Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Carbohydr Polym ; 285: 118971, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1549670

ABSTRACT

Ligusticum chuanxiong, the dried rhizome of Ligusticum chuanxiong Hort, has been widely applied in traditional Chinese medicine for treating plague, and it has appeared frequently in the prescriptions against COVID-19 lately. Ligusticum chuanxiong polysaccharide (LCPs) is one of the effective substances, which has various activities, such as, anti-oxidation, promoting immunity, anti-tumor, and anti-bacteria. The purified fractions of LCPs are considered to be pectic polysaccharides, which are mainly composed of GalA, Gal, Ara and Rha, and are generally linked by α-1,4-d-GalpA, α-1,2-l-Rhap, α-1,5-l-Araf, ß-1,3-d-Galp and ß-1,4-d-Galp, etc. The pectic polysaccharide shows an anti-infective inflammatory activity, which is related to antiviral infection of Ligusticum chuanxiong. In this article, the isolation, purification, structural features, and biological activities of LCPs in recent years are reviewed, and the potential of LCPs against viral infection as well as questions that need future research are discussed.


Subject(s)
COVID-19/drug therapy , Ligusticum/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Carbohydrate Conformation , Carbohydrate Sequence , Drugs, Chinese Herbal , Humans , Polysaccharides/isolation & purification , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
2.
Glycobiology ; 32(1): 60-72, 2022 02 26.
Article in English | MEDLINE | ID: covidwho-1501077

ABSTRACT

Extensive glycosylation of the spike protein of severe acute respiratory syndrome coronavirus 2 virus not only shields the major part of it from host immune responses, but glycans at specific sites also act on its conformation dynamics and contribute to efficient host receptor binding, and hence infectivity. As variants of concern arise during the course of the coronavirus disease of 2019 pandemic, it is unclear if mutations accumulated within the spike protein would affect its site-specific glycosylation pattern. The Alpha variant derived from the D614G lineage is distinguished from others by having deletion mutations located right within an immunogenic supersite of the spike N-terminal domain (NTD) that make it refractory to most neutralizing antibodies directed against this domain. Despite maintaining an overall similar structural conformation, our mass spectrometry-based site-specific glycosylation analyses of similarly produced spike proteins with and without the D614G and Alpha variant mutations reveal a significant shift in the processing state of N-glycans on one specific NTD site. Its conversion to a higher proportion of complex type structures is indicative of altered spatial accessibility attributable to mutations specific to the Alpha variant that may impact its transmissibility. This and other more subtle changes in glycosylation features detected at other sites provide crucial missing information otherwise not apparent in the available cryogenic electron microscopy-derived structures of the spike protein variants.


Subject(s)
COVID-19/epidemiology , Glycopeptides/chemistry , Mutation , Polysaccharides/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/transmission , COVID-19/virology , Carbohydrate Sequence , Datasets as Topic , Glycopeptides/genetics , Glycopeptides/metabolism , Glycosylation , HEK293 Cells , Humans , Mass Spectrometry , Peptide Mapping , Polysaccharides/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Biochem Soc Trans ; 49(5): 2411-2429, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1397910

ABSTRACT

The importance of vaccine-induced protection was repeatedly demonstrated over the last three decades and emphasized during the recent COVID-19 pandemic as the safest and most effective way of preventing infectious diseases. Vaccines have controlled, and in some cases, eradicated global viral and bacterial infections with high efficiency and at a relatively low cost. Carbohydrates form the capsular sugar coat that surrounds the outer surface of human pathogenic bacteria. Specific surface-exposed bacterial carbohydrates serve as potent vaccine targets that broadened our toolbox against bacterial infections. Since first approved for commercial use, antibacterial carbohydrate-based vaccines mostly rely on inherently complex and heterogenous naturally derived polysaccharides, challenging to obtain in a pure, safe, and cost-effective manner. The introduction of synthetic fragments identical with bacterial capsular polysaccharides provided well-defined and homogenous structures that resolved many challenges of purified polysaccharides. The success of semisynthetic glycoconjugate vaccines against bacterial infections, now in different phases of clinical trials, opened up new possibilities and encouraged further development towards fully synthetic antibacterial vaccine solutions. In this mini-review, we describe the recent achievements in semi- and fully synthetic carbohydrate vaccines against a range of human pathogenic bacteria, focusing on preclinical and clinical studies.


Subject(s)
Anti-Bacterial Agents/immunology , Bacteria/immunology , Bacterial Infections/immunology , Carbohydrates/immunology , Glycoconjugates/immunology , Vaccines, Synthetic/immunology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Carbohydrate Sequence , Carbohydrates/chemistry , Glycoconjugates/chemistry , Glycoconjugates/therapeutic use , Humans , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/therapeutic use
5.
J Am Chem Soc ; 143(31): 12014-12024, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1333882

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes an extensively glycosylated surface spike (S) protein to mediate host cell entry, and the S protein glycosylation plays key roles in altering the viral binding/function and infectivity. However, the molecular structures and glycan heterogeneity of the new O-glycans found on the S protein regional-binding domain (S-RBD) remain cryptic because of the challenges in intact glycoform analysis by conventional bottom-up glycoproteomic approaches. Here, we report the complete structural elucidation of intact O-glycan proteoforms through a hybrid native and denaturing top-down mass spectrometry (MS) approach employing both trapped ion mobility spectrometry (TIMS) quadrupole time-of-flight and ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR)-MS. Native top-down TIMS-MS/MS separates the protein conformers of the S-RBD to reveal their gas-phase structural heterogeneity, and top-down FTICR-MS/MS provides in-depth glycoform analysis for unambiguous identification of the glycan structures and their glycosites. A total of eight O-glycoforms and their relative molecular abundance are structurally elucidated for the first time. These findings demonstrate that this hybrid top-down MS approach can provide a high-resolution proteoform-resolved mapping of diverse O-glycoforms of the S glycoprotein, which lays a strong molecular foundation to uncover the functional roles of their O-glycans. This proteoform-resolved approach can be applied to reveal the structural O-glycoform heterogeneity of emergent SARS-CoV-2 S-RBD variants as well as other O-glycoproteins in general.


Subject(s)
Polysaccharides/analysis , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Carbohydrate Sequence , Polysaccharides/chemistry , Protein Domains , Tandem Mass Spectrometry/methods
6.
Glycobiology ; 31(3): 181-187, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1169666

ABSTRACT

The novel coronavirus SARS-CoV-2, the infective agent causing COVID-19, is having a global impact both in terms of human disease as well as socially and economically. Its heavily glycosylated spike glycoprotein is fundamental for the infection process, via its receptor-binding domains interaction with the glycoprotein angiotensin-converting enzyme 2 on human cell surfaces. We therefore utilized an integrated glycomic and glycoproteomic analytical strategy to characterize both N- and O- glycan site-specific glycosylation within the receptor-binding domain. We demonstrate the presence of complex-type N-glycans with unusual fucosylated LacdiNAc at both sites N331 and N343 and a single site of O-glycosylation on T323.


Subject(s)
COVID-19/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites/genetics , COVID-19/metabolism , Carbohydrate Conformation , Carbohydrate Sequence , Glycomics , Glycosylation , HEK293 Cells , Host Microbial Interactions , Humans , Pandemics , Protein Binding , Protein Interaction Domains and Motifs , Proteomics , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spike Glycoprotein, Coronavirus/genetics
7.
Biochemistry (Mosc) ; 86(3): 243-247, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1136063

ABSTRACT

Many viruses, beside binding to their main cell target, interact with other molecules that promote virus adhesion to the cell; often, these additional targets are glycans. The main receptor for SARS-CoV-2 is a peptide motif in the ACE2 protein. We studied interaction of the recombinant SARS-CoV-2 spike (S) protein with an array of glycoconjugates, including various sialylated, sulfated, and other glycans, and found that the S protein binds some (but not all) glycans of the lactosamine family. We suggest that parallel influenza infection will promote SARS-CoV-2 adhesion to the respiratory epithelial cells due to the unmasking of lactosamine chains by the influenza virus neuraminidase.


Subject(s)
Amino Sugars/metabolism , COVID-19/metabolism , COVID-19/virology , Polysaccharides/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Sugars/chemistry , Carbohydrate Sequence , Humans , In Vitro Techniques , Models, Molecular , Polysaccharides/chemistry , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
8.
Biochemistry (Mosc) ; 86(3): 243-247, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1129461

ABSTRACT

Many viruses, beside binding to their main cell target, interact with other molecules that promote virus adhesion to the cell; often, these additional targets are glycans. The main receptor for SARS-CoV-2 is a peptide motif in the ACE2 protein. We studied interaction of the recombinant SARS-CoV-2 spike (S) protein with an array of glycoconjugates, including various sialylated, sulfated, and other glycans, and found that the S protein binds some (but not all) glycans of the lactosamine family. We suggest that parallel influenza infection will promote SARS-CoV-2 adhesion to the respiratory epithelial cells due to the unmasking of lactosamine chains by the influenza virus neuraminidase.


Subject(s)
Amino Sugars/metabolism , COVID-19/metabolism , COVID-19/virology , Polysaccharides/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Sugars/chemistry , Carbohydrate Sequence , Humans , In Vitro Techniques , Models, Molecular , Polysaccharides/chemistry , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL