Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Bioorg Chem ; 116: 105272, 2021 11.
Article in English | MEDLINE | ID: covidwho-1370451


Hypertension has been recognized as one of the most frequent comorbidities and risk factors for the seriousness and adverse consequences in COVID-19 patients. 3,4-dihydropyrimidin-2(1H) ones have attracted researchers to be synthesized via Beginilli reaction and evaluate their antihypertensive activities as bioisosteres of nifedipine a well-known calcium channel blocker. In this study, we report synthesis of some bioisosteres of pyrimidines as novel CCBs with potential ACE2 inhibitory effect as antihypertensive agents with protective effect against COVID-19 infection by suppression of ACE2 binding to SARS-CoV-2 Spike RBD. All compounds were evaluated for their antihypertensive and calcium channel blocking activities using nifedipine as a reference standard. Furthermore, they were screened for their ACE2 inhibition potential in addition to their anti-inflammatory effects on LPS-stimulated THP-1 cells. Most of the tested compounds exhibited significant antihypertensive activity, where compounds 7a, 8a and 9a exhibited the highest activity compared to nifedipine. Moreover, compounds 4a,b, 5a,b, 7a,b, 8a,c and 9a showed promising ACE2:SARS-CoV-2 Spike RBD inhibitory effect. Finally, compounds 5a, 7b and 9a exerted a promising anti-inflammatory effect by inhibition of CRP and IL-6 production. Ultimately, compound 9a may be a promising antihypertensive candidate with anti-inflammatory and potential efficacy against COVID-19 via ACE2 receptor inhibition.

Angiotensin-Converting Enzyme Inhibitors/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antihypertensive Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Calcium Channel Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Angiotensin-Converting Enzyme Inhibitors/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Humans , SARS-CoV-2/drug effects
ACS Chem Neurosci ; 11(15): 2145-2148, 2020 08 05.
Article in English | MEDLINE | ID: covidwho-646274


Studies have shown that the calcium ion (Ca2+) plays important roles both in Alzheimer's dementia and SARS-CoV S-mediated fusion to host cell entry. An elevated level of intracellular calcium causes neuronal dysfunction, cell death, and apoptosis. Dysregulation of calcium has also been shown to increase the production of amyloid beta (Aß) protein, the hallmark of Alzheimer's dementia. Reversely, deposition of Aß is also responsible for calcium dysregulation. On the other hand, it has been well investigated that viruses can disturb host cell Ca2+ homeostasis as well as modulate signal transduction mechanisms. Viruses can also hijack the host cell calcium channels and pumps to release more intracellular Ca2+ to utilize for their life cycle. Even though evidence has not been reported on SARS-CoV-2 concerning Ca2+ regulation, however, it has been well established that Ca2+ is essential for viral entry, viral gene replication, and virion maturation and release. Recent reports suggest that SARS-CoV needs two Ca2+ ions to fuse with the host cell at the entry step. Furthermore, some calcium channel blockers (CCBs), such as nimodipine, memantine, etc., have been reported to be effective in the treatment of dementia in Alzheimer's disease (AD) as well as have shown inhibition in various virus infections.

Alzheimer Disease/drug therapy , Betacoronavirus , Calcium Channel Blockers/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , COVID-19 , Calcium/metabolism , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Coronavirus Infections/metabolism , Coronavirus Infections/psychology , Humans , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/psychology , SARS-CoV-2 , Treatment Outcome