Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
BMC Pulm Med ; 22(1): 227, 2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1885300

ABSTRACT

BACKGROUND: This study was designed to explore the early predictive value of the respiratory rate oxygenation (ROX) index modified by PaO2 (mROX) in high-flow nasal cannula (HFNC) therapy in patients with acute hypoxemia respiratory failure (AHRF). METHOD: Seventy-five patients with AHRF treated with HFNC were retrospectively reviewed. Respiratory parameters at baseline and 2 h after HFNC initiation were analyzed. The predictive value of the ROX (ratio of pulse oximetry/FIO2 to respiratory rate) and mROX (ratio of arterial oxygen /FIO2 to respiratory rate) indices with two variations by adding heart rate to each index (ROX-HR and mROX-HR) was evaluated. RESULTS: HFNC therapy failed in 24 patients, who had significantly higher intensive care unit (ICU) mortality and longer ICU stay. Both the ROX and mROX indices at 2 h after HFNC initiation can predict the risk of intubation after HFNC. Two hours after HFNC initiation, the mROX index had a higher area under the receiver operating characteristic curve (AUROC) for predicting HFNC success than the ROX index. Besides, baseline mROX index of greater than 7.1 showed a specificity of 100% for HFNC success. CONCLUSION: The mROX index may be a suitable predictor of HFNC therapy outcomes at the early phase in patients with AHRF.


Subject(s)
Noninvasive Ventilation , Respiratory Insufficiency , Blood Gas Analysis , Cannula , Humans , Oxygen Inhalation Therapy , Respiratory Insufficiency/therapy , Respiratory Rate , Retrospective Studies
2.
J Cardiothorac Surg ; 17(1): 263, 2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2064825

ABSTRACT

BACKGROUND: Crescent cannula adhesion in the setting of COVID-19 respiratory failure requiring extracorporeal membrane oxygenation (ECMO) support is a novel complication. The objective of this case presentation is to highlight this rare complication and to explore potential predisposing factors and our management strategies. CASE PRESENTATION: We present the case of a 25 y.o. patient with COVID-19 respiratory failure requiring ECMO support for 16-days in which a 32 Fr crescent cannula became adherent to the SVC and proximal jugular vein. Attempts to remove the cannula at the bedside failed due to immobility of the cannula. Ultrasound of the right neck was unremarkable, so he was taken to the hybrid OR where both TEE and fluoroscopy were unrevealing. An upper sternotomy was performed, and the superior vena cava and proximal jugular vein were dissected revealing a 2 cm segment of the distal SVC and proximal jugular vein that was densely sclerosed and adherent to the cannula. The vessel was opened across the adherent area at the level of the innominate vein and the cannula was then able to be withdrawn. The patient suffered no ill effects and had an unremarkable recovery to discharge. CONCLUSIONS: To date, there have been no reports of crescent cannula adhesion related complications. In patients with COVID-19 respiratory failure requiring ECMO, clinicians should be aware of widespread hypercoagulability and the potential of unprovoked, localized venous sclerosis and cannula adhesion. We report our technique of decannulation in the setting of cannula adhesion and hope that presentation will shed further light on this complication allowing clinicians to optimize patient care.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/therapy , Cannula , Extracorporeal Membrane Oxygenation/methods , Humans , Male , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Vena Cava, Superior
3.
JAMA ; 328(12): 1212-1222, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2058988

ABSTRACT

Importance: The benefit of high-flow nasal cannula oxygen (high-flow oxygen) in terms of intubation and mortality in patients with respiratory failure due to COVID-19 is controversial. Objective: To determine whether the use of high-flow oxygen, compared with standard oxygen, could reduce the rate of mortality at day 28 in patients with respiratory failure due to COVID-19 admitted in intensive care units (ICUs). Design, Setting, and Participants: The SOHO-COVID randomized clinical trial was conducted in 34 ICUs in France and included 711 patients with respiratory failure due to COVID-19 and a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen equal to or below 200 mm Hg. It was an ancillary trial of the ongoing original SOHO randomized clinical trial, which was designed to include patients with acute hypoxemic respiratory failure from all causes. Patients were enrolled from January to December 2021; final follow-up occurred on March 5, 2022. Interventions: Patients were randomly assigned to receive high-flow oxygen (n = 357) or standard oxygen delivered through a nonrebreathing mask initially set at a 10-L/min minimum (n = 354). Main Outcomes and Measures: The primary outcome was mortality at day 28. There were 13 secondary outcomes, including the proportion of patients requiring intubation, number of ventilator-free days at day 28, mortality at day 90, mortality and length of stay in the ICU, and adverse events. Results: Among the 782 randomized patients, 711 patients with respiratory failure due to COVID-19 were included in the analysis (mean [SD] age, 61 [12] years; 214 women [30%]). The mortality rate at day 28 was 10% (36/357) with high-flow oxygen and 11% (40/354) with standard oxygen (absolute difference, -1.2% [95% CI, -5.8% to 3.4%]; P = .60). Of 13 prespecified secondary outcomes, 12 showed no significant difference including in length of stay and mortality in the ICU and in mortality up until day 90. The intubation rate was significantly lower with high-flow oxygen than with standard oxygen (45% [160/357] vs 53% [186/354]; absolute difference, -7.7% [95% CI, -14.9% to -0.4%]; P = .04). The number of ventilator-free days at day 28 was not significantly different between groups (median, 28 [IQR, 11-28] vs 23 [IQR, 10-28] days; absolute difference, 0.5 days [95% CI, -7.7 to 9.1]; P = .07). The most common adverse events were ventilator-associated pneumonia, occurring in 58% (93/160) in the high-flow oxygen group and 53% (99/186) in the standard oxygen group. Conclusions and Relevance: Among patients with respiratory failure due to COVID-19, high-flow nasal cannula oxygen, compared with standard oxygen therapy, did not significantly reduce 28-day mortality. Trial Registration: ClinicalTrials.gov Identifier: NCT04468126.


Subject(s)
COVID-19 , Oxygen Inhalation Therapy , Respiratory Insufficiency , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Cannula/adverse effects , Female , Humans , Male , Masks , Middle Aged , Oxygen/administration & dosage , Oxygen Inhalation Therapy/adverse effects , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Respiratory Insufficiency/therapy
4.
Respir Investig ; 60(6): 779-786, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2031662

ABSTRACT

BACKGROUND: Despite the rapid widespread use of a high-flow nasal cannula (HFNC) during the COVID-19 pandemic, its indications and appropriate use as perceived by physicians remain poorly known. METHODS: In September 2021, we sent a questionnaire to each respiratory physician from 15 institutions in Shizuoka prefecture, Japan. In this survey, we compared the perceptions of HFNC indications and interventions during implementation to those of non-invasive ventilation (NIV) and invasive mechanical ventilation (IMV). Furthermore, this study examined concerns about SARS-CoV-2 infection spread and psychological distress experienced among respondents. RESULTS: Of the 140 respiratory physicians contacted, 87 (62.1%) completed the survey. The results indicate that 96.5% of the respondents agreed with the indication of HFNC for COVID-19, whereas only 13.7% agreed with NIV. The physicians reported that patients with HFNC had a lower frequency of sustained sedation, physical restraint, and implementation in the ICU than that of patients with NIV and IMV. The HFNC was introduced as a respiratory modality following conventional oxygen therapy (COT) in patients with COVID-19, regardless of full or do-not-intubate codes. Additionally, they reported that patients with COVID-19 switched from COT to HFNC significantly earlier than those without COVID-19. Simultaneously, this survey revealed persistent concerns of SARS-CoV-2 infection spread and psychological distress (47.1% and 53.3%, respectively) among respiratory physicians during HFNC use. CONCLUSION: Clinically, HFNC is considered useful for COVID-19 patients by most respiratory physicians. However, HFNC remains a concern for COVID-19 spread and psychological distress among several respiratory physicians, indicating the need for urgent action.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Humans , Cannula , COVID-19/epidemiology , Cross-Sectional Studies , Respiratory Insufficiency/therapy , Pandemics , SARS-CoV-2 , Oxygen Inhalation Therapy/methods , Oxygen , Pulmonologists
5.
Int J Artif Organs ; 45(12): 1006-1012, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2020840

ABSTRACT

OBJECTIVE: The ProtekDuo with oxygenator mimics veno-venous (V-V) extracorporeal membrane oxygenation (ECMO) in veno-pulmonary (V-P) configuration. We have recently developed a new configuration by utilizing a 25 Fr multistage femoral venous drainage cannula and by returning oxygenated blood through both lumina of the double lumen ProtekDuo cannula (V-VP configuration), thereby creating partial right ventricular bypass and oxygenated blood flow of up to seven LPM. We investigated our experience with V-P and V-VP ECMO in patients suffering from COVID-19 acute respiratory distress syndrome (ARDS). METHODS: Single center, retrospective observational study. RESULTS: Of nine patients, one was initiated on V-A, two on V-P, and six on V-V ECMO. All patients were reconfigured to V-P and five patients in addition had V-VP ECMO configuration. All patients had at least one and up to three circuit exchanges. Patients were on ECMO support between 20 and 122 (55 ± 29) days, were in ICU between 46 and 161 (78 ± 40) days with a total hospital length of stay between 35 and 171 (82 ± 42) days. Six of nine (67%) patients could successfully be weaned off ECMO, survived, and were discharged. CONCLUSION: The ProtekDuo cannula in V-P configuration provides ECMO blood flow while reducing RV flow, wall-stress and dilatation, as well as oxygen consumption. The V-VP configuration is useful to provide high blood flows of up to seven LPM of oxygenated blood, and partial RV support without over-circulating the pulmonary vascular bed. Our results show that V-P and V-VP ECMO configurations are feasible, have good outcome and are without complications.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Extracorporeal Membrane Oxygenation/methods , COVID-19/therapy , Respiratory Distress Syndrome/therapy , Cannula , Catheterization
6.
J Trop Pediatr ; 68(4)2022 06 06.
Article in English | MEDLINE | ID: covidwho-2018106

ABSTRACT

AIMS: The influenza virus is an infectious disease with acute respiratory tract infections, caused secondary bacterial infections and death. In this study, we aimed to determine which predictors were associated with the need for high-flow nasal cannula oxygen therapy (HFNC) and transition to intensive care for influenza virus and also to compare single viral pathogens with multiple ones. METHODS: Inpatients under the age of 5 with influenza virus-related respiratory tract infections between November 2015 and March 2019 were included in the study. Demographic features, comorbidities, symptoms, secondary bacterial infection, need for HFNC and pediatric intensive care unit and respiratory support system, length of hospital stay, polymerase chain reaction tests were recorded. RESULTS: A total of 93 patients were included in the study. It was determined that 53.8% of the cases were male and 84.9% were under the age of 2. Comorbidities were present in 50.5% of the cases. Secondary bacterial pneumonia developed in 56.9% of the cases. Patients with secondary bacterial pneumonia had higher PICU need, HFNC need and hospital stay (p = 0.014, p ≤ 0.001 and p ≤ 0.001, respectively). Patients with comorbidity had longer hospital stays and a higher need for HFNC (p ≤ 0.001 and p = 0.001, respectively). CONCLUSIONS: In this study, it was determined that especially comorbidity and secondary bacterial infection aggravated the clinical treatment of hospitalized patients. Therefore, it was concluded that patients with comorbidity should be followed closely and secondary bacterial pneumonia should be recognized and treated early.


Subject(s)
Bacterial Infections , Coinfection , Influenza, Human , Respiratory Tract Infections , Cannula , Child , Child, Preschool , Female , Hospitals , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Influenza, Human/therapy , Male , Oxygen Inhalation Therapy/methods , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Respiratory Tract Infections/therapy , Retrospective Studies
7.
Eur J Pediatr ; 181(11): 3931-3936, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2014145

ABSTRACT

After the SARS-CoV-2 pandemic, we noticed a marked increase in high-flow nasal cannula use for bronchiolitis. This study aims to report the percentage of children treated with high-flow nasal cannula (HFNC) in various seasons. The secondary outcomes were admissions for bronchiolitis, virological results, hospital burden, and NICU/PICU need. We conducted a retrospective study in four Italian hospitals, examining the medical records of all infants (< 12 months) hospitalized for bronchiolitis in the last four winter seasons (1 September-31 March 2018-2022). In the 2021-2022 winter season, 66% of admitted children received HFNC versus 23%, 38%, and 35% in the previous 3 years. A total of 876 patients were hospitalized in the study periods. In 2021-2022, 300 infants were hospitalized for bronchiolitis, 22 in 2020-2021, 259 in 2019-2020, and 295 in 2018-2019. The percentage of patients needing intensive care varied from 28.7% to 18%, 22%, and 15% in each of the four considered periods (p < 0.05). Seventy-seven percent of children received oxygen in the 2021-2022 winter; vs 50%, 63%, and 55% (p < 0.01) in the previous 3 years. NIV/CPAP was used in 23%, 9%, 16%, and 12%, respectively. In 2021-2020, 2% of patients were intubated; 0 in 2020-2021, 3% in 2019-2020, and 1% in 2018-2019. CONCLUSION: This study shows a marked increase in respiratory support and intensive care admissions this last winter. While these severity indexes were all driven by medical choices, more reliable indexes such as intubation rate and length of stay did not change. Therefore, we suggest that there is a more aggressive treatment attitude rather than a more severe disease. WHAT IS KNOWN: • COVID-19 pandemic deeply impacted bronchiolitis epidemiology, reducing hospitalizations to onetenth. In the 2021-2022 winter, bronchiolitis resurged to pre-pandemic numbers in Europe. WHAT IS NEW: • Bronchiolitis hospitalization rose much faster in the 2021-2022 winter period, peaking at a higher level. Respiratory supports and high-flow nasal cannula increased significantly compared to the pre-pandemic era.


Subject(s)
Bronchiolitis , COVID-19 , Physicians , Attitude of Health Personnel , Bronchiolitis/epidemiology , Bronchiolitis/therapy , COVID-19/epidemiology , COVID-19/therapy , Cannula , Child , Humans , Infant , Oxygen , Oxygen Inhalation Therapy , Pandemics , Retrospective Studies , SARS-CoV-2
8.
Respir Care ; 67(11): 1443-1451, 2022 11.
Article in English | MEDLINE | ID: covidwho-1988239

ABSTRACT

BACKGROUND: COVID-19 pneumonia has been responsible for many ICU patients' admissions with hypoxemic respiratory failure, and oxygen therapy is one of the pillars of its treatment. The current pandemic scenario has limited the availability of ICU beds and access to invasive ventilation equipment. High-flow nasal cannula (HFNC) can reduce the need for orotracheal intubation compared with conventional oxygen therapy, providing better results than noninvasive respiratory support. However, HFNC use has been controversial due to concerns about the benefits and risks of aerosol dispersion. In this context, we evaluated the performance of the HFNC therapy in patients with COVID-19 and investigated factors that can predict favorable responses. METHODS: A prospective observational study was conducted, which included hospitalized adult subjects with COVID-19 in the respiratory wards who needed oxygen therapy. Clinical and laboratory parameters were collected to compare HFNC therapy use and the outcomes. RESULTS: In 6 months, 128 subjects were included and the success rate of HFNC therapy was 53%. Logistic regression analysis showed that the Charlson comorbidity score, need for oxygen flow, [Formula: see text], and breathing frequency predicted therapy failure. The mortality rate increased among the non-responders versus the responders (47% vs 3%), 48% of failure occurred in the first 24 h of the HFNC therapy. A ROX (respiratory frequency - oxygenation) index > 4.98 in 6 h and > 4.53 in 24 h predicted success of the HFNC therapy with an area under the curve of 0.7, and a ROX index < 3.47 predicted failure with 88% of specificity. CONCLUSIONS: HFNC in the subjects with COVID-19 was associated with reduced mortality and improved oxygenation in the subjects with respiratory distress. Close monitoring of specific parameters defines eligible patients and rapidly identifies those in need of invasive ventilatory support.


Subject(s)
COVID-19 , Cannula , Humans , Adult , COVID-19/therapy , Respiratory Aerosols and Droplets , Oxygen Inhalation Therapy/methods , Oxygen
11.
Ther Adv Respir Dis ; 16: 17534666221113663, 2022.
Article in English | MEDLINE | ID: covidwho-1950910

ABSTRACT

BACKGROUND: High-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) are important treatment approaches for acute hypoxemic respiratory failure (AHRF) in coronavirus disease 2019 (COVID-19) patients. However, the differential impact of HFNC versus NIV on clinical outcomes of COVID-19 is uncertain. OBJECTIVES: We assessed the effects of HFNC versus NIV (interface or mode) on clinical outcomes of COVID-19. METHODS: We searched PubMed, EMBASE, Web of Science, Scopus, MedRxiv, and BioRxiv for randomized controlled trials (RCTs) and observational studies (with a control group) of HFNC and NIV in patients with COVID-19-related AHRF published in English before February 2022. The primary outcome of interest was the mortality rate, and the secondary outcomes were intubation rate, PaO2/FiO2, intensive care unit (ICU) length of stay (LOS), hospital LOS, and days free from invasive mechanical ventilation [ventilator-free day (VFD)]. RESULTS: In all, 23 studies fulfilled the selection criteria, and 5354 patients were included. The mortality rate was higher in the NIV group than the HFNC group [odds ratio (OR) = 0.66, 95% confidence interval (CI): 0.51-0.84, p = 0.0008, I2 = 60%]; however, in this subgroup, no significant difference in mortality was observed in the NIV-helmet group (OR = 1.21, 95% CI: 0.63-2.32, p = 0.57, I2 = 0%) or NIV-continuous positive airway pressure (CPAP) group (OR = 0.77, 95% CI: 0.51-1.17, p = 0.23, I2 = 65%) relative to the HFNC group. There were no differences in intubation rate, PaO2/FiO2, ICU LOS, hospital LOS, or days free from invasive mechanical ventilation (VFD) between the HFNC and NIV groups. CONCLUSION: Although mortality was lower with HFNC than NIV, there was no difference in mortality between HFNC and NIV on a subgroup of helmet or CPAP group. Future large sample RCTs are necessary to prove our findings. REGISTRATION: This systematic review and meta-analysis protocol was prospectively registered with PROSPERO (no. CRD42022321997).


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/therapy , Cannula , Humans , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Oxygen Inhalation Therapy/adverse effects , Respiration, Artificial , Respiratory Insufficiency/therapy
12.
Respir Care ; 67(9): 1177-1189, 2022 09.
Article in English | MEDLINE | ID: covidwho-1924460

ABSTRACT

BACKGROUND: High-flow nasal cannula (HFNC) oxygen and noninvasive ventilation (NIV) have been widely used in patients with acute hypoxic respiratory failure (AHRF) due to COVID-19. However, the impact of HFNC versus NIV on clinical outcomes of COVID-19 is uncertain. Therefore, we performed this meta-analysis to evaluate the effect of HFNC versus NIV in COVID-19-related AHRF. METHODS: Several electronic databases were searched through February 10, 2022, for eligible studies comparing HFNC and NIV in COVID-19-related AHRF. Our primary outcome was intubation. The secondary outcomes were mortality, hospital length of stay (LOS), and PaO2 /FIO2 changes. Pooled risk ratio (RR) and mean difference (MD) with the corresponding 95% CI were obtained using a random-effect model. Prediction intervals were calculated to indicate the variance in outcomes that would be expected if new studies were conducted in the future. RESULTS: Nineteen studies involving 3,606 subjects (1,880 received HFNC and 1,726 received NIV) were included. There were no differences in intubation (RR 1.01 [95% CI 0.85-1.20], P = .89) or LOS (MD 0.38 d [95% CI -0.61 to 1.37], P = .45) between groups, with consistent results on the subgroup of randomized controlled trials (RCTs). Mortality was lower in NIV (RR 0.81 [95% CI 0.66-0.98], P = .03). However, the prediction interval was 0.41-1.59, and subgroup analysis of RCTs showed no difference in mortality between groups. There was a greater improvement in PaO2 /FIO2 with NIV (MD 22.80 [95% CI 5.30-40.31], P = .01). CONCLUSIONS: Our study showed that despite the greater improvement in PaO2 /FIO2 with NIV, intubation rates and LOS were similar between HFNC and NIV. Although mortality was lower with HFNC than NIV, the prediction interval included the null value, and there was no difference in mortality between HFNC and NIV on a subgroup of RCTs. Future large-scale RCTs are necessary to support our findings.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/therapy , Cannula , Humans , Hypoxia/etiology , Hypoxia/therapy , Noninvasive Ventilation/methods , Oxygen Inhalation Therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
13.
Respir Care ; 67(9): 1129-1137, 2022 09.
Article in English | MEDLINE | ID: covidwho-1924458

ABSTRACT

BACKGROUND: Oxygen therapy via high-flow nasal cannula (HFNC) has been extensively used during the COVID-19 pandemic. The number of devices has also increased. We conducted this study to answer the following questions: Do HFNC devices differ from the original device for work of breathing (WOB) and generated PEEP? METHODS: Seven devices were tested on ASL 5000 lung model. Compliance was set to 40 mL/cm H2O and resistance to 10 cm H2O/L/s. The devices were connected to a manikin head via a nasal cannula with FIO2 set at 0.21. The measurements were performed at baseline (manikin head free of nasal cannula) and then with the cannula and the device attached with oxygen flow set at 20, 40, and 60 L/min. WOB and PEEP were assessed at 3 simulated inspiratory efforts (-5, -10, -15 cm H2O muscular pressure) and at 2 breathing frequencies (20 and 30 breaths/min). Data were expressed as median (first-third quartiles) and compared with nonparametric tests to the Optiflow device taken as reference. RESULTS: Baseline WOB and PEEP were comparable between devices. Over all the conditions tested, WOB was 4.2 (1.0-9.4) J/min with the reference device, and the relative variations from it were 0, -3 (2-4), 1 (0-1), -2 (1-2), -1 (1-2), and -1 (1-2)% with Airvo 2, G5, HM80, T60, V500, and V60 Plus devices, respectively, (P < .05 Kruskal-Wallis test). PEEP was 0.9 (0.3-1.5) cm H2O with Optiflow, and the relative differences were -28 (22-33), -41 (38-46), -30 (26-36), -31 (28-34), -37 (32-42), and -24 (21-34)% with Airvo 2, G5, HM80, T60, V500, and V60 Plus devices, respectively, (P < .05 Kruskal-Wallis test). CONCLUSIONS: WOB was marginally higher and PEEP marginally lower with devices as compared to the reference device.


Subject(s)
COVID-19 , Oxygen , Cannula , Humans , Oxygen Inhalation Therapy , Pandemics , Work of Breathing
14.
Respir Care ; 67(9): 1091-1099, 2022 09.
Article in English | MEDLINE | ID: covidwho-1911885

ABSTRACT

BACKGROUND: Given the known downstream implications of choice of respiratory support on patient outcomes, all factors influencing these decisions, even those not limited to the patient, warrant close consideration. We examined the effect of emergency department (ED)-specific system factors, such as work load and census, on the use of noninvasive versus invasive respiratory support. METHODS: We conducted a multi-center retrospective cohort study of all adult subjects with severe COVID-19 requiring an ICU admission from 5 EDs within a single urban health care system. Subject demographics, severity of illness, and the type of respiratory support used were obtained. Using continuous measures of ED census, boarding, and active management, we estimated ED work load for each subjects' ED stay. The subjects were categorized by type(s) of respiratory support used: low-flow oxygen, noninvasive respiratory support (eg, noninvasive ventilation [NIV] and/or high-flow nasal cannula [HFNC]), invasive mechanical ventilation, or invasive mechanical ventilation after trial of NIV/HFNC. We used multivariable logistic regression to examine system factors associated with the type of respiratory support used in the ED. RESULTS: A total of 634 subjects were included. Of these, 431 (70.0%) were managed on low-flow oxygen alone, 108 (17.0%) on NIV/HFNC, 54 (8.5%) on invasive mechanical ventilation directly, and 41 (6.5%) on NIV/HFNC prior to invasive mechanical ventilation in the ED. Higher severity of illness and underlying lung disease increased the odds of requiring invasive mechanical ventilation compared to low-flow oxygen (odds ratio 1.05 [95% CI 1.03-1.07] and odds ratio 3.47 [95% CI 1.37-8.78], respectively). Older age decreased odds of being on invasive mechanical ventilation compared to low-flow oxygen (odds ratio 0.96 [95% CI 0.94-0.99]). As ED work load increased, the odds for subjects to be managed initially with NIV/HFNC prior to invasive mechanical ventilation increased 6-8-fold. CONCLUSIONS: High ED work load was associated with higher odds on HFNC/NIV prior to invasive mechanical ventilation.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , COVID-19/complications , COVID-19/therapy , Cannula , Emergency Service, Hospital , Humans , Oxygen Inhalation Therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Retrospective Studies
15.
Respir Care ; 67(10): 1291-1299, 2022 10.
Article in English | MEDLINE | ID: covidwho-1903686

ABSTRACT

BACKGROUND: Timing of intubation in COVID-19 is controversial. We sought to determine the association of the ROX (Respiratory rate-OXygenation) index defined as [Formula: see text] divided by [Formula: see text] divided by breathing frequency at the time of intubation with clinical outcomes. METHODS: We conducted a retrospective cohort study of patients with COVID-19 who were intubated by using a database composed of electronic health record data from patients with COVID-19 from 62 institutions. Multivariable logistic regression was used to evaluate the impact of ROX index score on mortality. We analyzed the ROX index as a continuous variable as well as a categorical variable by using cutoffs previously described as predicting success with high-flow nasal cannula. RESULTS: Of 1,087 subjects in the analysis group, the median age was 64 years, and more than half had diabetes; 55.2% died, 1.8% were discharged to hospice, 7.8% were discharged to home, 27.3% were discharged to another institution, and 7.8% had another disposition. Increasing age and a longer time from admission to intubation were associated with mortality. After adjusting for sex, race, age, comorbidities, and days from admission to intubation, an increasing ROX index score at the time of intubation was associated with a lower risk of death. In a logistic regression model, each increase in the ROX index score by 1 at the time of intubation was associated with an 8% reduction in odds of mortality (odds ratio 0.92, 95% CI 0.88-0.95). We also found an odds ratio for death of 0.62 (95% CI 0.47-0.81) for subjects with an ROX index score ≥ 4.88 at the time of intubation. CONCLUSIONS: Among a cohort of subjects with COVID-19 who were ultimately intubated, a higher ROX index at the time of intubation was positively associated with survival.


Subject(s)
COVID-19 , Blood Gas Analysis , Cannula , Humans , Intubation, Intratracheal/adverse effects , Middle Aged , Retrospective Studies
16.
BMJ Case Rep ; 15(6)2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1891767

ABSTRACT

A woman in her 50s who had been diagnosed with COVID-19 developed deep vein thrombosis in the left femoral vein extending into inferior vena cava (IVC). An IVC filter was placed to prevent fatal pulmonary embolism. Her respiratory failure subsequently deteriorated despite optimal mechanical ventilation and required venovenous extracorporeal membrane oxygenation (VV-ECMO) as a rescue therapy. Femoro-jugular VV-ECMO configuration was not suitable due to the IVC filter, hence a single-site venous cannulation using bicaval dual lumen (AvalonElite) cannula was selected. Placement of the Avalon cannula conventionally requires guidance by fluoroscopy or transoesophageal echocardiography, which were not feasible in COVID-19 patients. Hence, transthoracic echocardiography guidance was chosen. Guidewire looping into the right ventricle might lead to cannula malposition and imminent right ventricular rupture, but these could be detected by 'bending' sign. Transthoracic echocardiography could be a feasible guidance method for Avalon cannulation, nonetheless a thorough protocol should be followed to avoid cannula malposition during the procedure.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Cannula , Catheterization/methods , Echocardiography , Extracorporeal Membrane Oxygenation/methods , Female , Humans
17.
Respir Care ; 67(8): 929-938, 2022 08.
Article in English | MEDLINE | ID: covidwho-1879560

ABSTRACT

BACKGROUND: The use of high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) for hypoxemic respiratory failure secondary to COVID-19 are recommended by critical-care guidelines; however, apprehension about viral particle aerosolization and patient self-inflicted lung injury may have limited use. We aimed to describe hospital variation in the use and clinical outcomes of HFNC and NIV for the management of COVID-19. METHODS: This was a retrospective observational study of adults hospitalized with COVID-19 who received supplemental oxygen between February 15, 2020, and April 12, 2021, across 102 international and United States hospitals by using the COVID-19 Registry. Associations of HFNC and NIV use with clinical outcomes were evaluated by using multivariable adjusted hierarchical random-effects logistic regression models. Hospital variation was characterized by using intraclass correlation and the median odds ratio. RESULTS: Among 13,454 adults with COVID-19 who received supplemental oxygen, 8,143 (60%) received nasal cannula/face mask only, 2,859 (21%) received HFNC, 878 (7%) received NIV, 1,574 (12%) received both HFNC and NIV, with 3,640 subjects (27%) progressing to invasive ventilation. The hospital of admission contributed to 24% of the risk-adjusted variation in HFNC and 30% of the risk-adjusted variation in NIV. The median odds ratio for hospital variation of HFNC was 2.6 (95% CI 1.4-4.9) and of NIV was 3.1 (95% CI 1.2-8.1). Among 5,311 subjects who received HFNC and/or NIV, 2,772 (52%) did not receive invasive ventilation and survived to hospital discharge. Hospital-level use of HFNC or NIV were not associated with the rates of invasive ventilation or mortality. CONCLUSIONS: Hospital variation in the use of HFNC and NIV for acute respiratory failure secondary to COVID-19 was great but was not associated with intubation or mortality. The wide variation and relatively low use of HFNC/NIV observed within our study signaled that implementation of increased HFNC/NIV use in patients with COVID-19 will require changes to current care delivery practices. (ClinicalTrials.gov registration NCT04323787.).


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , COVID-19/therapy , Cannula , Humans , Oxygen , Oxygen Inhalation Therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
18.
J Int Med Res ; 50(5): 3000605221103525, 2022 May.
Article in English | MEDLINE | ID: covidwho-1874964

ABSTRACT

OBJECTIVE: To identify factors associated with high-flow nasal cannula (HFNC) therapy failure in patients with severe COVID-19. METHODS: We retrospectively examined clinical and laboratory data upon admission, treatments, and outcomes of patients with severe COVID-19. Sequential Organ Failure Assessment (SOFA) scores were also calculated. RESULTS: Of 54 patients with severe COVID-19, HFNC therapy was successful in 28 (51.9%) and unsuccessful in 26 (48.1%). HFNC therapy failure was more common in patients aged ≥60 years and in men. Compared with patients with successful HFNC therapy, patients with HFNC therapy failure had higher percentages of fatigue, anorexia, and cardiovascular disease; a longer time from symptom onset to diagnosis; higher SOFA scores; a higher body temperature, respiratory rate, and heart rate; more complications, including acute respiratory distress syndrome, septic shock, myocardial damage, and acute kidney injury; a higher C-reactive protein concentration, neutrophil count, and prothrombin time; and a lower arterial partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2). However, male sex, a low PaO2/FiO2, and a high SOFA score were the only independent factors significantly associated with HFNC therapy failure. CONCLUSIONS: Male sex, a low PaO2/FiO2, and a high SOFA score were independently associated with HFNC therapy failure in patients with severe COVID-19.


Subject(s)
COVID-19 , Respiratory Insufficiency , COVID-19/therapy , Cannula/adverse effects , Humans , Male , Oxygen , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Retrospective Studies
20.
PLoS One ; 17(5): e0268431, 2022.
Article in English | MEDLINE | ID: covidwho-1846939

ABSTRACT

BACKGROUND: The ratio of oxygen saturation (ROX) index, defined as the ratio of oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) to respiratory rate, can help identify patients with hypoxemic respiratory failure at high risk for intubation following high-flow nasal cannula (HFNC) initiation; however, whether it is effective for predicting intubation in coronavirus disease 2019 (COVID-19) patients receiving HFNC remains unknown. Moreover, the SpO2/FiO2 ratio has been assessed as a prognostic marker for acute hypoxemic respiratory failure. This study aimed to determine the utility of the ROX index and the SpO2/FiO2 ratio as predictors of failure in COVID-19 patients who received HFNC. METHODS: This multicenter study was conducted in seven university-affiliated hospitals in Korea. Data of consecutive hospitalized patients diagnosed with COVID-19 between February 10, 2020 and February 28, 2021 were retrospectively reviewed. We calculated the ROX index and the SpO2/FiO2 ratio at 1 h, 4 h, and 12 h after HFNC initiation. The primary outcome was HFNC failure defined as the need for subsequent intubation despite HFNC application. The receiver operating characteristic curve analysis was used to evaluate discrimination of prediction models for HFNC failure. RESULTS: Of 1,565 hospitalized COVID-19 patients, 133 who received HFNC were analyzed. Among them, 63 patients (47.4%) were successfully weaned from HFNC, and 70 (52.6%) were intubated. Among patients with HFNC failure, 32 (45.7%) died. The SpO2/FiO2 ratio at 1 h after HFNC initiation was an important predictor of HFNC failure (AUC 0.762 [0.679-0.846]). The AUCs of SpO2/FiO2 ratio at 4 h and ROX indices at 1 h and 4 h were 0.733 (0.640-0.826), 0.697 (0.597-0.798), and 0.682 (0.583-0.781), respectively. Multivariable analysis showed that the patients aged ≥70 years are 3.4 times more likely to experience HFNC failure than those aged <70 years (HR 3.367 [1.358-8.349], p = 0.009). The SpO2/FiO2 ratio (HR 0.983 [0.972-0.994], p = 0.003) at 1 h was significantly associated with HFNC failure. CONCLUSIONS: The SpO2/FiO2 ratio following HFNC initiation was an acceptable predictor of HFNC failure. The SpO2/FiO2 ratio may be a good prognostic marker for predicting intubation in COVID-9 patients receiving HFNC.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/therapy , Cannula , Humans , Oxygen Inhalation Therapy , Oxygen Saturation , Respiratory Insufficiency/therapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL