetics , Adult , Aged , COVID-19 Testing/methods , Diagnostic Tests, Routine/methods , Female , Humans , India , Longitudinal Studies , Male , Middle Aged , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Serologic Tests/methods , Young Adult
20.
J Med Virol ; 93(12): 6778-6781, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544295

ABSTRACT

A high-throughput, fully automated antigen detection test for SARS-CoV-2 is a viable alternative to reverse-transcription polymerase chain reaction (RT-qPCR) for mass screening during outbreaks. In this study, we compared RT-qPCR for viral load and the VITROS® SARS-CoV-2 Antigen Test with reference to the results of the LUMIPULSE® SARS-CoV-2 Ag Test. Of 128 nasopharyngeal swab specimens taken from patients suspected of being infected with SARS-CoV-2, 49 were positive and 79 were negative according to RT-qPCR. Consistent dose-dependent detection with VITROS® assay was successfully achieved when using nasopharyngeal swab specimens with Ct values of 32.0 or lesser, whereas the CLEIA-based LUMIPULSE® assay was able to detect lower viral loads compared with the VITROS® assay. Our results show that the performance of the VITROS® assay was satisfactory for the diagnosis of contagious COVID-19 patients in the clinical setting. Highlights The performance of the VITROS® SARS-CoV-2 Antigen Test was sufficient for the diagnosis of contagious COVID-19. This test showed high sensitivity and specificity in the detection of SARS-CoV-2 in samples with a Ct value of 32 or less.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/immunology , Immunoenzyme Techniques/methods , Immunologic Tests/methods , SARS-CoV-2/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , COVID-19/virology , Humans , Mass Screening/methods , Nasopharynx/immunology , Nasopharynx/virology , RNA, Viral/genetics , RNA, Viral/immunology , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity , Viral Load/genetics , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...