Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 2.233
Filter
2.
Cardiol Rev ; 29(6): 289-291, 2021.
Article in English | MEDLINE | ID: covidwho-20244180

ABSTRACT

The ongoing coronavirus infection-2019 (COVID-19) global pandemic has had devastating impacts on the global population since 2019. Cardiac complications are a well-documented sequala of COVID-19, with exposed patients experiencing complications such as myocardial infarction, myocarditis, and arrythmias. This article aims to review prominent literature regarding COVID-19 and its link with arrhythmias, as well as to discuss some of the possible mechanisms by which arrhythmogenesis may occur in patients with COVID-19.


Subject(s)
Arrhythmias, Cardiac/epidemiology , COVID-19/epidemiology , Anti-Bacterial Agents/adverse effects , Antirheumatic Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Azithromycin/adverse effects , COVID-19/physiopathology , Humans , Hydroxychloroquine/adverse effects , Intensive Care Units , SARS-CoV-2 , Severity of Illness Index , COVID-19 Drug Treatment
3.
J Gerontol B Psychol Sci Soc Sci ; 76(4): e230-e234, 2021 03 14.
Article in English | MEDLINE | ID: covidwho-2325271

ABSTRACT

As the COVID-19 pandemic continues to affect communities worldwide, this novel disease is leaving many survivors with severe lung damage. Among older patients, advanced lung damage is more likely. Survivors of all ages who have extensive lung impacts are likely to be new to managing those issues. Supporting healthy aging for these patients will require both gathering data about their unique experiences and using the existing evidence basis about adapting to managing obstructive lung disease. This article outlines key priorities for research with COVID-19 survivors aging with permanent lung damage and highlights unique considerations for people older at age of onset. It also outlines the relevance of findings from this research for clinical care supporting people newly aging with advanced lung disease from COVID-19. In the process, it summarizes lessons from established patient populations aging with progressive lung disease-using cystic fibrosis as a prominent example from the author's lived experience-that may enhance the experiences of older COVID-19 survivors.


Subject(s)
COVID-19/physiopathology , Lung Injury/epidemiology , Survivors/statistics & numerical data , Aged , COVID-19/complications , COVID-19/epidemiology , Humans , Male , Pneumonia, Viral/epidemiology , Pulmonary Disease, Chronic Obstructive , Severity of Illness Index
4.
Arch Cardiol Mex ; 91(Suplemento COVID): 086-094, 2021 Dec 20.
Article in Spanish | MEDLINE | ID: covidwho-2313261

ABSTRACT

Currently, myocardial injury has been reported in patients hospitalized with coronavirus disease 2019 (COVID-19). The studies also show a correlation between cardiac events and severe forms of the disease. COVID-19 begins with an early infection phase in which the virus infiltrates the lung parenchyma and proliferates. It then progresses to the pulmonary phase, where the initial inflammatory process, characterized by vasodilation, vascular permeability, and leukocyte recruitment, leads to lung damage, hypoxemia, and cardiovascular stress. The renin angiotensin aldosterone system is important in the pathophysiology of severe acute respiratory syndrome coronavirus 2 infection and in the propagation of systemic inflammation. Within this system, the pathway mediated by angiotensin-converting enzyme 2 (ACE2) produces vasodilation, cardioprotection, anti-oxidation, and anti-inflammation. Furthermore, the free form of ECA2 prevents binding of the virus to host cells and reduces its damage to the lung.


Actualmente, se ha reportado injuria miocárdica en pacientes hospitalizados por enfermedad por coronavirus 2019 (COVID-19). Los estudios, además, demuestran una correlación entre los eventos cardiacos y formas severas de la enfermedad. La COVID-19 comienza con una fase de infección temprana en la que el virus infiltra el parénquima pulmonar y prolifera. Luego progresa a la fase pulmonar, donde el proceso inflamatorio inicial, caracterizado por vasodilatación, permeabilidad vascular y reclutamiento de leucocitos, lleva a daño pulmonar, hipoxemia y estrés cardiovascular. El sistema renina angiotensina aldosterona es importante en la fisiopatología de la infección por el coronavirus 2 del síndrome respiratorio agudo grave y en la propagación de la inflamación sistémica. Dentro de este sistema, la vía mediada por la enzima convertidora de angiotensina 2 (ECA2) produce vasodilatación, cardioprotección, antioxidación y antiinflamación. Además, la forma libre de la ECA2 previene la unión del virus a las células huésped y reduce su daño al pulmón.


Subject(s)
COVID-19 , Cardiovascular System , Heart Diseases/virology , Angiotensin-Converting Enzyme 2 , COVID-19/complications , COVID-19/physiopathology , Cardiovascular System/virology , Humans , Lung/virology , Renin-Angiotensin System
6.
Sci Rep ; 13(1): 7162, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-2316264

ABSTRACT

Coronavirus disease (COVID-19) has generated interest in the assessment of systemic immune status, but existing knowledge about mucosal immunity is clearly insufficient to understand the full pathogenetic mechanisms of the disease. The aim of this study was to evaluate the long-term effects of novel coronavirus infection on mucosal immunity in the postinfection period among health care workers (HCWs). A total of 180 health care workers with and without a history of COVID-19 who ranged in age from 18 to 65 years were enrolled in this one-stage, cross-sectional study. The study subjects completed the 36-Item Short Form (36) Health Survey (SF-36) and the Fatigue Assessment Scale. Secretory immunoglobulin A (sIgA) and total immunoglobulin G (IgG) levels were quantified in saliva samples, induced sputum samples, and nasopharyngeal and oropharyngeal scrapings by an enzyme-linked immunosorbent assay. Specific anti-SARS-CoV-2 IgG antibodies were quantified in serum samples by chemiluminescence immunoassay. Analysis of the questionnaire data showed that all HCWs with a history of COVID-19 reported health problems that limited their daily activities and negative changes in their emotional health three months after the disease, regardless of its severity. The following shifts were detected in the adaptive arm of the immune response in different mucosal compartments. Among subjects who had severe or moderate-to-severe COVID-19, salivary sIgA levels were significantly higher than those in the control group (p < 0.05 and p < 0.005, respectively). Compared to the subjects in the control group, all subjects with prior COVID-19 had significantly higher levels of total IgG in induced sputum. In the group of patients who had had severe infection, total IgG in saliva was also higher (p < 0.05). A direct statistically significant correlation was also detected between the levels of total IgG in all studied samples and the levels of specific IgG antibodies against SARS-CoV-2 in the serum. A significant correlation was observed between total IgG levels and the parameters of physical and social activities, mental health, and fatigue levels. Our study demonstrated long-term changes in the humoral mucosal immune response, which were most pronounced in health care workers with a history of severe or moderate-to-severe COVID-19, and an association of these changes with certain clinical signs of post-COVID-19 syndrome.


Subject(s)
COVID-19 , Health Personnel , Immunity, Mucosal , Russia , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Humans , Young Adult , Adult , Middle Aged , Immunoglobulin A/analysis , Respiratory System/immunology , Antibodies, Viral/analysis , Severity of Illness Index , Immunoglobulin G/analysis , SARS-CoV-2/physiology
7.
J Virol ; 97(4): e0014423, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2297692

ABSTRACT

2019 coronavirus disease (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to respiratory illness, COVID-19 patients exhibit neurological symptoms lasting from weeks to months (long COVID). It is unclear whether these neurological manifestations are due to an infection of brain cells. We found that a small fraction of human induced pluripotent stem cell (iPSC)-derived neurons, but not astrocytes, were naturally susceptible to SARS-CoV-2. Based on the inhibitory effect of blocking antibodies, the infection seemed to depend on the receptor angiotensin-converting enzyme 2 (ACE2), despite very low levels of its expression in neurons. The presence of double-stranded RNA in the cytoplasm (the hallmark of viral replication), abundant synthesis of viral late genes localized throughout infected cells, and an increase in the level of viral RNA in the culture medium (viral release) within the first 48 h of infection suggested that the infection was productive. Productive entry of SARS-CoV-2 requires the fusion of the viral and cellular membranes, which results in the delivery of the viral genome into the cytoplasm of the target cell. The fusion is triggered by proteolytic cleavage of the viral surface spike protein, which can occur at the plasma membrane or from endosomes or lysosomes. We found that SARS-CoV-2 infection of human neurons was insensitive to nafamostat and camostat, which inhibit cellular serine proteases, including transmembrane serine protease 2 (TMPRSS2). Inhibition of cathepsin L also did not significantly block infection. In contrast, the neuronal infection was blocked by apilimod, an inhibitor of phosphatidyl-inositol 5 kinase (PIK5K), which regulates early to late endosome maturation. IMPORTANCE COVID-19 is a disease caused by the coronavirus SARS-CoV-2. Millions of patients display neurological symptoms, including headache, impairment of memory, seizures, and encephalopathy, as well as anatomical abnormalities, such as changes in brain morphology. SARS-CoV-2 infection of the human brain has been documented, but it is unclear whether the observed neurological symptoms are linked to direct brain infection. The mechanism of virus entry into neurons has also not been characterized. Here, we investigated SARS-CoV-2 infection by using a human iPSC-derived neural cell model and found that a small fraction of cortical-like neurons was naturally susceptible to infection. The productive infection was ACE2 dependent and TMPRSS2 independent. We also found that the virus used the late endosomal and lysosomal pathway for cell entry and that the infection could be blocked by apilimod, an inhibitor of cellular PIK5K.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , COVID-19/physiopathology , Endosomes/metabolism , Endosomes/virology , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Neurons/virology , Post-Acute COVID-19 Syndrome/physiopathology , Post-Acute COVID-19 Syndrome/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Phosphotransferases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Astrocytes/virology , Cells, Cultured
8.
JAMA ; 329(14): 1170-1182, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2303367

ABSTRACT

Importance: Preclinical models suggest dysregulation of the renin-angiotensin system (RAS) caused by SARS-CoV-2 infection may increase the relative activity of angiotensin II compared with angiotensin (1-7) and may be an important contributor to COVID-19 pathophysiology. Objective: To evaluate the efficacy and safety of RAS modulation using 2 investigational RAS agents, TXA-127 (synthetic angiotensin [1-7]) and TRV-027 (an angiotensin II type 1 receptor-biased ligand), that are hypothesized to potentiate the action of angiotensin (1-7) and mitigate the action of the angiotensin II. Design, Setting, and Participants: Two randomized clinical trials including adults hospitalized with acute COVID-19 and new-onset hypoxemia were conducted at 35 sites in the US between July 22, 2021, and April 20, 2022; last follow-up visit: July 26, 2022. Interventions: A 0.5-mg/kg intravenous infusion of TXA-127 once daily for 5 days or placebo. A 12-mg/h continuous intravenous infusion of TRV-027 for 5 days or placebo. Main Outcomes and Measures: The primary outcome was oxygen-free days, an ordinal outcome that classifies a patient's status at day 28 based on mortality and duration of supplemental oxygen use; an adjusted odds ratio (OR) greater than 1.0 indicated superiority of the RAS agent vs placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included allergic reaction, new kidney replacement therapy, and hypotension. Results: Both trials met prespecified early stopping criteria for a low probability of efficacy. Of 343 patients in the TXA-127 trial (226 [65.9%] aged 31-64 years, 200 [58.3%] men, 225 [65.6%] White, and 274 [79.9%] not Hispanic), 170 received TXA-127 and 173 received placebo. Of 290 patients in the TRV-027 trial (199 [68.6%] aged 31-64 years, 168 [57.9%] men, 195 [67.2%] White, and 225 [77.6%] not Hispanic), 145 received TRV-027 and 145 received placebo. Compared with placebo, both TXA-127 (unadjusted mean difference, -2.3 [95% CrI, -4.8 to 0.2]; adjusted OR, 0.88 [95% CrI, 0.59 to 1.30]) and TRV-027 (unadjusted mean difference, -2.4 [95% CrI, -5.1 to 0.3]; adjusted OR, 0.74 [95% CrI, 0.48 to 1.13]) resulted in no difference in oxygen-free days. In the TXA-127 trial, 28-day all-cause mortality occurred in 22 of 163 patients (13.5%) in the TXA-127 group vs 22 of 166 patients (13.3%) in the placebo group (adjusted OR, 0.83 [95% CrI, 0.41 to 1.66]). In the TRV-027 trial, 28-day all-cause mortality occurred in 29 of 141 patients (20.6%) in the TRV-027 group vs 18 of 140 patients (12.9%) in the placebo group (adjusted OR, 1.52 [95% CrI, 0.75 to 3.08]). The frequency of the safety outcomes was similar with either TXA-127 or TRV-027 vs placebo. Conclusions and Relevance: In adults with severe COVID-19, RAS modulation (TXA-127 or TRV-027) did not improve oxygen-free days vs placebo. These results do not support the hypotheses that pharmacological interventions that selectively block the angiotensin II type 1 receptor or increase angiotensin (1-7) improve outcomes for patients with severe COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04924660.


Subject(s)
COVID-19 , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , Vasodilator Agents , Adult , Female , Humans , Male , Middle Aged , Angiotensin II/metabolism , Angiotensins/administration & dosage , Angiotensins/therapeutic use , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Hypoxia/drug therapy , Hypoxia/etiology , Hypoxia/mortality , Infusions, Intravenous , Ligands , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Randomized Controlled Trials as Topic , Receptor, Angiotensin, Type 1/administration & dosage , Receptor, Angiotensin, Type 1/therapeutic use , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Vasodilator Agents/administration & dosage , Vasodilator Agents/therapeutic use
9.
Nutrients ; 14(20)2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2281057

ABSTRACT

COVID-19 induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a pandemic and it has led to more than 620 million patients with 6.56 million deaths globally. Males are more susceptible to COVID-19 infection and associated with a higher chance to develop severe COVID-19 than females. Aged people are at a high risk of COVID-19 infection, while young children have also increased cases. COVID-19 patients typically develop respiratory system pathologies, however symptoms in the gastrointestinal (GI) tract are also very common. Inflammatory cell recruitments and their secreted cytokines are found in the GI tract in COVID-19 patients. Microbiota changes are the key feature in COVID-19 patients with gut injury. Here, we review all current known mechanisms of COVID-19-induced gut injury, and the most acceptable one is that SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) receptor on host cells in the GI tract. Interestingly, inflammatory bowel disease (IBD) is an inflammatory disorder, but the patients with IBD do not have the increased risk to develop COVID-19. There is currently no cure for COVID-19, but anti-viruses and monoclonal antibodies reduce viral load and shorten the recovery time of the disease. We summarize current therapeutics that target symptoms in the GI tract, including probiotics, ACE2 inhibitors and nutrients. These are promising therapeutic options for COVID-19-induced gut injury.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Female , Humans , Male , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , COVID-19/physiopathology , Cytokines , Inflammatory Bowel Diseases , SARS-CoV-2 , Gastrointestinal Microbiome , Gastrointestinal Diseases/virology
10.
Can J Neurol Sci ; 48(1): 9-24, 2021 01.
Article in English | MEDLINE | ID: covidwho-2278901

ABSTRACT

BACKGROUND: Albeit primarily a disease of respiratory tract, the 2019 coronavirus infectious disease (COVID-19) has been found to have causal association with a plethora of neurological, neuropsychiatric and psychological effects. This review aims to analyze them with a discussion of evolving therapeutic recommendations. METHODS: PubMed and Google Scholar were searched from 1 January 2020 to 30 May 2020 with the following key terms: "COVID-19", "SARS-CoV-2", "pandemic", "neuro-COVID", "stroke-COVID", "epilepsy-COVID", "COVID-encephalopathy", "SARS-CoV-2-encephalitis", "SARS-CoV-2-rhabdomyolysis", "COVID-demyelinating disease", "neurological manifestations", "psychosocial manifestations", "treatment recommendations", "COVID-19 and therapeutic changes", "psychiatry", "marginalised", "telemedicine", "mental health", "quarantine", "infodemic" and "social media". A few newspaper reports related to COVID-19 and psychosocial impacts have also been added as per context. RESULTS: Neurological and neuropsychiatric manifestations of COVID-19 are abundant. Clinical features of both central and peripheral nervous system involvement are evident. These have been categorically analyzed briefly with literature support. Most of the psychological effects are secondary to pandemic-associated regulatory, socioeconomic and psychosocial changes. CONCLUSION: Neurological and neuropsychiatric manifestations of this disease are only beginning to unravel. This demands a wide index of suspicion for prompt diagnosis of SARS-CoV-2 to prevent further complications and mortality.


Les impacts neurologiques et neuropsychiatriques d'une infection à la COVID-19. CONTEXTE: Bien qu'il s'agisse principalement d'une maladie des voies respiratoires, la maladie infectieuse à coronavirus apparue en 2019 (COVID-19) s'est avérée avoir un lien de causalité avec une pléthore d'impacts d'ordre neurologique, neuropsychiatrique et psychologique. Cette étude entend donc analyser ces impacts tout en discutant l'évolution des recommandations thérapeutiques se rapportant à cette maladie. MÉTHODES: Les bases de données PubMed et Google Scholar ont été interrogées entre les 1er janvier et 30 mai 2020. Les termes clés suivants ont été utilisés : « COVID-19 ¼, « SRAS ­ CoV-2 ¼, « Pandémie ¼, « Neuro ­ COVID ¼, « AVC ­ COVID ¼, « Épilepsie ­ COVID ¼, « COVID ­ encéphalopathie ¼, « SRAS ­ CoV-2 ­ encéphalite ¼, « SRAS ­ CoV-2 ­ rhabdomyolyse ¼, « COVID ­ maladie démyélinisante ¼, « Manifestations neurologiques ¼, « Manifestations psychosociales ¼, « Recommandations thérapeutiques ¼, « COVID-19 et changement thérapeutiques ¼, « Psychiatrie ¼, « Marginalisés ¼, « Télémédecine ¼, « Santé mentale ¼, « Quarantaine ¼, « Infodémique ¼ et « Médias sociaux ¼. De plus, quelques articles de journaux relatifs à la pandémie de COVID-19 et à ses impacts psychosociaux ont également été ajoutés en fonction du contexte. RÉSULTATS: Il appert que les manifestations neurologiques et neuropsychiatriques des infections à la COVID-19 sont nombreuses. Les caractéristiques cliniques d'une implication des systèmes nerveux central et périphérique sautent désormais aux yeux. Ces caractéristiques ont fait l'objet d'une brève analyse systématique à l'aide de publications scientifiques. En outre, la plupart des impacts d'ordre psychologique de cette pandémie se sont révélés moins apparents que les changements réglementaires, socioéconomiques et psychosociaux. CONCLUSION: Les manifestations neurologiques et neuropsychiatriques de cette maladie ne font que commencer à être élucidées. Cela exige donc une capacité accrue de vigilance en vue d'un diagnostic rapide, et ce, afin de prévenir des complications additionnelles et une mortalité accrue.


Subject(s)
COVID-19/physiopathology , Nervous System Diseases/physiopathology , Ageusia/etiology , Ageusia/physiopathology , Alzheimer Disease/therapy , Angiotensin-Converting Enzyme 2 , Anosmia/etiology , Anosmia/physiopathology , Brain Diseases , COVID-19/complications , COVID-19/epidemiology , COVID-19/psychology , Cerebellar Ataxia/etiology , Cerebellar Ataxia/physiopathology , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/physiopathology , Comorbidity , Delivery of Health Care , Demyelinating Diseases/therapy , Disease Management , Dizziness/etiology , Dizziness/physiopathology , Epilepsy/therapy , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/physiopathology , Headache/etiology , Headache/physiopathology , Humans , Hypoxia, Brain/physiopathology , Inflammation/physiopathology , Meningoencephalitis/etiology , Meningoencephalitis/physiopathology , Muscular Diseases/etiology , Muscular Diseases/physiopathology , Myelitis, Transverse/etiology , Myelitis, Transverse/physiopathology , Myoclonus/etiology , Myoclonus/physiopathology , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Parkinson Disease/therapy , Polyneuropathies/etiology , Polyneuropathies/physiopathology , SARS-CoV-2 , Seizures/etiology , Seizures/physiopathology , Stroke/therapy , Viral Tropism
11.
Ann Neurol ; 89(4): 780-789, 2021 04.
Article in English | MEDLINE | ID: covidwho-2272603

ABSTRACT

OBJECTIVE: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS). METHODS: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results. RESULTS: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18-4.74, p = 0.015) with increased risk of severe COVID-19. Recent use (<1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20-12.53, p = 0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses. INTERPRETATION: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists. ANN NEUROL 2021;89:780-789.


Subject(s)
COVID-19/physiopathology , Hospitalization/statistics & numerical data , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , COVID-19/mortality , Dimethyl Fumarate/therapeutic use , Female , Fingolimod Hydrochloride/therapeutic use , Humans , Immunologic Factors/therapeutic use , Intensive Care Units/statistics & numerical data , Interferons/therapeutic use , Male , Middle Aged , Mortality , Multiple Sclerosis/complications , Natalizumab/therapeutic use , SARS-CoV-2 , Severity of Illness Index , Young Adult
13.
Can J Neurol Sci ; 48(1): 66-76, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-2270849

ABSTRACT

BACKGROUND: Growing evidence showed that coronavirus disease 2019 (COVID-19) infection may present with neurological manifestations. This review aimed to determine the neurological manifestations and complications in COVID-19. METHODS: We conducted a systematic review and meta-analysis that included cohort and case series/reports involving a population of patients confirmed with COVID-19 infection and their neurologic manifestations. We searched the following electronic databases until April 18, 2020: PubMed, Embase, Scopus, and World Health Organization database (PROSPERO registration number: CRD42020180658). RESULTS: From 403 articles identified, 49 studies involving a total of 6,335 confirmed COVID-19 cases were included. The random-effects modeling analysis for each neurological symptom showed the following proportional point estimates with 95% confidence intervals: "headache" (0.12; 0.10-0.14; I2 = 77%), "dizziness" (0.08; 0.05-0.12; I2 = 82%), "headache and dizziness" (0.09; 0.06-0.13; I2 = 0%), "nausea" (0.07; 0.04-0.11; I2 = 79%), "vomiting" (0.05; 0.03-0.08; I2 = 74%), "nausea and vomiting" (0.06; 0.03-0.11; I2 = 83%), "confusion" (0.05; 0.02-0.14; I2 = 86%), and "myalgia" (0.21; 0.18-0.25; I2 = 85%). The most common neurological complication associated with COVID-19 infection was vascular disorders (n = 23); other associated conditions were encephalopathy (n = 3), encephalitis (n = 1), oculomotor nerve palsy (n = 1), isolated sudden-onset anosmia (n = 1), Guillain-Barré syndrome (n = 1), and Miller-Fisher syndrome (n = 2). Most patients with neurological complications survived (n = 14); a considerable number of patients died (n = 7); and the rest had unclear outcomes (n = 12). CONCLUSION: This review revealed that neurologic involvement may manifest in COVID-19 infection. What has initially been thought of as a primarily respiratory illness has evolved into a wide-ranging multi-organ disease.


Subject(s)
COVID-19/physiopathology , Cerebrovascular Disorders/physiopathology , Headache/physiopathology , Myalgia/physiopathology , Anosmia/etiology , Anosmia/physiopathology , Brain Diseases/etiology , Brain Diseases/physiopathology , COVID-19/complications , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/physiopathology , Cerebral Infarction/etiology , Cerebral Infarction/physiopathology , Cerebrovascular Disorders/etiology , Confusion/etiology , Confusion/physiopathology , Dizziness/etiology , Dizziness/physiopathology , Encephalitis/etiology , Encephalitis/physiopathology , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/physiopathology , Headache/etiology , Humans , Myalgia/etiology , Nausea/etiology , Nausea/physiopathology , Oculomotor Nerve Diseases/etiology , Oculomotor Nerve Diseases/physiopathology , SARS-CoV-2 , Sinus Thrombosis, Intracranial/etiology , Sinus Thrombosis, Intracranial/physiopathology , Vomiting/etiology , Vomiting/physiopathology
14.
Animal Model Exp Med ; 4(1): 2-15, 2021 03.
Article in English | MEDLINE | ID: covidwho-2270129

ABSTRACT

Background: Cardiovascular diseases (CVDs) and diabetes mellitus (DM) are top two chronic comorbidities that increase the severity and mortality of COVID-19. However, how SARS-CoV-2 alters the progression of chronic diseases remain unclear. Methods: We used adenovirus to deliver h-ACE2 to lung to enable SARS-CoV-2 infection in mice. SARS-CoV-2's impacts on pathogenesis of chronic diseases were studied through histopathological, virologic and molecular biology analysis. Results: Pre-existing CVDs resulted in viral invasion, ROS elevation and activation of apoptosis pathways contribute myocardial injury during SARS-CoV-2 infection. Viral infection increased fasting blood glucose and reduced insulin response in DM model. Bone mineral density decreased shortly after infection, which associated with impaired PI3K/AKT/mTOR signaling. Conclusion: We established mouse models mimicked the complex pathological symptoms of COVID-19 patients with chronic diseases. Pre-existing diseases could impair the inflammatory responses to SARS-CoV-2 infection, which further aggravated the pre-existing diseases. This work provided valuable information to better understand the interplay between the primary diseases and SARS-CoV-2 infection.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Cardiovascular Diseases/complications , Cardiovascular Diseases/physiopathology , Diabetes Complications/physiopathology , Animals , Comorbidity , Diabetes Mellitus , Disease Models, Animal , Male , Mice , SARS-CoV-2
15.
Curr Opin Pulm Med ; 27(3): 199-204, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-2267780

ABSTRACT

PURPOSE OF REVIEW: In under a year, coronavirus disease 2019 (COVID-19) has taken the lives of hundreds of thousands of Americans, leaving millions of survivors in its wake. The enormous number of people who survived acute illness but continue to have symptoms has highlighted the need for standardized evaluation of the post-COVID-19 patient. This review, based on the current literature and our experience, aims to guide the care of patients who have survived COVID-19. RECENT FINDINGS: The literature on this topic is rapidly expanding and covers both pulmonary and nonpulmonary complications of COVID-19. Pulmonary complications include dyspnea with normoxia, organizing pneumonia and pulmonary fibrosis. Nonpulmonary complications include neurologic, cardiac, and thromboembolic disease. Special consideration should be taken for COVID-19 survivors of intensive care. SUMMARY: The current review outlines the major clinical findings in post-COVID-19 patients and provides a guidelines to the evaluation and management of prolonged symptoms.


Subject(s)
Aftercare/methods , COVID-19/rehabilitation , Critical Illness/rehabilitation , SARS-CoV-2/pathogenicity , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Critical Care/methods , Humans , Rehabilitation Research , Survivors
16.
Medicina (Kaunas) ; 57(3)2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-2256675

ABSTRACT

Background and Objectives: COVID-19, a disease caused by SARS-CoV-2, is a public health emergency. Data on the effect of the virus on pregnancy are limited. Materials and Methods: We carried out a retrospective descriptive study, in order to evaluate the obstetric results on pregnant women in which SARS-CoV-2 was detected through RT-PCR of the nasopharyngeal swab, at admission to the maternity hospital. Results: From 16 March to 31 July 2020, 12 SARS-CoV-2 positive pregnant women have been hospitalized. Eleven were hospitalized for initiation or induction of labor, corresponding to 0.64% of deliveries in the maternity hospital. One pregnant woman was hospitalized for threatened abortion, culminating in a stillbirth at 20 weeks of gestation. Regarding the severity of the disease, nine women were asymptomatic and three had mild illness (two had associated cough and one headache). Three had relevant environmental exposure and a history of contact with infected persons. None had severe or critical illness due to SARS-CoV-2. There were no maternal deaths. The following gestational complications were observed: one stillbirth, one preterm labor, one preterm prelabor rupture of membranes, and one fetal growth restriction. Four deliveries were eutocic, two vacuum-assisted deliveries and five were cesarean sections. The indications for cesarean section were obstetric. Conclusions: SARS-CoV-2 infection was found in a minority of hospitalized pregnant women in this sample. Most are asymptomatic or have mild illness, from gestational complications to highlight stillbirth and preterm birth. There were no cases of vertical transmission by coronavirus.


Subject(s)
COVID-19/epidemiology , Pregnancy Complications, Infectious/epidemiology , Adult , COVID-19/physiopathology , Cesarean Section , Cough/physiopathology , Female , Fetal Growth Retardation/epidemiology , Fetal Membranes, Premature Rupture/epidemiology , Headache/physiopathology , Hospitalization , Hospitals, Maternity , Humans , Labor, Induced , Obstetric Labor, Premature/epidemiology , Portugal/epidemiology , Postpartum Hemorrhage/epidemiology , Pregnancy , Pregnancy Outcome , Premature Birth/epidemiology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Stillbirth/epidemiology , Vacuum Extraction, Obstetrical
17.
Swiss Med Wkly ; 150: w20417, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-2267622

ABSTRACT

Coronavirus disease 2019 (COVID-19) is primarily a pulmonary disease, but also affects the cardiovascular system in multiple ways. In this review, we will summarise and put into perspective findings and debates relating to the diverse aspects of cardiovascular involvement of COVID-19. We will review evidence for the role of the renin-angiotensin-aldosterone system (RAAS), the risk of pre-existing cardiovascular disease in COVID-19 susceptibility and course, and the mechanism of acute and long-term myocardial injury. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) uses membrane-bound angiotensin converting-enzyme-2 (ACE2) as a receptor for cell entry. ACE2 is part of an important counter-regulatory circuit antagonising the harmful effects of angiotensin II on lung and heart. Modulation of ACE2 may therefore affect disease susceptibility and disease course. However, observational clinical studies and one randomised trial have so far not yielded evidence for harmful or beneficial effects of blockers of the RAAS during COVID-19. Age, gender, and multi-morbidity all increase susceptibility to SARS-CoV-2. In contrast, pre-existing cardiovascular diseases do so only minimally, but they may aggravate the disease course. Direct SARS-CoV-2 infection of the heart tissue and myocytes is rare. Nevertheless, COVID-19 may lead to myocarditis-like acute cardiac injury, characterised by myocardial oedema, but lacking extensive myocyte loss and lymphocytic infiltration. Independent of this, increases in cardiac biomarkers (troponin, N-terminal pro-brain natriuretic peptide, D-dimer) are frequent, especially in the phase of severe systemic inflammation and acute respiratory distress syndrome, and quantitatively associated with poor outcome. The pulmonary infection may result initially in right ventricular dysfunction, but in cases with severe systemic infection hypoxia, hyperinflammation and cytokine storm heart failure may eventually ensue. Unlike other infections and inflammatory states, COVID-19 does not appear to trigger acute coronary syndromes. In children, even mild COVID-19 can induce a multisystem inflammatory syndrome with Kawasaki-like symptoms frequently accompanied by cardiogenic shock.


Subject(s)
COVID-19/epidemiology , COVID-19/physiopathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/physiopathology , Age Factors , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors , Biomarkers , Comorbidity , Humans , Inflammation/physiopathology , Inflammation Mediators/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , Renin-Angiotensin System/physiology , Sex Factors , Systemic Inflammatory Response Syndrome/physiopathology , COVID-19 Drug Treatment
18.
J Biol Chem ; 299(5): 104668, 2023 05.
Article in English | MEDLINE | ID: covidwho-2288832

ABSTRACT

Inhibition of heat shock protein 90 (Hsp90), a prominent molecular chaperone, effectively limits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but little is known about any interaction between Hsp90 and SARS-CoV-2 proteins. Here, we systematically analyzed the effects of the chaperone isoforms Hsp90α and Hsp90ß on individual SARS-CoV-2 viral proteins. Five SARS-CoV-2 proteins, namely nucleocapsid (N), membrane (M), and accessory proteins Orf3, Orf7a, and Orf7b were found to be novel clients of Hsp90ß in particular. Pharmacological inhibition of Hsp90 with 17-DMAG results in N protein proteasome-dependent degradation. Hsp90 depletion-induced N protein degradation is independent of CHIP, a ubiquitin E3 ligase previously identified for Hsp90 client proteins, but alleviated by FBXO10, an E3 ligase identified by subsequent siRNA screening. We also provide evidence that Hsp90 depletion may suppress SARS-CoV-2 assembly partially through induced M or N degradation. Additionally, we found that GSDMD-mediated pyroptotic cell death triggered by SARS-CoV-2 was mitigated by inhibition of Hsp90. These findings collectively highlight a beneficial role for targeting of Hsp90 during SARS-CoV-2 infection, directly inhibiting virion production and reducing inflammatory injury by preventing the pyroptosis that contributes to severe SARS-CoV-2 disease.


Subject(s)
COVID-19 , HSP90 Heat-Shock Proteins , Pyroptosis , SARS-CoV-2 , Virion , Humans , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , HSP90 Heat-Shock Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Ubiquitin-Protein Ligases/metabolism , Virion/chemistry , Virion/growth & development , Virion/metabolism , Viral Proteins/metabolism
19.
Am J Prev Med ; 64(4): 492-502, 2023 04.
Article in English | MEDLINE | ID: covidwho-2287982

ABSTRACT

INTRODUCTION: Physical activity before COVID-19 infection is associated with less severe outcomes. The study determined whether a dose‒response association was observed and whether the associations were consistent across demographic subgroups and chronic conditions. METHODS: A retrospective cohort study of Kaiser Permanente Southern California adult patients who had a positive COVID-19 diagnosis between January 1, 2020 and May 31, 2021 was created. The exposure was the median of at least 3 physical activity self-reports before diagnosis. Patients were categorized as follows: always inactive, all assessments at 10 minutes/week or less; mostly inactive, median of 0-60 minutes per week; some activity, median of 60-150 minutes per week; consistently active, median>150 minutes per week; and always active, all assessments>150 minutes per week. Outcomes were hospitalization, deterioration event, or death 90 days after a COVID-19 diagnosis. Data were analyzed in 2022. RESULTS: Of 194,191 adults with COVID-19 infection, 6.3% were hospitalized, 3.1% experienced a deterioration event, and 2.8% died within 90 days. Dose‒response effects were strong; for example, patients in the some activity category had higher odds of hospitalization (OR=1.43; 95% CI=1.26, 1.63), deterioration (OR=1.83; 95% CI=1.49, 2.25), and death (OR=1.92; 95% CI=1.48, 2.49) than those in the always active category. Results were generally consistent across sex, race and ethnicity, age, and BMI categories and for patients with cardiovascular disease or hypertension. CONCLUSIONS: There were protective associations of physical activity for adverse COVID-19 outcomes across demographic and clinical characteristics. Public health leaders should add physical activity to pandemic control strategies.


Subject(s)
COVID-19 , Exercise , Exercise/physiology , COVID-19/classification , COVID-19/diagnosis , COVID-19/mortality , COVID-19/physiopathology , Humans , Male , Female , Middle Aged , Aged , Hospitalization/statistics & numerical data , California , Retrospective Studies , Disease Progression , Sedentary Behavior , Time Factors , Racial Groups/statistics & numerical data , Ethnicity/statistics & numerical data , Body Mass Index , Cardiovascular Diseases/epidemiology , Hypertension/epidemiology
20.
Expert Rev Neurother ; 23(2): 179-186, 2023 02.
Article in English | MEDLINE | ID: covidwho-2259033

ABSTRACT

INTRODUCTION: COVID19 associated headaches are highly common and there is currently an unmet need to better understand their association with SARSCoV2 variants. Headaches are a prevalent symptom in the acute phase of COVID19 and are associated with a better prognosis and better immune response. They are also a relevant post-COVID symptom. AREAS COVERED: This article analyses the differences in the prevalence of headache as an onset symptom and in post-COVID headache among the different SARS-CoV-2 variants: the historical strain, Alpha, Delta and Omicron. The different pathophysiological mechanisms by which SARS-CoV-2 infection may cause headache are also discussed. EXPERT OPINION: The presence of headache at the acute phase is a risk factor for post-COVID headache, whereas a history of primary headache does not appear to be associated with post-COVID headache. The prevalence of headache as an onset symptom appears to be variable for the different SARS-CoV-2 variants, but current data are inconclusive. However, the current evidence also suggests that headache represents a prevalent symptom in the acute and post-infection COVID-19 phase, regardless of SARS-CoV-2 variant.


Subject(s)
COVID-19 , Headache , Post-Acute COVID-19 Syndrome , Headache/etiology , Headache/physiopathology , Headache/virology , COVID-19/complications , COVID-19/physiopathology , COVID-19/virology , Post-Acute COVID-19 Syndrome/complications , Post-Acute COVID-19 Syndrome/physiopathology , Post-Acute COVID-19 Syndrome/virology , Humans , Animals , Acute Disease , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL