Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Front Immunol ; 14: 1111629, 2023.
Article in English | MEDLINE | ID: covidwho-2245364

ABSTRACT

Background: The emergence of novel SARS-CoV-2 variants that resist neutralizing antibodies drew the attention to cellular immunity and calls for the development of alternative vaccination strategies to combat the pandemic. Here, we have assessed the kinetics of T cell responses and protective efficacy against severe COVID-19 in pre- and post-exposure settings, elicited by PolyPEPI-SCoV-2, a peptide based T cell vaccine. Methods: 75 Syrian hamsters were immunized subcutaneously with PolyPEPI-SCoV-2 on D0 and D14. On D42, hamsters were intranasally challenged with 102 TCID50 of the virus. To analyze immunogenicity by IFN-γ ELISPOT and antibody secretion, lymphoid tissues were collected both before (D0, D14, D28, D42) and after challenge (D44, D46, D49). To measure vaccine efficacy, lung tissue, throat swabs and nasal turbinate samples were assessed for viral load and histopathological changes. Further, body weight was monitored on D0, D28, D42 and every day after challenge. Results: The vaccine induced robust activation of T cells against all SARS-CoV-2 structural proteins that were rapidly boosted after virus challenge compared to control animals (~4-fold, p<0.05). A single dose of PolyPEPI-SCoV-2 administered one day after challenge also resulted in elevated T cell response (p<0.01). The vaccination did not induce virus-specific antibodies and viral load reduction. Still, peptide vaccination significantly reduced body weight loss (p<0.001), relative lung weight (p<0.05) and lung lesions (p<0.05), in both settings. Conclusion: Our study provides first proof of concept data on the contribution of T cell immunity on disease course and provide rationale for the use of T cell-based peptide vaccines against both novel SARS-CoV-2 variants and supports post-exposure prophylaxis as alternative vaccination strategy against COVID-19.


Subject(s)
COVID-19 , Cancer Vaccines , Animals , Cricetinae , T-Lymphocytes , SARS-CoV-2 , COVID-19/prevention & control , Vaccines, Subunit , Mesocricetus , Post-Exposure Prophylaxis , Patient Acuity , Antibodies, Neutralizing
2.
J Interferon Cytokine Res ; 42(11): 592-593, 2022 11.
Article in English | MEDLINE | ID: covidwho-2231738

ABSTRACT

Recently, messenger ribonucleic acid (mRNA) vaccine research and development became a hotspot in the field of prevention and treatment of Corona Virus Disease 2019 (COVID-19) and some other disorders. mRNA vaccine shows many advantages over other vaccines, including cost-effectiveness, safety, and rapid optimization of antigen-specific sequences and shorter development cycle. Cancer progression is significantly associated with immune response, and mRNA vaccine also shows obvious advantages for cancer immunotherapy. In this study, we briefly summarize the recent advances and discuss the perspectives on tumor mRNA vaccine development; particularly, these findings pave an avenue for effective cancer prevention and treatment.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , Humans , COVID-19/prevention & control , Cancer Vaccines/genetics , Neoplasms/genetics , Neoplasms/prevention & control , RNA, Messenger/genetics
3.
Front Immunol ; 13: 1001430, 2022.
Article in English | MEDLINE | ID: covidwho-2231827

ABSTRACT

SARS-COV-2 is a virulent respiratory virus, first identified in China (Wuhan) at the end of 2019. Scientists and researchers are trying to find any possible solution to this deadly viral disease. Different drug source agents have been identified, including western medicine, natural products, and traditional Chinese medicine. They have the potential to counteract COVID-19. This virus immediately affects the liver and causes a decrease in oxygen levels. In this study, multiple vacciome approaches were employed for designing a multi-epitope subunit vaccine for battling against SARS-COV-2. Vaccine designing, immunogenicity, allergenic, and physico-chemical assessment were performed by using the vacciome approach. The vaccine design is likely to be antigenic and produce potent interactions with ACE2 and NSP3 receptors. The developed vaccine has also been given to in-silico cloning models and immune response predictions. A total number of 12 CTL and 12 HTL antigenic epitopes were predicted from three selected covid-19 virulent proteins (spike protein, nucleocapsid protein, and membrane proteins, respectively) based on C-terminal cleavage and MHC binding scores. These predicted epitopes were amalgamated by AYY and GPGPG linkers, and a ß-defensins adjuvant was inserted into the N-terminus of this vaccine. This analysis shows that the recommended vaccine can produce immune responses against SARS-COV-2. Designing and developing of the mentioned vaccine will require further experimental validation.


Subject(s)
COVID-19 , Cancer Vaccines , Viral Vaccines , Humans , COVID-19/prevention & control , SARS-CoV-2 , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Molecular Docking Simulation , Vaccines, Subunit , Peptides , Vaccination
4.
Biol Pharm Bull ; 46(2): 301-308, 2023.
Article in English | MEDLINE | ID: covidwho-2224353

ABSTRACT

mRNA vaccines have attracted considerable attention as a result of the 2019 coronavirus pandemic; however, challenges remain regarding use of mRNA vaccines, including insufficient delivery owing to the high molecular weights and high negative charges associated with mRNA. These characteristics of mRNA vaccines impair intracellular uptake and subsequent protein translation. In the current study, we prepared a minimal mRNA vaccine encoding a tumor associated antigen human gp10025-33 peptide (KVPRNQDWL), as a potential treatment for melanoma. Minimal mRNA vaccines have recently shown promise at improving the translational process, and can be prepared via a simple production method. Moreover, we previously reported the successful use of iontophoresis (IP) technology in the delivery of hydrophilic macromolecules into skin layers, as well as intracellular delivery of small interfering RNA (siRNA). We hypothesized that combining IP technology with a newly synthesized minimal mRNA vaccine can improve both transdermal and intracellular delivery of mRNA. Following IP-induced delivery of a mRNA vaccine, an immune response is elicited resulting in activation of skin resident immune cells. As expected, combining both technologies led to potent stimulation of the immune system, which was observed via potent tumor inhibition in mice bearing melanoma. Additionally, there was an elevation in mRNA expression levels of various cytokines, mainly interferon (IFN)-γ, as well as infiltration of cytotoxic CD8+ T cells in the tumor tissue, which are responsible for tumor clearance. This is the first report demonstrating the application of IP for delivery of a minimal mRNA vaccine as a potential melanoma therapeutic.


Subject(s)
Cancer Vaccines , Melanoma , mRNA Vaccines , Animals , Humans , Mice , Cancer Vaccines/genetics , CD8-Positive T-Lymphocytes , Iontophoresis , Melanoma/therapy , Melanoma/genetics , mRNA Vaccines/genetics
5.
Theranostics ; 12(14): 6422-6436, 2022.
Article in English | MEDLINE | ID: covidwho-2203053

ABSTRACT

Rationale: Messenger RNA (mRNA) vaccine outperforms other kinds of cancer immunotherapy due to its high response rates, easy preparation, and wide applicability, which is considered as one of the most promising forms of next-generation cancer therapies. However, the inherent instability and insufficient protein expression duration of mRNA limit the efficacy and widespread application of the vaccine. Methods: Here, we first tested the possibility of a novel circular RNA (circRNA) platform for protein expression and compare its duration with linear RNA. Then, we developed a lipid nanoparticle (LNP) system for circRNA delivery in vitro and in vivo. Next, the innate and adaptive immune response of circRNA-LNP complex was evaluated in vivo. The anti-tumor efficacy of circRNA-LNP was further confirmed in three tumor models. Finally, the possibility of combination therapy with circRNA-LNP and adoptive cell transfer therapy was further investigated in a late-stage tumor model. Results: We successfully increased the stability of the RNA vaccine by circularizing the linear RNA molecules to form highly stable circRNA molecules which exhibited durable protein expression ability. By encapsulating the antigen-coding circRNA in LNP enabling in vivo expression, we established a novel circRNA vaccine platform, which was capable of triggering robust innate and adaptive immune activation and showed superior anti-tumor efficacy in multiple mouse tumor models. Conclusions: Overall, our circRNA vaccine platform provides a novel prospect for the development of cancer RNA vaccines in a wide range of hard-to-treat malignancies.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Animals , Liposomes , Mice , Neoplasms/therapy , RNA/genetics , RNA, Circular/genetics , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
6.
Invest New Drugs ; 40(6): 1173-1184, 2022 12.
Article in English | MEDLINE | ID: covidwho-2148841

ABSTRACT

Melanoma has a high degree of malignancy and mortality. While there are some hopeful clinical trials for melanoma treatment in progress, they have not yet to yield significant long-term cure rates. Cancer vaccines including mRNA are currently one of the most promising strategy for tumor immunotherapy. The aim of this study was to analyze the potential tumor antigens in melanoma that could be used to develop mRNA vaccines and identify suitable vaccine populations. The gene expression data and complete clinical information of 471 melanoma samples and 1 normal tissue were retrieved from TCGA. Then, 812 samples of normal skin and their corresponding gene expression data were obtained from GTEx. Overexpressed genes, mutated genes and IRDEGs are used to identify potential tumor antigens. The relationship between the expression level of potential antigen and prognosis was analyzed in GEPIA, and then the immune cell infiltration was estimated based on TIMER algorithm. The expression profiles of IRDEGs were used to identify consensus clusters and immune subtypes of melanoma. Finally, mutational status and immune microenvironment characterization in immune subtypes were analyzed. Five tumor antigens (PTPRC, SIGLEC10, CARD11, LILRB1, ADAMDEC1) were identified as potential tumor antigens according to overexpressed genes, mutated genes and immune-related genes. They were all associated with OS, DFS and APCs. We identified two immune subtypes of melanoma, named IS1 and IS2, which exhibit different clinical features and immune landscapes. Based on the different immune landscape, we may conclude that IS1 is immunophenotypically "cold", while IS2 is "hot". The present research implicates that PTPRC, SIGLEC10, CARD11, LILRB1 and ADAMDEC1 may be the antigenic targets for melanoma mRNA vaccines and IS2 patients may be more effective to these vaccines.


Subject(s)
Cancer Vaccines , Melanoma , Humans , Antigens, Neoplasm/genetics , Melanoma-Specific Antigens , Leukocyte Immunoglobulin-like Receptor B1 , Melanoma/genetics , Melanoma/therapy , Cancer Vaccines/therapeutic use , RNA, Messenger/genetics , Tumor Microenvironment
7.
Lancet Oncol ; 23(10): e450-e458, 2022 10.
Article in English | MEDLINE | ID: covidwho-2042234

ABSTRACT

Years of research exploring mRNA vaccines for cancer treatment in preclinical and clinical trials have set the stage for the rapid development of mRNA vaccines during the COVID-19 pandemic. Therapeutic cancer vaccines based on mRNA are well tolerated, and the inherent advantage in ease of production, which rivals the best available conventional vaccine manufacture methods, renders mRNA vaccines a promising option for cancer immunotherapy. Technological advances have optimised mRNA-based vaccine stability, structure, and delivery methods, and multiple clinical trials investigating mRNA vaccine therapy are now enrolling patients with various cancer diagnoses. Although therapeutic mRNA-based cancer vaccines have not yet been approved for standard treatment, encouraging results from early clinical trials with mRNA vaccines as monotherapy and in combination with checkpoint inhibitors have been obtained. This Review summarises the latest clinical advances in mRNA-based vaccines for cancer treatment and reflects on future perspectives and challenges for this new and promising treatment approach.


Subject(s)
Cancer Vaccines , Neoplasms , Cancer Vaccines/adverse effects , Humans , Neoplasms/genetics , Neoplasms/therapy , Pandemics , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
8.
Proc Natl Acad Sci U S A ; 119(34): e2207841119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1991768

ABSTRACT

The targeted delivery of messenger RNA (mRNA) to desired organs remains a great challenge for in vivo applications of mRNA technology. For mRNA vaccines, the targeted delivery to the lymph node (LN) is predicted to reduce side effects and increase the immune response. In this study, we explored an endogenously LN-targeting lipid nanoparticle (LNP) without the modification of any active targeting ligands for developing an mRNA cancer vaccine. The LNP named 113-O12B showed increased and specific expression in the LN compared with LNP formulated with ALC-0315, a synthetic lipid used in the COVID-19 vaccine Comirnaty. The targeted delivery of mRNA to the LN increased the CD8+ T cell response to the encoded full-length ovalbumin (OVA) model antigen. As a result, the protective and therapeutic effect of the OVA-encoding mRNA vaccine on the OVA-antigen-bearing B16F10 melanoma model was also improved. Moreover, 113-O12B encapsulated with TRP-2 peptide (TRP2180-188)-encoding mRNA also exhibited excellent tumor inhibition, with the complete response of 40% in the regular B16F10 tumor model when combined with anti-programmed death-1 (PD-1) therapy, revealing broad application of 113-O12B from protein to peptide antigens. All the treated mice showed long-term immune memory, hindering the occurrence of tumor metastatic nodules in the lung in the rechallenging experiments that followed. The enhanced antitumor efficacy of the LN-targeting LNP system shows great potential as a universal platform for the next generation of mRNA vaccines.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , mRNA Vaccines , Amino Alcohols , Animals , Antigens/metabolism , CD8-Positive T-Lymphocytes , Cancer Vaccines/therapeutic use , Decanoates , Immunologic Memory , Liposomes , Lymph Nodes , Mice , Neoplasm Metastasis/prevention & control , Neoplasms/therapy , Ovalbumin , mRNA Vaccines/therapeutic use
9.
Cancer Cell ; 40(6): 559-564, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-1944424

ABSTRACT

Given the renewed interest in vaccine development sparked by the COVID-19 pandemic, we are revisiting the current state of vaccine development for cancer prevention and treatment. Experts discuss different vaccine types, their antigens and modes of action, and where we stand on their clinical development, plus the challenges we need to overcome for their broad implementation.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , COVID-19/prevention & control , Cancer Vaccines/therapeutic use , Humans , Neoplasms/prevention & control , Pandemics/prevention & control
10.
Mol Ther ; 30(9): 3078-3094, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1926985

ABSTRACT

mRNA vaccines have recently proved to be highly effective against SARS-CoV-2. Key to their success is the lipid-based nanoparticle (LNP), which enables efficient mRNA expression and endows the vaccine with adjuvant properties that drive potent antibody responses. Effective cancer vaccines require long-lived, qualitative CD8 T cell responses instead of antibody responses. Systemic vaccination appears to be the most effective route, but necessitates adaptation of LNP composition to deliver mRNA to antigen-presenting cells. Using a design-of-experiments methodology, we tailored mRNA-LNP compositions to achieve high-magnitude tumor-specific CD8 T cell responses within a single round of optimization. Optimized LNP compositions resulted in enhanced mRNA uptake by multiple splenic immune cell populations. Type I interferon and phagocytes were found to be essential for the T cell response. Surprisingly, we also discovered a yet unidentified role of B cells in stimulating the vaccine-elicited CD8 T cell response. Optimized LNPs displayed a similar, spleen-centered biodistribution profile in non-human primates and did not trigger histopathological changes in liver and spleen, warranting their further assessment in clinical studies. Taken together, our study clarifies the relationship between nanoparticle composition and their T cell stimulatory capacity and provides novel insights into the underlying mechanisms of effective mRNA-LNP-based antitumor immunotherapy.


Subject(s)
COVID-19 , Cancer Vaccines , Nanoparticles , Animals , Immunization/methods , Immunotherapy , RNA, Messenger/metabolism , SARS-CoV-2/genetics , Spleen , Tissue Distribution , Vaccination/methods
11.
Front Immunol ; 13: 887125, 2022.
Article in English | MEDLINE | ID: covidwho-1903020

ABSTRACT

mRNA therapy is a novel anticancer strategy based on in vitro transcription (IVT), which has potential for the treatment of malignant tumors. The outbreak of the COVID-19 pandemic in the early 21st century has promoted the application of mRNA technologies in SARS-CoV-2 vaccines, and there has been a great deal of interest in the research and development of mRNA cancer vaccines. There has been progress in a number of key technologies, including mRNA production strategies, delivery systems, antitumor immune strategies, etc. These technologies have accelerated the progress and clinical applications of mRNA therapy, overcoming problems encountered in the past, such as instability, inefficient delivery, and weak immunogenicity of mRNA vaccines. This review provides a detailed overview of the production, delivery systems, immunological mechanisms, and antitumor immune response strategies for mRNA cancer vaccines. We list some mRNA cancer vaccines that are candidates for cancer treatment and discuss clinical trials in the field of tumor immunotherapy. In addition, we discuss the immunological mechanism of action by which mRNA vaccines destroy tumors as well as challenges and prospects for the future.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/therapy , Pandemics , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
12.
Expert Rev Vaccines ; 21(8): 1111-1120, 2022 08.
Article in English | MEDLINE | ID: covidwho-1860689

ABSTRACT

INTRODUCTION: Developing a safe and efficacious vaccine that can induce broad and long-term immunity for SARS-CoV-2 infection is the most critical research to date. As the most potent APCs, dendritic cells (DCs) can induce a robust T cell immunity. In addition, DCs also play an essential role in COVID-19 pathogenesis, making them a potential vaccination target. However, the DCs-based vaccine with ex vivo loading has not yet been explored for COVID-19. AREAS COVERED: This review aims to provide the rationale for developing a DCs-based vaccine with ex vivo loading of SARS-CoV-2 antigen. Here, we discuss the role of DCs in immunity and the effect of SARS-CoV-2 infection on DCs. Then, we propose the mechanism of the DCs-based vaccine in inducing immunity and highlight the benefits of ex vivo loading of antigen. EXPERT OPINION: We make the case that an ex vivo loaded DC-based vaccination is appropriate for COVID-19 prevention.


Subject(s)
COVID-19 , Cancer Vaccines , COVID-19/prevention & control , Dendritic Cells , Humans , Pandemics/prevention & control , SARS-CoV-2
13.
Cancer Treat Rev ; 107: 102405, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1819470

ABSTRACT

mRNA vaccines have gained popularity over the last decade as a versatile tool for developing novel therapeutics. The recent success of coronavirus disease (COVID-19) mRNA vaccine has unlocked the potential of mRNA technology as a powerful therapeutic platform. In this review, we apprise the literature on the various types of cancer vaccines, the novel platforms available for delivery of the vaccines, the recent progress in the RNA-based therapies and the evolving role of mRNA vaccines for various cancer indications, along with a future strategy to treat the patients. Literature reveals that despite multifaceted challenges in the development of mRNA vaccines, the promising and durable efficacy of the RNA in pre-clinical and clinical studies deserves consideration. The introduction of mRNA-transfected DC vaccine is an approach that has gained interest for cancer vaccine development due to its ability to circumvent the necessity of DC isolation, ex vivo cultivation and re-infusion. The selection of appropriate antigen of interest remains one of the major challenges for cancer vaccine development. The rapid development and large-scale production of mRNA platform has enabled for the development of both personalized vaccines (mRNA 4157, mRNA 4650 and RO7198457) and tetravalent vaccines (BNT111 and mRNA-5671). In addition, mRNA vaccines combined with checkpoint modulators and other novel medications that reverse immunosuppression show promise, however further research is needed to discover which combinations are most successful and the best dosing schedule for each component. Each delivery route (intradermal, subcutaneous, intra tumoral, intranodal, intranasal, intravenous) has its own set of challenges to overcome, and these challenges will decide the best delivery method. In other words, while developing a vaccine design, the underlying motivation should be a reasonable combination of delivery route and format. Exploring various administration routes and delivery route systems has boosted the development of mRNA vaccines.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , COVID-19/prevention & control , Humans , Neoplasms/therapy , RNA, Messenger/genetics , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
14.
Molecules ; 27(9)2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1810045

ABSTRACT

Ferritin is an iron storage protein that plays a key role in iron homeostasis and cellular antioxidant activity. Ferritin has many advantages as a tumor immunotherapy platform, including a small particle size that allows for penetration into tumor-draining lymph nodes or tumor tissue, a unique structure consisting of 24 self-assembled subunits, cavities that can encapsulate drugs, natural targeting functions, and a modifiable outer surface. In this review, we summarize related research applying ferritin as a tumor immune vaccine or a nanocarrier for immunomodulator drugs based on different targeting mechanisms (including dendritic cells, tumor-associated macrophages, tumor-associated fibroblasts, and tumor cells). In addition, a ferritin-based tumor vaccine expected to protect against a wide range of coronaviruses by targeting multiple variants of SARS-CoV-2 has entered phase I clinical trials, and its efficacy is described in this review. Although ferritin is already on the road to transformation, there are still many difficulties to overcome. Therefore, three barriers (drug loading, modification sites, and animal models) are also discussed in this paper. Notwithstanding, the ferritin-based nanoplatform has great potential for tumor immunotherapy, with greater possibility of clinical transformation.


Subject(s)
COVID-19 , Cancer Vaccines , Animals , COVID-19/therapy , Ferritins/chemistry , Immunotherapy , Iron/metabolism , SARS-CoV-2
15.
Curr Opin Immunol ; 76: 102176, 2022 06.
Article in English | MEDLINE | ID: covidwho-1783265

ABSTRACT

Lessons learned from the rapid deployment of vaccines during the COVID-19 pandemic are reinvigorating the cancer vaccine field. Using delivery platforms including mRNA and synthetic long peptides, recent clinical trials have demonstrated that cancer vaccines are safe, feasible, and can be associated with the generation of antigen-specific memory T cells and, in some cases, durable clinical responses. Despite these advances, fundamental questions remain regarding the optimal delivery platforms and antigen targets to use in cancer vaccines. Ongoing and future studies that harness advances in the identification of novel sources of antigens, the prediction of immunogenic antigens, and the use of single-cell technologies to profile antigen-specific T cells will hopefully reveal correlates with clinical outcomes and provide a mechanistic basis for future progress.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , COVID-19/prevention & control , Humans , Neoplasms/therapy , Pandemics , RNA, Messenger/genetics
17.
ACS Appl Bio Mater ; 5(3): 905-944, 2022 03 21.
Article in English | MEDLINE | ID: covidwho-1705996

ABSTRACT

This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.


Subject(s)
Vaccine Development , Vaccines, Subunit/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Antigens/immunology , Cancer Vaccines/administration & dosage , Communicable Disease Control , Humans , Neoplasms/therapy , Peptides/immunology
18.
J Mater Chem B ; 10(10): 1520-1552, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1684137

ABSTRACT

A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.


Subject(s)
COVID-19 , Cancer Vaccines , Nanotubes, Carbon , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2
19.
Viruses ; 14(2)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1667339

ABSTRACT

In 2014 and 2021, two nucleic-acid vaccine candidates named MAV E2 and VGX-3100 completed phase III clinical trials in Mexico and U.S., respectively, for patients with human papillomavirus (HPV)-related, high-grade squamous intraepithelial lesions (HSIL). These well-tolerated but still unlicensed vaccines encode distinct HPV antigens (E2 versus E6+E7) to elicit cell-mediated immune responses; their clinical efficacy, as measured by HSIL regression or cure, was modest when compared with placebo or surgery (conization), but both proved highly effective in clearing HPV infection, which should help further optimize strategies for enhancing vaccine immunogenicity, toward an ultimate goal of preventing malignancies in millions of patients who are living with persistent, oncogenic HPV infection but are not expected to benefit from current, prophylactic vaccines. The major roadblocks to a highly efficacious and practical product remain challenging and can be classified into five categories: (i) getting the vaccines into the right cells for efficient expression and presentation of HPV antigens (fusion proteins or epitopes); (ii) having adequate coverage of oncogenic HPV types, beyond the current focus on HPV-16 and -18; (iii) directing immune protection to various epithelial niches, especially anogenital mucosa and upper aerodigestive tract where HPV-transformed cells wreak havoc; (iv) establishing the time window and vaccination regimen, including dosage, interval and even combination therapy, for achieving maximum efficacy; and (v) validating therapeutic efficacy in patients with poor prognosis because of advanced, recurrent or non-resectable malignancies. Overall, the room for improvements is still large enough that continuing efforts for research and development will very likely extend into the next decade.


Subject(s)
Cancer Vaccines/therapeutic use , Neoplasms/therapy , Papillomavirus Infections/therapy , Papillomavirus Vaccines/therapeutic use , Uterine Cervical Dysplasia/therapy , Uterine Cervical Neoplasms/therapy , Vaccines, DNA/therapeutic use , Animals , Clinical Trials as Topic , Female , Humans , Immunogenicity, Vaccine , Neoplasms/immunology , Neoplasms/virology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Squamous Intraepithelial Lesions of the Cervix/therapy , Uterine Cervical Neoplasms/virology , Vaccine Development , Vaccines, DNA/immunology , mRNA Vaccines/therapeutic use , Uterine Cervical Dysplasia/immunology
SELECTION OF CITATIONS
SEARCH DETAIL