Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
PLoS One ; 17(3): e0263671, 2022.
Article in English | MEDLINE | ID: covidwho-1742001

ABSTRACT

Novel therapeutic strategies are needed to control the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. Here, we present a protocol to anchor the SARS-CoV-2 spike (S-)protein in the cytoplasmic membranes of erythrocyte liposomes. A surfactant was used to stabilize the S-protein's structure in the aqueous environment before insertion and to facilitate reconstitution of the S-proteins in the erythrocyte membranes. The insertion process was studied using coarse grained Molecular Dynamics (MD) simulations. Liposome formation and S-protein anchoring was studied by dynamic light scattering (DLS), ELV-protein co-sedimentation assays, fluorescent microcopy and cryo-TEM. The Erythro-VLPs (erythrocyte based virus like particles) have a well defined size of ∼200 nm and an average protein density on the outer membrane of up to ∼300 proteins/µm2. The correct insertion and functional conformation of the S-proteins was verified by dose-dependent binding to ACE-2 (angiotensin converting enzyme 2) in biolayer interferometry (BLI) assays. Seroconversion was observed in a pilot mouse trial after 14 days when administered intravenously, based on enzyme-linked immunosorbent assays (ELISA). This red blood cell based platform can open novel possibilities for therapeutics for the coronavirus disease (COVID-19) including variants, and other viruses in the future.


Subject(s)
COVID-19 Vaccines , COVID-19 , Erythrocyte Membrane , Molecular Dynamics Simulation , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vaccines, Virus-Like Particle , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/immunology , Female , Liposomes , Mice , Pilot Projects , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/pharmacology , Vaccines, Virus-Like Particle/chemistry , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/pharmacology
2.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1708485

ABSTRACT

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19 Vaccines/pharmacology , Immunity, Humoral/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Animals , Binding Sites , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Dextrans/chemistry , Female , HEK293 Cells , Humans , Mice, Inbred BALB C , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spermidine/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology , Vero Cells
3.
J Med Chem ; 65(3): 2558-2570, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1655430

ABSTRACT

Safe and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are the best approach to successfully combat the COVID-19 pandemic. The receptor-binding domain (RBD) of the viral spike protein is a major target to develop candidate vaccines. α-Galactosylceramide (αGalCer), a potent invariant natural killer T cell (iNKT) agonist, was site-specifically conjugated to the N-terminus of the RBD to form an adjuvant-protein conjugate, which was anchored on the liposome surface. This is the first time that an iNKT cell agonist was conjugated to the protein antigen. Compared to the unconjugated RBD/αGalCer mixture, the αGalCer-RBD conjugate induced significantly stronger humoral and cellular responses. The conjugate vaccine also showed effective cross-neutralization to all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results suggest that the self-adjuvanting αGalCer-RBD has great potential to be an effective COVID-19 vaccine candidate, and this strategy might be useful for designing various subunit vaccines.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/therapy , Galactosylceramides/therapeutic use , Peptide Fragments/therapeutic use , SARS-CoV-2/immunology , Vaccines, Conjugate/therapeutic use , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Female , Galactosylceramides/chemistry , Galactosylceramides/immunology , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Interferon-gamma/metabolism , Liposomes/chemistry , Liposomes/immunology , Liposomes/therapeutic use , Mice, Inbred BALB C , Peptide Fragments/chemistry , Peptide Fragments/immunology , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/therapeutic use , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/immunology
4.
Cell Rep ; 38(5): 110318, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1654152

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/administration & dosage , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Cricetinae , Epitopes , Guinea Pigs , Immunogenicity, Vaccine , Mice , Nanoparticles/chemistry , /chemistry , /immunology , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccine Potency
5.
Viruses ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: covidwho-1648620

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, is currently developing into a rapidly disseminating and an overwhelming worldwide pandemic. In severe COVID-19 cases, hypercoagulability and inflammation are two crucial complications responsible for poor prognosis and mortality. In addition, coagulation system activation and inflammation overlap and produce life-threatening complications, including coagulopathy and cytokine storm, which are associated with overproduction of cytokines and activation of the immune system; they might be a lead cause of organ damage. However, patients with severe COVID-19 who received anticoagulant therapy had lower mortality, especially with elevated D-dimer or fibrin degradation products (FDP). In this regard, the discovery of natural products with anticoagulant potential may help mitigate the numerous side effects of the available synthetic drugs. This review sheds light on blood coagulation and its impact on the complication associated with COVID-19. Furthermore, the sources of natural anticoagulants, the role of nanoparticle formulation in this outbreak, and the prevalence of thrombosis with thrombocytopenia syndrome (TTS) after COVID-19 vaccines are also reviewed. These combined data provide many research ideas related to the possibility of using these anticoagulant agents as a treatment to relieve acute symptoms of COVID-19 infection.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/etiology , COVID-19 Vaccines/chemistry , COVID-19/complications , COVID-19/prevention & control , Nanoparticles/therapeutic use , Anticoagulants/administration & dosage , Anticoagulants/isolation & purification , Blood Coagulation , Blood Coagulation Disorders/classification , Blood Coagulation Disorders/prevention & control , Blood Coagulation Disorders/virology , COVID-19 Vaccines/administration & dosage , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Humans , Inflammation/etiology , Inflammation/prevention & control , Nanoparticles/chemistry , SARS-CoV-2/pathogenicity , Thrombophilia/etiology
6.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
7.
Adv Drug Deliv Rev ; 180: 114079, 2022 01.
Article in English | MEDLINE | ID: covidwho-1620432

ABSTRACT

Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.


Subject(s)
Drug Carriers , Nanomedicine , Polyethylene Glycols/chemistry , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Drug Delivery Systems , Humans
8.
Microbiol Spectr ; 9(3): e0096521, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1596481

ABSTRACT

The prompt rollout of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine is facilitating population immunity, which is becoming more dominant than natural infection-mediated immunity. In the midst of coronavirus disease 2019 (COVID-19) vaccine deployment, understanding the epitope profiles of vaccine-elicited antibodies will be the first step in assessing the functionality of vaccine-induced immunity. In this study, the high-resolution linear epitope profiles of Pfizer-BioNTech COVID-19 mRNA vaccine recipients and COVID-19 patients were delineated by using microarrays mapped with overlapping peptides of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The vaccine-induced antibodies targeting the RBD had a broader distribution across the RBD than that induced by the natural infection. Half-maximal neutralization titers were measured in vitro by live virus neutralization assays. As a result, relatively lower neutralizability was observed in vaccine recipient sera, when normalized to a total anti-RBD IgG titer. However, mutation panel assays targeting the SARS-CoV-2 variants of concern have shown that the vaccine-induced epitope variety, rich in breadth, may grant resistance against future viral evolutionary escapes, serving as an advantage of vaccine-induced immunity. IMPORTANCE Establishing vaccine-based population immunity has been the key factor in attaining herd protection. Thanks to expedited worldwide research efforts, the potency of mRNA vaccines against the coronavirus disease 2019 (COVID-19) is now incontestable. The next debate is regarding the coverage of SARS-CoV-2 variants. In the midst of vaccine deployment, it is of importance to describe the similarities and differences between the immune responses of COVID-19 vaccine recipients and naturally infected individuals. In this study, we demonstrated that the antibody profiles of vaccine recipients are richer in variety, targeting a key protein of the invading virus, than those of naturally infected individuals. Vaccine-elicited antibodies included more nonneutralizing antibodies than infection-elicited antibodies, and their breadth in antibody variations suggested possible resilience against future SARS-CoV-2 variants. The antibody profile achieved by vaccinations in naive individuals provides important insight into the first step toward vaccine-based population immunity.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Epitope Mapping , Protein Binding , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , /immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , Humans , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccines, Synthetic/immunology , /chemistry
9.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1598089

ABSTRACT

The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein. This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore, we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics Poisson-Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Docking Simulation , SARS-CoV-2 , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
10.
J Cell Mol Med ; 26(1): 25-34, 2022 01.
Article in English | MEDLINE | ID: covidwho-1570773

ABSTRACT

Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Viral/chemistry , COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/biosynthesis , Cryoelectron Microscopy , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/immunology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/ultrastructure , Serine Endopeptidases/chemistry , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Virion/drug effects , Virion/pathogenicity , Virion/ultrastructure
11.
J Am Chem Soc ; 143(49): 20529-20545, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1541126

ABSTRACT

Unquestionably, polymers have influenced the world over the past 100 years. They are now more crucial than ever since the COVID-19 pandemic outbreak. The pandemic paved the way for certain polymers to be in the spotlight, namely sequence-defined polymers such as messenger ribonucleic acid (mRNA), which was the first type of vaccine to be authorized in the U.S. and Europe to protect against the SARS-CoV-2 virus. This rise of mRNA will probably influence scientific research concerning nucleic acids in general and RNA therapeutics in specific. In this Perspective, we highlight the recent trends in sequence-controlled and sequence-defined polymers. Then we discuss mRNA vaccines as an example to illustrate the need of ultimate sequence control to achieve complex functions such as specific activation of the immune system. We briefly present how mRNA vaccines are produced, the importance of modified nucleotides, the characteristic features, and the advantages and challenges associated with this class of vaccines. Finally, we discuss the chances and opportunities for polymer chemistry to provide solutions and contribute to the future progress of RNA-based therapeutics. We highlight two particular roles of polymers in this context. One represents conjugation of polymers to nucleic acids to form biohybrids. The other is concerned with advanced polymer-based carrier systems for nucleic acids. We believe that polymers can help to address present problems of RNA-based therapeutic technologies and impact the field beyond the COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Vaccines/chemistry , COVID-19/drug therapy , Polymers/pharmacology , SARS-CoV-2/drug effects , /chemistry , Animals , Drug Carriers , Humans
13.
PLoS One ; 16(11): e0258645, 2021.
Article in English | MEDLINE | ID: covidwho-1518355

ABSTRACT

All approved coronavirus disease 2019 (COVID-19) vaccines in current use are safe, effective, and reduce the risk of severe illness. Although data on the immunological presentation of patients with COVID-19 is limited, increasing experimental evidence supports the significant contribution of B and T cells towards the resolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite the availability of several COVID-19 vaccines with high efficacy, more effective vaccines are still needed to protect against the new variants of SARS-CoV-2. Employing a comprehensive immunoinformatic prediction algorithm and leveraging the genetic closeness with SARS-CoV, we have predicted potential immune epitopes in the structural proteins of SARS-CoV-2. The S and N proteins of SARS-CoV-2 and SARS-CoVs are main targets of antibody detection and have motivated us to design four multi-epitope vaccines which were based on our predicted B- and T-cell epitopes of SARS-CoV-2 structural proteins. The cardinal epitopes selected for the vaccine constructs are predicted to possess antigenic, non-allergenic, and cytokine-inducing properties. Additionally, some of the predicted epitopes have been experimentally validated in published papers. Furthermore, we used the C-ImmSim server to predict effective immune responses induced by the epitope-based vaccines. Taken together, the immune epitopes predicted in this study provide a platform for future experimental validations which may facilitate the development of effective vaccine candidates and epitope-based serological diagnostic assays.


Subject(s)
Computational Biology , Epitope Mapping , SARS-CoV-2/immunology , Viral Structural Proteins/immunology , Amino Acid Sequence , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Databases as Topic , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Models, Molecular , Protein Conformation , Reproducibility of Results , Viral Structural Proteins/chemistry
14.
Bioconjug Chem ; 32(12): 2497-2506, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1517581

ABSTRACT

Understanding immune responses toward viral infection will be useful for potential therapeutic intervention and offer insights into the design of prophylactic vaccines. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. To understand the complex immune responses toward SARS-CoV-2 infection, here we developed a method to express and purify the recombinant and engineered viral receptor-binding domain (RBD) to more than 95% purity. We could encapsulate RNA molecules into the interior of a virion-sized liposome. We conjugated the purified RBD proteins onto the surface of the liposome in an orientation-specific manner with defined spatial densities. Both the encapsulation of RNAs and the chemical conjugation of the RBD protein on liposome surfaces were stable under physiologically relevant conditions. In contrast to soluble RBD proteins, a single injection of RBD-conjugated liposomes alone, in the absence of any other adjuvants, elicited RBD-specific B cell responses in BALB/c mice, and the resulting animal sera could potently neutralize HIV-1 pseudovirions that displayed the SARS-CoV-2 spike proteins. These results validate these supramolecular structures as a novel and effective tool to mimic the structure of enveloped viruses, the use of which will allow systematic dissection of the complex B cell responses to SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Liposomes/therapeutic use , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/therapeutic use , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/therapeutic use , Animals , COVID-19/immunology , COVID-19 Vaccines/chemistry , Female , Humans , Immunization , Liposomes/chemistry , Mice, Inbred BALB C , Models, Molecular , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/therapeutic use , /therapeutic use
15.
J Phys Chem Lett ; 12(45): 11199-11205, 2021 Nov 18.
Article in English | MEDLINE | ID: covidwho-1510547

ABSTRACT

Recent advances in RNA-based medicine have provided new opportunities for the global current challenge, i.e., the COVID-19 pandemic. Novel vaccines are based on a messenger RNA (mRNA) motif with a lipid nanoparticle (LNP) vector, consisting of high content of unique pH-sensitive ionizable lipids (ILs). Here we provide molecular insights into the role of the ILs and lipid mixtures used in current mRNA vaccines. We observed that the lipid mixtures adopted a nonlamellar organization, with ILs separating into a very disordered, pH-sensitive phase. We describe structural differences of the two ILs leading to their different congregation, with implications for the vaccine stability. Finally, as RNA interacts preferentially with IL-rich phases located at the regions with high curvature of lipid phase, local changes in RNA flexibility and base pairing are induced by lipids. A proper atomistic understanding of RNA-lipid interactions may enable rational tailoring of LNP composition for efficient RNA delivery.


Subject(s)
COVID-19 Vaccines/chemistry , Lipids/chemistry , RNA, Messenger/chemistry , Humans , Lipid Bilayers/chemistry , Models, Molecular , Molecular Dynamics Simulation
16.
Int J Biol Macromol ; 193(Pt B): 1885-1897, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1509845

ABSTRACT

The spike (S) protein is a leading vaccine candidate against SARS-CoV-2 infection. The S1 domain of S protein, which contains a critical receptor-binding domain (RBD) antigen, potentially induces protective immunoreactivities against SARS-CoV-2. In this study, we presented preclinical evaluations of a novel insect cell-derived SARS-CoV-2 recombinant S1 (rS1) protein as a potent COVID-19 vaccine candidate. The native antigenicity of rS1 was characterized by enzyme-linked immunosorbent assay with a neutralizing monoclonal antibody targeting the RBD antigen. To improve its immunogenicity, rS1-adjuvanted with fucoidan/trimethylchitosan nanoparticles (FUC-TMC NPs) and cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) were investigated using a mouse model. The S1-specific immunoglobulin G (IgG) titers, FluoroSpot assay, pseudovirus- and prototype SARS-CoV-2-based neutralization assays were assessed. The results showed that the rS1/CpG/ FUC-TMC NPs (rS1/CpG/NPs) formulation induced a broad-spectrum IgG response with potent, long-lasting, and cross-protective neutralizing activity against the emerging SARS-CoV-2 variant of concern, along with a Th1-biased cellular response. Thus, the rS1/CpG/NPs formulation presents a promising vaccination approach against COVID-19.


Subject(s)
Adjuvants, Immunologic , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19 Vaccines , Immunogenicity, Vaccine , Nanoparticles , Oligodeoxyribonucleotides , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Th1 Cells/immunology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/pharmacology
17.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1186: 123015, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1487818

ABSTRACT

The potential of lipid nanoparticles (LNPs) as nucleic acid delivery vehicles has been demonstrated in recent years, culminating in the emergency use approval of LNP-based mRNA SARS-CoV-2 vaccines in late 2020. The determination of RNA content relative to LNP size can be important to the understanding of efficacy and adverse effects. This work presents the first description of a facile and rapid analytical method for online, size-dependent RNA payload distribution measurement using data from multi-angle light scattering, ultraviolet and refractive index detectors following separation of the LNPs by size-exclusion chromatography. The analysis was validated by size-based fractionation of the LNPs with subsequent offline analysis of the fractions. Four LNPs formulated with different PEG-lipids and different lipid compositions were tested. Good agreement was observed between the online and offline size-based RNA distributions among all four LNPs, demonstrating the utility of the online method for LNP-encapsulated RNA in general, and suggesting a means for simplified biophysical quantitation of a dosing-related critical quality attribute.


Subject(s)
COVID-19 Vaccines/chemistry , Chromatography, Gel/methods , Drug Carriers/chemistry , Nanoparticles/chemistry , RNA, Messenger/chemistry , RNA, Viral/chemistry , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Vaccines/immunology , Drug Delivery Systems , Humans , Lipids/chemistry , Particle Size , RNA, Messenger/immunology , RNA, Viral/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology
18.
Acc Chem Res ; 54(21): 4001-4011, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1475239

ABSTRACT

Since the U.S. Food and Drug Administration (FDA) granted emergency use authorization for two mRNA vaccines against SARS-CoV-2, mRNA-based technology has attracted broad attention from the scientific community to investors. When delivered intracellularly, mRNA has the ability to produce various therapeutic proteins, enabling the treatment of a variety of illnesses, including but not limited to infectious diseases, cancers, and genetic diseases. Accordingly, mRNA holds significant therapeutic potential and provides a promising means to target historically hard-to-treat diseases. Current clinical efforts harnessing mRNA-based technology are focused on vaccination, cancer immunotherapy, protein replacement therapy, and genome editing. The clinical translation of mRNA-based technology has been made possible by leveraging nanoparticle delivery methods. However, the application of mRNA for therapeutic purposes is still challenged by the need for specific, efficient, and safe delivery systems.This Account highlights key advances in designing and developing combinatorial synthetic lipid nanoparticles (LNPs) with distinct chemical structures and properties for in vitro and in vivo intracellular mRNA delivery. LNPs represent the most advanced nonviral nanoparticle delivery systems that have been extensively investigated for nucleic acid delivery. The aforementioned COVID-19 mRNA vaccines and one LNP-based small interfering RNA (siRNA) drug (ONPATTRO) have received clinical approval from the FDA, highlighting the success of synthetic ionizable lipids for in vivo nucleic acid delivery. In this Account, we first summarize the research efforts from our group on the development of bioreducible and biodegradable LNPs by leveraging the combinatorial chemistry strategy, such as the Michael addition reaction, which allows us to easily generate a large set of lipidoids with diverse chemical structures. Next, we discuss the utilization of a library screening strategy to identify optimal LNPs for targeted mRNA delivery and showcase the applications of the optimized LNPs in cell engineering and genome editing. Finally, we outline key challenges to the clinical translation of mRNA-based therapies and propose an outlook for future directions of the chemical design and optimization of LNPs to improve the safety and specificity of mRNA drugs. We hope this Account provides insight into the rational design of LNPs for facilitating the development of mRNA therapeutics, a transformative technology that promises to revolutionize future medicine.


Subject(s)
COVID-19 Vaccines/pharmacology , Gene Editing , Gene Transfer Techniques , Lipids/chemistry , Nanoparticles/chemistry , RNA, Messenger/pharmacology , COVID-19/drug therapy , COVID-19 Vaccines/chemistry , Genetic Therapy , Humans , RNA, Messenger/chemistry , SARS-CoV-2/drug effects
19.
Protein Expr Purif ; 190: 106003, 2022 02.
Article in English | MEDLINE | ID: covidwho-1474960

ABSTRACT

SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± 3.0 mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± 3% (total yield of purified protein: 270.5 ± 13.2 mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 protein-based vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.


Subject(s)
COVID-19 Vaccines , Gene Expression , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , COVID-19 Vaccines/pharmacology , Humans , Mice , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/pharmacology
20.
Molecules ; 26(20)2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1470934

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, the causative agent of coronavirus disease (COVID-19)) has caused relatively high mortality rates in humans throughout the world since its first detection in late December 2019, leading to the most devastating pandemic of the current century. Consequently, SARS-CoV-2 therapeutic interventions have received high priority from public health authorities. Despite increased COVID-19 infections, a vaccine or therapy to cover all the population is not yet available. Herein, immunoinformatics and custommune tools were used to identify B and T-cells epitopes from the available SARS-CoV-2 sequences spike (S) protein. In the in silico predictions, six B cell epitopes QTGKIADYNYK, TEIYQASTPCNGVEG, LQSYGFQPT, IRGDEVRQIAPGQTGKIADYNYKLPD, FSQILPDPSKPSKRS and PFAMQMAYRFNG were cross-reacted with MHC-I and MHC-II T-cells binding epitopes and selected for vaccination in experimental animals for evaluation as candidate vaccine(s) due to their high antigenic matching and conserved score. The selected six peptides were used individually or in combinations to immunize female Balb/c mice. The immunized mice raised reactive antibodies against SARS-CoV-2 in two different short peptides located in receptor binding domain and S2 region. In combination groups, an additive effect was demonstrated in-comparison with single peptide immunized mice. This study provides novel epitope-based peptide vaccine candidates against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , SARS-CoV-2/metabolism , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Female , Humans , Immunization , Mice , Mice, Inbred BALB C , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL