Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Methods Mol Biol ; 2668: 301-311, 2023.
Article in English | MEDLINE | ID: covidwho-2316082

ABSTRACT

Extracellular vesicles (EVs) enable cell-to-cell communication and, by delivering antigens, can stimulate the immune response strongly. Approved in use SARS-CoV-2 vaccine, candidates immunize with the viral spike protein delivered via viral vectors, translated by injected mRNAs, or as a pure protein. Here, we outline a novel methodological approach for generating SARS-CoV-2 vaccine using exosome that delivers antigens from the SARS-CoV-2 structural proteins. Engineered EVs can be loaded with viral antigens, thus acting as antigens presenting EVs, eliciting strong and targeted CD8(+) T cell and B cell, offering a unique approach to vaccine development. Engineered EVs thus portray a safe, adaptable, and effective approach for a virus-free vaccine development.


Subject(s)
COVID-19 , Exosomes , Extracellular Vesicles , Humans , COVID-19 Vaccines/metabolism , Exosomes/metabolism , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/metabolism , Extracellular Vesicles/metabolism , Antigens/metabolism , Viral Proteins/metabolism
2.
Front Immunol ; 13: 1107366, 2022.
Article in English | MEDLINE | ID: covidwho-2244988

ABSTRACT

Common flow cytometry-based methods used for functional assessment of antigen-specific T cells rely on de novo expression of intracellular cytokines or cell surface activation induced markers. They come with some limitations such as complex experimental setting, loss of cell viability and often high unspecific background which impairs assay sensitivity. We have previously shown that staining of activated ß2-integrins either with multimers of their ligand ICAM-1 or with a monoclonal antibody can serve as a functional marker detectable on T cells after minutes (CD8+) or few hours (CD4+) of activation. Here, we present a simple method for detection of activated ß2-integrins in combination with established cell surface activation induced markers. We observed that activated ß2-integrins were still detectable after 14 hours of stimulation, allowing their detection together with CD137 and CD154. Combinatorial gating of cells expressing activated ß2-integrins and CD137 or CD154 reduced background in unstimulated samples, increasing the signal-to-noise ratio and allowing improved assessment of low-frequency T cell responses. Extracellular staining of these markers highly correlated with production of intracellular cytokines IL-2, TNF or IFNγ in CD4+ and CD8+ T cells. As an exemplary application, SARS-CoV-2 spike-specific T cell responses were assessed in individuals after COVID-19 vaccination. This method should be useful for epitope discovery projects and for the simultaneous monitoring of low-frequency antigen-specific CD4+ and CD8+ T cell responses in various physiological situations.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , CD4-Positive T-Lymphocytes , Integrins/metabolism , COVID-19 Vaccines/metabolism , COVID-19/metabolism , SARS-CoV-2 , Antigens/metabolism , CD40 Ligand , Cytokines/metabolism
3.
Signal Transduct Target Ther ; 8(1): 15, 2023 01 09.
Article in English | MEDLINE | ID: covidwho-2241851

ABSTRACT

The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.


Subject(s)
COVID-19 , Neoplasms , Neurodegenerative Diseases , Humans , Pregnancy , Female , COVID-19 Vaccines/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , COVID-19/metabolism , Ribosomes/genetics , Ribosomal Proteins/genetics , Neoplasms/drug therapy , Neoplasms/genetics , RNA, Untranslated , Mechanistic Target of Rapamycin Complex 1/metabolism
4.
Viruses ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2234402

ABSTRACT

Baculoviruses are enveloped, insect-specific viruses with large double-stranded DNA genomes. Among all the baculovirus species, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most studied. Due to its characteristics regarding biosafety, narrow host range and the availability of different platforms for modifying its genome, AcMNPV has become a powerful biotechnological tool. In this review, we will address the most widespread technological applications of baculoviruses. We will begin by summarizing their natural cycle both in larvae and in cell culture and how it can be exploited. Secondly, we will explore the different baculovirus-based protein expression systems (BEVS) and their multiple applications in the pharmaceutical and biotechnological industry. We will focus particularly on the production of vaccines, many of which are either currently commercialized or in advanced stages of development (e.g., Novavax, COVID-19 vaccine). In addition, recombinant baculoviruses can be used as efficient gene transduction and protein expression vectors in vertebrate cells (e.g., BacMam). Finally, we will extensively describe various gene therapy strategies based on baculoviruses applied to the treatment of different diseases. The main objective of this work is to provide an extensive up-to-date summary of the different biotechnological applications of baculoviruses, emphasizing the genetic modification strategies used in each field.


Subject(s)
COVID-19 , Nucleopolyhedroviruses , Animals , Humans , Baculoviridae/genetics , COVID-19 Vaccines/metabolism , Nucleopolyhedroviruses/genetics , Spodoptera
5.
Physiol Rep ; 11(3): e15556, 2023 02.
Article in English | MEDLINE | ID: covidwho-2228884

ABSTRACT

The COVID-19 pandemic restricted the regular training and competition program of athletes. Vaccines against COVID-19 are known to be beneficial for the disease; however, the unknown side effects of vaccines and postvaccination reactions have made some athletes hesitant to get vaccinated. We investigated the changes in inflammatory responses and menstrual cycles of female athletes before and after vaccination. Twenty female athletes were enrolled in this study. Blood was collected from each subject before the first COVID-19 vaccination and after the first and second vaccinations. Laboratory data, including white blood cell, neutrophil, lymphocyte, and platelet counts, and inflammatory markers, including NLR (neutrophil-to-lymphocyte ratio), PLR (platelet lymphocyte ratio), RPR (red cell distribution width to platelet ratio), SII (systemic immune-inflammation index), and NeuPla (neutrophil-platelet ratio), were analyzed statistically. The menstrual changes before and after vaccination and the side effects were collected by questionnaires. No significant changes in the laboratory data were found after the first and second shots when compared to those at prevaccination: white blood cell, neutrophil, lymphocyte, platelet, NLR, PLR, SII, RPR, and NeuPla (p > 0.05). In addition, there were no significant changes in the menstruation cycle or days of the menstrual period (p > 0.05). All side effects after vaccination were mild and subsided in 2 days. The blood cell counts, inflammatory markers, and menstruation of female athletes were not affected by COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Female , COVID-19 Vaccines/metabolism , Menstruation , Pandemics , COVID-19/metabolism , Blood Cell Count , Lymphocytes/metabolism , Inflammation/metabolism , Neutrophils/metabolism , Retrospective Studies
6.
Cell Signal ; 103: 110559, 2023 03.
Article in English | MEDLINE | ID: covidwho-2158569

ABSTRACT

The COVID-19 pandemic has triggered intensive research and development of drugs and vaccines against SARS-CoV-2 during the last two years. The major success was especially observed with development of vaccines based on viral vectors, nucleic acids and whole viral particles, which have received emergent authorization leading to global mass vaccinations. Although the vaccine programs have made a big impact on COVID-19 spread and severity, emerging novel variants have raised serious concerns about vaccine efficacy. Due to the urgent demand, drug development had originally to rely on repurposing of antiviral drugs developed against other infectious diseases. For both drug and vaccine development the focus has been mainly on SARS-CoV-2 surface proteins and host cell receptors involved in viral attachment and entry. In this review, we expand the spectrum of SARS-CoV-2 targets by investigating the COVID-19 signalome. In addition to the SARS-CoV-2 Spike protein, the envelope, membrane, and nucleoprotein targets have been subjected to research. Moreover, viral proteases have presented the possibility to develop different strategies for the inhibition of SARS-CoV-2 replication and spread. Several signaling pathways involving the renin-angiotensin system, angiotensin-converting enzymes, immune pathways, hypoxia, and calcium signaling have provided attractive alternative targets for more efficient drug development.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines/metabolism , Pandemics/prevention & control , Receptors, Virus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
8.
Front Immunol ; 13: 876306, 2022.
Article in English | MEDLINE | ID: covidwho-1865451

ABSTRACT

The COVID-19 pandemic shows that vaccination strategies building on an ancestral viral strain need to be optimized for the control of potentially emerging viral variants. Therefore, aiming at strong B cell somatic hypermutation to increase antibody affinity to the ancestral strain - not only at high antibody titers - is a priority when utilizing vaccines that are not targeted at individual variants since high affinity may offer some flexibility to compensate for strain-individual mutations. Here, we developed a next-generation sequencing based SARS-CoV-2 B cell tracking protocol to rapidly determine the level of immunoglobulin somatic hypermutation at distinct points during the immunization period. The percentage of somatically hypermutated B cells in the SARS-CoV-2 specific repertoire was low after the primary vaccination series, evolved further over months and increased steeply after boosting. The third vaccination mobilized not only naïve, but also antigen-experienced B cell clones into further rapid somatic hypermutation trajectories indicating increased affinity. Together, the strongly mutated post-booster repertoires and antibodies deriving from this may explain why the third, but not the primary vaccination series, offers some protection against immune-escape variants such as Omicron B.1.1.529.


Subject(s)
B-Lymphocytes , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/metabolism , Humans , Pandemics , SARS-CoV-2/genetics , Vaccination/methods , mRNA Vaccines/immunology
9.
Sci Transl Med ; 14(639): eabm0899, 2022 04 06.
Article in English | MEDLINE | ID: covidwho-1714341

ABSTRACT

A major challenge to end the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is to develop a broadly protective vaccine that elicits long-term immunity. As the key immunogen, the viral surface spike (S) protein is frequently mutated, and conserved epitopes are shielded by glycans. Here, we revealed that S protein glycosylation has site-differential effects on viral infectivity. We found that S protein generated by lung epithelial cells has glycoforms associated with increased infectivity. Compared to the fully glycosylated S protein, immunization of S protein with N-glycans trimmed to the mono-GlcNAc-decorated state (SMG) elicited stronger immune responses and better protection for human angiotensin-converting enzyme 2 (hACE2) transgenic mice against variants of concern (VOCs). In addition, a broadly neutralizing monoclonal antibody was identified from SMG-immunized mice that could neutralize wild-type SARS-CoV-2 and VOCs with subpicomolar potency. Together, these results demonstrate that removal of glycan shields to better expose the conserved sequences has the potential to be an effective and simple approach for developing a broadly protective SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines , Polysaccharides , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/metabolism , Humans , Mice , Models, Animal , SARS-CoV-2 , Vaccination
10.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Pseudotyping
11.
Cell Rep ; 37(11): 110114, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1604785

ABSTRACT

Messenger RNA-based vaccines against COVID-19 induce a robust anti-SARS-CoV-2 antibody response with potent viral neutralization activity. Antibody effector functions are determined by their constant region subclasses and by their glycosylation patterns, but their role in vaccine efficacy is unclear. Moreover, whether vaccination induces antibodies similar to those in patients with COVID-19 remains unknown. We analyze BNT162b2 vaccine-induced IgG subclass distribution and Fc glycosylation patterns and their potential to drive effector function via Fcγ receptors and complement pathways. We identify unique and dynamic pro-inflammatory Fc compositions that are distinct from those in patients with COVID-19 and convalescents. Vaccine-induced anti-Spike IgG is characterized by distinct Fab- and Fc-mediated functions between different age groups and in comparison to antibodies generated during natural viral infection. These data highlight the heterogeneity of Fc responses to SARS-CoV-2 infection and vaccination and suggest that they support long-lasting protection differently.


Subject(s)
COVID-19/immunology , Glycosylation/drug effects , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19 Vaccines/metabolism , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Israel/epidemiology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccine Efficacy , Vaccines, Synthetic/immunology , Vaccines, Synthetic/metabolism , mRNA Vaccines/immunology , mRNA Vaccines/metabolism
12.
Biomed Pharmacother ; 146: 112518, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1562447

ABSTRACT

SARS-CoV-2 causes respiratory illness with a spectrum of systemic complications. However, the mechanism for cardiac infection and cardiomyocyte injury in COVID-19 patients remains unclear. The current literature supports the notion that SARS-CoV-2 particles access the heart either by the circulating blood cells or by extracellular vesicles, originating from the inflamed lungs, and encapsulating the virus along with its receptor (ACE2). Both cardiomyocytes and pericytes (coronary arteries) express the necessary accessory proteins for access of SARS-CoV-2 particles (i.e. ACE2, NRP-1, TMPRSS2, CD147, integrin α5ß1, and CTSB/L). These proteins facilitate the SARS-CoV-2 interaction and entry into the pericytes and cardiomyocytes thus leading to cardiac manifestations. Subsequently, various signaling pathways are altered in the infected cardiomyocytes (i.e. increased ROS production, reduced contraction, impaired calcium homeostasis), causing cardiac dysfunction. The currently adopted pharmacotherapy in severe COVID-19 subjects exhibited side effects on the heart, often manifested by electrical abnormalities. Nonetheless, cardiovascular adverse repercussions have been associated with the advent of some of the SARS-CoV-2 vaccines with no clear mechanisms underlining these complications. We provide herein an overview of the pathways involved with cardiomyocyte in COVID-19 subjects to help promoting pharmacotherapies that can protect against SARS-CoV-2-induced cardiac injuries.


Subject(s)
COVID-19/metabolism , Heart Diseases/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , SARS-CoV-2/metabolism , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/metabolism , Heart Diseases/drug therapy , Heart Diseases/epidemiology , Humans , Myocytes, Cardiac/drug effects , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
13.
Biomed Pharmacother ; 146: 112527, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1559074

ABSTRACT

Coronavirus disease 2019 (COVID-19) has a devastating impact on global populations triggered by a highly infectious viral sickness, produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The third major cause of mortality in the United States, following heart disease and cancer in 2020, was undoubtedly COVID-19. The centers for disease control and prevention (CDC) and the world health organization (WHO) separately developed a categorization system for differentiating new strains of SARS-CoV-2 into variants of concern (VoCs) and variants of interest (VoIs) with the continuing development of various strains SARS-CoV-2. By December 2021, five of the SARS-CoV-2 VoCs were discovered from the onset of the pandemic depending on the latest epidemiologic report by the WHO: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529). Mutations in the receptor-binding domain (RBD) and n-terminal domain (NTD) have been found throughout all five identified VoCs. All strains other than the delta mutant are often found with the N501Y mutation situated on the RBD, resulting in higher binding between the spike protein and angiotensin-converting enzyme 2 (ACE2) receptors, enhanced viral adhesion, and following the entrance to host cells. The introduction of these new strains of SRAS-CoV-2 is likely to overcome the remarkable achievements gained in restricting this viral disease to the point where it is presented with remarkable vaccine developments against COVID-19 and strong worldwide mass immunization initiatives. Throughout this literature review, the effectiveness of current COVID-19 vaccines for managing and prohibiting SARS-CoV-2 strains is thoroughly described.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Genetic Vectors/administration & dosage , SARS-CoV-2/drug effects , Vaccines, Synthetic/administration & dosage , mRNA Vaccines/administration & dosage , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19 Vaccines/genetics , COVID-19 Vaccines/metabolism , Genetic Variation/genetics , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Treatment Outcome , Vaccines, Synthetic/genetics , Vaccines, Synthetic/metabolism , mRNA Vaccines/genetics , mRNA Vaccines/metabolism
14.
Viruses ; 13(10)2021 09 22.
Article in English | MEDLINE | ID: covidwho-1438737

ABSTRACT

Nearly 40 years have passed since the initial cases of infection with the human mmunodeficiency virus (HIV) were identified as a new disease entity and the cause of acquired immunodeficiency disease (AIDS). This virus, unlike any other, is capable of causing severe suppression of our adaptive immune defense mechanisms by directly infecting and destroying helper T cells leading to increased susceptibility to a wide variety of microbial pathogens, especially those considered to be intracellular or opportunistic. After T cells are infected, HIV reproduces itself via a somewhat unique mechanism involving various metabolic steps, which includes the use of a reverse transcriptase enzyme that enables the viral RNA to produce copies of its complementary DNA. Subsequent physiologic steps lead to the production of new virus progeny and the eventual death of the invaded T cell. Fortunately, both serologic and molecular tests (such as PCR) can be used to confirm the diagnosis of an HIV infection. In the wake of the current COVID-19 pandemic, it appears that people living with HIV/AIDS are equally or slightly more susceptible to the etiologic agent, SARS-CoV-2, than the general population having intact immune systems, but they may have more serious outcomes. Limited clinical trials have also shown that the currently available COVID-19 vaccines are both safe and effective in affording protection to HIV/AIDS patients. In this review, we further explore the unique dynamic of HIV/AIDS in the context of the worldwide COVID-19 pandemic and the implementation of vaccines as a protective measure against COVID-19, as well as what immune parameters and safeguards should be monitored in this immunocompromised group following vaccination.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/immunology , HIV Infections/complications , COVID-19/complications , COVID-19 Vaccines/metabolism , Coinfection/virology , HIV Infections/virology , Humans , Pandemics/prevention & control , SARS-CoV-2/pathogenicity , Vaccination/trends
15.
Immunogenetics ; 73(6): 459-477, 2021 12.
Article in English | MEDLINE | ID: covidwho-1427234

ABSTRACT

Since 2019, the world was involved with SARS-CoV-2 and consequently, with the announcement by the World Health Organization that COVID-19 was a pandemic, scientific were an effort to obtain the best approach to combat this global dilemma. The best way to prevent the pandemic from spreading further is to use a vaccine against COVID-19. Here, we report the design of a recombinant multi-epitope vaccine against the four proteins spike or crown (S), membrane (M), nucleocapsid (N), and envelope (E) of SARS-CoV-2 using immunoinformatics tools. We evaluated the most antigenic epitopes that bind to HLA class 1 subtypes, along with HLA class 2, as well as B cell epitopes. Beta-defensin 3 and PADRE sequence were used as adjuvants in the structure of the vaccine. KK, GPGPG, and AAY linkers were used to fuse the selected epitopes. The nucleotide sequence was cloned into pET26b(+) vector using restriction enzymes XhoI and NdeI, and HisTag sequence was considered in the C-terminal of the construct. The results showed that the proposed candidate vaccine is a 70.87 kDa protein with high antigenicity and immunogenicity as well as non-allergenic and non-toxic. A total of 95% of the selected epitopes have conservancy with similar sequences. Molecular docking showed a strong binding between the vaccine structure and tool-like receptor (TLR) 7/8. The docking, molecular dynamics, and MM/PBSA analysis showed that the vaccine established a stable interaction with both structures of TLR7 and TLR8. Simulation of immune stimulation by this vaccine showed that it evokes immune responses related to humoral and cellular immunity.


Subject(s)
COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , Base Sequence , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/metabolism , Computational Biology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , HLA Antigens/immunology , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Weight , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Toll-Like Receptor 7/chemistry , Toll-Like Receptor 8/chemistry , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/metabolism , Vaccinology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology
16.
J Am Chem Soc ; 143(36): 14748-14765, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1397838

ABSTRACT

The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches. We studied 13 peptide epitopes from SARS-CoV-2 and identified three neutralizing epitopes that are highly conserved among the VOCs. Monovalent and trivalent COVID-19 vaccine candidates were formulated by chemical conjugation of the peptide epitopes to cowpea mosaic virus (CPMV) nanoparticles and virus-like particles (VLPs) derived from bacteriophage Qß. Efficacy of this approach was validated first using soluble vaccine candidates as solo or trivalent mixtures and subcutaneous prime-boost injection. The high thermal stability of our vaccine candidates allowed for formulation into single-dose injectable slow-release polymer implants, manufactured by melt extrusion, as well as microneedle (MN) patches, obtained through casting into micromolds, for prime-boost self-administration. Immunization of mice yielded high titers of antibodies against the target epitope and S protein, and data confirms that antibodies block receptor binding and neutralize SARS-CoV and SARS-CoV-2 against infection of human cells. We present a nanotechnology vaccine platform that is stable outside the cold-chain and can be formulated into delivery devices enabling single administration or self-administration. CPMV or Qß VLPs could be stockpiled, and epitopes exchanged to target new mutants or emergent diseases as the need arises.


Subject(s)
COVID-19 Vaccines/metabolism , COVID-19/epidemiology , COVID-19/prevention & control , Delayed-Action Preparations/chemistry , SARS-CoV-2/metabolism , Vaccines, Subunit/metabolism , Animals , Comovirus , Computer Simulation , Drug Compounding , Epitopes/chemistry , Hot Temperature , Humans , Male , Mice, Inbred BALB C , Nanoparticles/chemistry , Peptides/chemistry , Vaccination , Vaccines, Virus-Like Particle/chemistry
17.
Adv Mater ; 33(34): e2101707, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1316189

ABSTRACT

The transfer of foreign synthetic messenger RNA (mRNA) into cells is essential for mRNA-based protein-replacement therapies. Prophylactic mRNA COVID-19 vaccines commonly utilize nanotechnology to deliver mRNA encoding SARS-CoV-2 vaccine antigens, thereby triggering the body's immune response and preventing infections. In this study, a new combinatorial library of symmetric lipid-like compounds is constructed, and among which a lead compound is selected to prepare lipid-like nanoassemblies (LLNs) for intracellular delivery of mRNA. After multiround optimization, the mRNA formulated into core-shell-structured LLNs exhibits more than three orders of magnitude higher resistance to serum than the unprotected mRNA, and leads to sustained and high-level protein expression in mammalian cells. A single intravenous injection of LLNs into mice achieves over 95% mRNA translation in the spleen, without causing significant hematological and histological changes. Delivery of in-vitro-transcribed mRNA that encodes high-affinity truncated ACE2 variants (tACE2v mRNA) through LLNs induces elevated expression and secretion of tACE2v decoys, which is able to effectively block the binding of the receptor-binding domain of the SARS-CoV-2 to the human ACE2 receptor. The robust neutralization activity in vitro suggests that intracellular delivery of mRNA encoding ACE2 receptor mimics via LLNs may represent a potential intervention strategy for COVID-19.


Subject(s)
COVID-19 Vaccines/genetics , Galactosidases/chemistry , Nanoparticles/chemistry , Phosphatidylethanolamines/chemistry , RNA, Messenger/chemistry , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/metabolism , Cell Membrane Permeability , Cell Survival/drug effects , Female , Galactosidases/metabolism , Gene Expression Regulation , Gene Transfer Techniques , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Phosphatidylethanolamines/metabolism , Protein Binding , RNA, Messenger/genetics
18.
AAPS PharmSciTech ; 22(5): 172, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1261286

ABSTRACT

Vaccination development and production was an essential question for the prevention and global control of COVID-19. The strong support from governing authorities such as Operation Warp Speed and robust funding has led to the development and authorization of the tozinameran (BNT162b2) vaccine. The BNT162b2 vaccine is a lipid nanoparticle-encapsulated mRNA that encodes for SARS-CoV-2 spike protein, the main site for neutralizing antibodies. Once it binds with the host cells, the lipid nanoparticles enable the transfer of the RNA, causing S antigens' expression of the SARS-CoV-2, conferring immunity. The vaccine is administered as a 2-dose regime 21 days apart for individuals 16 years and older. Pfizer-BioNTech's BNT162b2 vaccine was the first candidate to receive FDA-Emergency Use Authorization (EUA) on December 11, 2020. During phase 2/3 clinical trials, 95% efficacy was reported among 37,706 participants over the age of 16 who received the BNT162b2 vaccination; additionally, 52% efficacy was noted 12 days following the administration of the first dose of BNT162b2, reflecting early protection of COVID-19. The BNT162b2 vaccine has exhibited 100% efficacy in clinical trials of adolescents between the ages of 12 and 15. Clinical trials in pregnant women and children under the age of 12 are expected to also exhibit promising results. This review article encompasses tozinameran (BNT162b2) vaccine journey, summarizing the BNT162b1 and BNT162b2 vaccines from preclinical studies, clinical trial phases, dosages, immune response, adverse effects, and FDA-EUA.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Clinical Trials as Topic/methods , Drug Approval/methods , SARS-CoV-2/drug effects , Animals , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/metabolism , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/metabolism , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/metabolism , Clinical Trials as Topic/legislation & jurisprudence , Drug Approval/legislation & jurisprudence , Drug Evaluation, Preclinical/methods , Exanthema/chemically induced , Female , Humans , Male , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/legislation & jurisprudence , Vaccination/methods
19.
Naunyn Schmiedebergs Arch Pharmacol ; 394(7): 1383-1402, 2021 07.
Article in English | MEDLINE | ID: covidwho-1219857

ABSTRACT

SARS-CoV-2 is an enveloped positive-sense RNA virus, contain crown-like spikes on its surface, exceptional of large RNA genome, and a special replication machinery. Common symptoms of SARS-CoV-2 include cough, common cold, fever, sore throat, and a variety of severe acute respiratory disease (SARD) such as pneumonia. SARS-CoV-2 infects epithelial cells, T-cells, macrophages, and dendritic cells and also influences the production and implantation of pro-inflammatory cytokines and chemokines. Repurposing of various drugs during this emergency condition can reduce the rate of mortality as well as time and cost. Two druggable protein and enzyme targets have been selected in this review article due to their crucial role in the viral life cycle. The eukaryotic translation initiation factor (eIF4A), cyclophilin, nucleocapsid protein, spike protein, Angiotensin-converting enzyme 2 (ACE2), 3-chymotrypsin-like cysteine protease (3CLpro), and RNA-dependent RNA polymerase (RdRp) play significant role in early and late phase of SARS-CoV-2 replication and translation. This review paper is based on the rationale of inhibiting of various SARS-CoV-2 proteins and enzymes as novel therapeutic approaches for the management and treatment of patients with SARS-CoV-2 infection. We also discussed the structural and functional relationship of different proteins and enzymes to develop therapeutic approaches for novel coronavirus SARS-CoV-2.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , COVID-19 Vaccines/administration & dosage , Drug Delivery Systems/methods , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/metabolism , COVID-19/metabolism , COVID-19 Vaccines/metabolism , Drug Repositioning , Humans , SARS-CoV-2/metabolism , Virus Replication/drug effects , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL