ABSTRACT
BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.
Subject(s)
Adipose Tissue , Angiotensin-Converting Enzyme 2 , COVID-19 , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/genetics , Cardiometabolic Risk Factors , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Humans , Obesity , SARS-CoV-2ABSTRACT
BACKGROUND: Pre-existing cardiometabolic comorbidities place SARS-CoV-2 positive patients at a greater risk for poorer clinical course and mortality than those without it. We aimed to analyze real-world registry data focused primarily on participants with cardiometabolic diseases (CMD), which were remotely obtained via a digital platform. METHODS: Participants were divided into two groups: CMD or no cardiometabolic disease (non-CMD). They were evaluated based on their medical history, current medications/supplements, COVID-19 status, demographics, and baseline characteristics. The frequency of medications/supplements for CMD were compared using relative risks and 95% confidence intervals. The WHO (Five) Well-Being Index (WHO-5) were collected monthly for 6 months to assess psychological well-being which included cheerfulness, calmness, vigor, rest, and engagement with daily activities of interest. RESULTS: The 791 enrollees represented 49 U.S. states. The CMD group had significantly higher (p < 0.0001) BMI (mean + 3.04 kg/m2) and age (mean + 9.15 years) compared to non-CMD group. In the CMD group, participants who tested positive for COVID-19 had lower (p < 0.0001) well-being scores than those without COVID-19. For the 274 participants on CMD medications/supplements, there was no statistical difference in risk of COVID-19 contracture based on medication/supplement type; however, all six participants who were not being treated for CMD were COVID-19 positive (RR ~ 104). For 89 participants who were on treatment for diabetes or insulin resistance, there was a 90% reduced risk of COVID-19 incidence (p = 0.0187). CONCLUSION: The well-being score of the CMD group was dependent on whether they tested positive for COVID-19. Type of CMD treatment did not impact COVID-19 status, but absence of treatment significantly increased COVID-19 incidence. With respect to SARS-CoV-2, our analysis supports continued use of the statins, ACE-I, ARBs, and diabetes medications in CMD patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04348942.
Subject(s)
COVID-19/epidemiology , Heart Diseases/epidemiology , Metabolic Diseases/epidemiology , Adult , COVID-19/diagnosis , Cardiometabolic Risk Factors , Comorbidity , Female , Heart Diseases/diagnosis , Heart Diseases/therapy , Humans , Incidence , Longitudinal Studies , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/therapy , Middle Aged , Prognosis , Prospective Studies , Registries , Risk Assessment , Time Factors , United States/epidemiologyABSTRACT
BACKGROUND: Inflammation can facilitate development of coronavirus disease 2019 (COVID-19) and cardiac injury is associated with worse clinical outcomes. However, data are relatively scarce on the association between hyper-inflammatory response and cardiac injury among COVID-19 patients. METHODS: The study was designed based on severe and critically ill patients with COVID-19. Information on clinical characteristics and laboratory examinations was collected from the electronic medical records and analyzed. RESULTS: There were 32.4% (nâ¯=â¯107) of patients with cardiac injury. The median age was 67 years, and 48.8% (nâ¯=â¯161) of patients were men. Hypertension was the most common in 161 (48.8%) patients, followed by diabetes (16.7%, nâ¯=â¯55) and coronary heart disease (13.3%, nâ¯=â¯44). Compared to cases without cardiac injury, those with cardiac injury were older, had higher proportions of coronary heart disease, and leukocyte counts, significantly elevated concentrations of N-terminal pro-B-Type natriuretic peptide, high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor (TNF)-α, interleukin-2 receptor (IL-2R), IL-6, and IL-8, but lower lymphocyte counts. A significant positive correlation was observed between high-sensitivity troponin I and inflammatory cytokines. Logistic regression analysis showed that hs-CRP, TNF-α and IL-6 were independent risk factors for cardiac injury. CONCLUSIONS: Cardiac injury was associated with elevated levels of inflammatory cytokines among severe and critically ill patients with COVID-19, suggesting that hyper-inflammatory response may involve in cardiac injury.
Subject(s)
COVID-19 , Heart Diseases , SARS-CoV-2 , Troponin I/blood , Aged , C-Reactive Protein/analysis , COVID-19/immunology , COVID-19/physiopathology , COVID-19/therapy , Cardiometabolic Risk Factors , China/epidemiology , Critical Illness/epidemiology , Critical Illness/therapy , Diabetes Mellitus/epidemiology , Female , Heart Diseases/diagnosis , Heart Diseases/immunology , Heart Diseases/virology , Humans , Hypertension/epidemiology , Interleukin-6/blood , Male , Risk Assessment , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Severity of Illness Index , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/virology , Tumor Necrosis Factor-alpha/bloodABSTRACT
BACKGROUND & AIMS: Though viewed as a critical measure to prevent the spread of the virus, a prolonged homestay may result in unfavourable sedentary behaviour and chronic disease risk. This systematic review focuses on sedentary behaviour resulting from this quarantine period which may elevate the cardiovascular disease risk, obesity, hypertension, cancer and mental health illness. METHODS: Evidence of breaking sedentary behaviour and global recommendations were investigated. Potential unanswered questions regarding sedentary behaviour and physical activity during lockdown were explored. RESULTS: Five systematic reviews and six prospective trials explored the effect of sedentarism affecting chronic disease through potential pathophysiological mechanisms. Sedentary behaviour especially prolonged sitting is found to be a pleiotropic risk factor with altered energy expenditure, adipogenic signalling, immunomodulation, autonomic stability and hormonal dysregulation perpetuating underlying chronic diseases such as obesity, cardiovascular disease, cancer and mental health disorders. CONCLUSION: Breaking sitting and physical activity are found to reverse the adverse effects associated with excessive sitting during the lockdown.
Subject(s)
COVID-19/prevention & control , Cardiovascular Diseases/epidemiology , Communicable Disease Control , Mental Disorders/epidemiology , Obesity/epidemiology , Public Policy , Sedentary Behavior , Cardiometabolic Risk Factors , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Chronic Disease , Exercise , Humans , Mental Disorders/metabolism , Mental Disorders/physiopathology , Neoplasms/epidemiology , Neoplasms/metabolism , Neoplasms/physiopathology , Obesity/metabolism , Obesity/physiopathology , SARS-CoV-2ABSTRACT
AIMS: Coronavirus disease 2019 (COVID-19) is caused by a novel severe acute respiratory syndrome coronavirus 2. It can lead to multiorgan failure, including respiratory and cardiovascular decompensation, and kidney injury, with significant associated morbidity and mortality, particularly in patients with underlying metabolic, cardiovascular, respiratory or kidney disease. Dapagliflozin, a sodium-glucose cotransporter-2 inhibitor, has shown significant cardio- and renoprotective benefits in patients with type 2 diabetes (with and without atherosclerotic cardiovascular disease), heart failure and chronic kidney disease, and may provide similar organ protection in high-risk patients with COVID-19. MATERIALS AND METHODS: DARE-19 (NCT04350593) is an investigator-initiated, collaborative, international, multicentre, randomized, double-blind, placebo-controlled study testing the dual hypotheses that dapagliflozin can reduce the incidence of cardiovascular, kidney and/or respiratory complications or all-cause mortality, or improve clinical recovery, in adult patients hospitalized with COVID-19 but not critically ill on admission. Eligible patients will have ≥1 cardiometabolic risk factor for COVID-19 complications. Patients will be randomized 1:1 to dapagliflozin 10 mg or placebo. Primary efficacy endpoints are time to development of new or worsened organ dysfunction during index hospitalization, or all-cause mortality, and the hierarchical composite endpoint of change in clinical status through day 30 of treatment. Safety of dapagliflozin in individuals with COVID-19 will be assessed. CONCLUSIONS: DARE-19 will evaluate whether dapagliflozin can prevent COVID-19-related complications and all-cause mortality, or improve clinical recovery, and assess the safety profile of dapagliflozin in this patient population. Currently, DARE-19 is the first large randomized controlled trial investigating use of sodium-glucose cotransporter 2 inhibitors in patients with COVID-19.
Subject(s)
Benzhydryl Compounds/therapeutic use , COVID-19 Drug Treatment , Cardiovascular Diseases/prevention & control , Glucosides/therapeutic use , Kidney Diseases/prevention & control , Mortality , Respiratory Insufficiency/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Atherosclerosis/epidemiology , COVID-19/complications , COVID-19/epidemiology , Cardiometabolic Risk Factors , Cardiovascular Diseases/etiology , Cause of Death , Comorbidity , Diabetes Mellitus, Type 2/epidemiology , Disease Progression , Double-Blind Method , Heart Failure/epidemiology , Humans , Hypertension/epidemiology , Kidney Diseases/etiology , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Renal Insufficiency, Chronic/epidemiology , Respiratory Insufficiency/etiology , SARS-CoV-2 , Treatment OutcomeABSTRACT
The severe form of COVID-19 is marked by an abnormal and exacerbated immunological host response favoring to a poor outcome in a significant number of patients, especially those with obesity, diabetes, hypertension, and atherosclerosis. The chronic inflammatory process found in these cardiometabolic comorbidities is marked by the overexpression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumoral necrosis factor-alpha (TNF-α), which are products of the Toll-Like receptors 4 (TLR4) pathway. The SARS-CoV-2 initially infects cells in the upper respiratory tract and, in some patients, spread very quickly, needing respiratory support and systemically, causing collateral damage in tissues. We hypothesize that this happens because the SARS-CoV-2 spike protein interacts strongly with TLR4, causing an intensely exacerbated immune response in the host's lungs, culminating with the cytokine storm, accumulating secretions and hindering blood oxygenation, along with the immune system attacks the body, leading to multiple organ failure.