Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add filters

Document Type
Year range
1.
BMJ Case Rep ; 14(11)2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1526471

ABSTRACT

Alpha-gal syndrome (AGS) is a hypersensitivity reaction to mammalian meat that develops after tick bite exposure. AGS was first described in 2009 and testing for the allergy has become available in the last decade. We report the case of a 56-year-old farmer with a history of frequent lone star tick bites who presented with a 7-year history of diffuse urticaria occurring hours after eating red meat. AGS is likely underdiagnosed because of the unusual presentation of the allergy, historic lack of available testing, and deficiency of physician knowledge about the condition. Recognition of AGS is important both to help alleviate symptom burden and to avoid iatrogenesis. Patients with AGS should not receive products containing mammalian products, such as cat-gut suture, porcine-derived heart valves, and bovine-derived vaccines. Patients with AGS may present in a variety of clinical environments and physicians of all kinds should be able to recognise the symptoms.


Subject(s)
Food Hypersensitivity , Red Meat , Tick Bites , Urticaria , Animals , Cattle , Food Hypersensitivity/diagnosis , Food Hypersensitivity/etiology , Humans , Meat
2.
Transbound Emerg Dis ; 68(6): 3349-3359, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526423

ABSTRACT

The influenza D virus (IDV) was first identified and characterized in 2011. Considering the virus' zoonotic potential, its genome nature (segmented RNA virus), its worldwide circulation in livestock and its role in bovine respiratory disease, an increased interest is given to IDV. However, few data are available on drivers of emergence of IDV. We first listed fifty possible drivers of emergence of IDV in ruminants and swine. As recently carried out for COVID-19 in pets (Transboundary and Emerging Diseases, 2020), a scoring system was developed per driver and scientific experts (N = 28) were elicited to (a) allocate a score to each driver, (b) weight the drivers' scores within each domain and (c) weight the different domains among themselves. An overall weighted score was calculated per driver, and drivers were ranked in decreasing order. Drivers with comparable likelihoods to play a role in the emergence of IDV in ruminants and swine in Europe were grouped using a regression tree analysis. Finally, the robustness of the expert elicitation was verified. Eight drivers were ranked with the highest probability to play a key role in the emergence of IDV: current species specificity of the causing agent of the disease; influence of (il)legal movements of live animals (ruminants, swine) from neighbouring/European Union member states and from third countries for the disease to (re-)emerge in a given country; detection of emergence; current knowledge of the pathogen; vaccine availability; animal density; and transport vehicles of live animals. As there is still limited scientific knowledge on the topic, expert elicitation of knowledge and multi-criteria decision analysis, in addition to clustering and sensitivity analyses, are very important to prioritize future studies, starting from the top eight drivers. The present methodology could be applied to other emerging animal diseases.


Subject(s)
COVID-19 , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , COVID-19/veterinary , Cattle , Europe/epidemiology , Humans , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , SARS-CoV-2 , Swine , Swine Diseases/epidemiology , Swine Diseases/prevention & control
3.
Sci Total Environ ; 800: 149578, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1525945

ABSTRACT

In the current pandemic of COVID-19, sewage surveillance of SARS-CoV-2 genome has been used to complement viral epidemiology in different countries. The aim of this work was to introduce and evaluate this wastewater-based tool in the metropolitan region of Buenos Aires, Argentina. As a pilot study, surveillance of SARS-CoV-2 in wastewater from three districts of this area was performed for more than nine months from June 2020 to April 2021. Viruses present in the samples were concentrated using polyethylene glycol precipitation and quantified using RT-qPCR CDC N1 assay. Virus recovery for SARS-CoV-2 and a potential surrogate, bovine coronavirus Mebus strain, that shares the Betacoronavirus genus and structural characteristics with SARS-CoV-2, were evaluated after concentration and detection procedures. Recovery of both viruses did not differ significantly, with a median for SARS-CoV-2 and BCoV of 0.085 (95% CI: 0.021-0.179) and 0.262 (95% CI: 1.18 × 10-5-0.564) respectively. The concentration of SARS-CoV-2 genome in wastewater ranged from 10 -1 to 10 3 cg/ml, depending on the wastewater treatment plant, type of collection site, viral recovery of the concentration method and the epidemiological situation of the outbreaks. Significant correlations were observed between SARS-CoV-2 concentration in wastewater and reported clinical cases, reinforcing the utility of this approach to monitor the epidemiological status of populations.


Subject(s)
COVID-19 , Waste Water , Animals , Argentina/epidemiology , Cattle , Humans , Pilot Projects , SARS-CoV-2
4.
Soins ; 66(860): 49-51, 2021 Nov.
Article in French | MEDLINE | ID: covidwho-1514312

ABSTRACT

As part of a global approach to supporting carers in times of health crisis, the Elbeuf-Louviers-Val de Reuil hospital (76) has launched an experiment in "Bull'therapy". By providing a connected hypnosis mask, caregivers can benefit from a time of break time away from the stressful situations they face during their work.


Subject(s)
Caregivers , Hospitals , Animals , Cattle , Decompression , Humans , Male
5.
Emerg Microbes Infect ; 10(1): 2199-2201, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1505680

ABSTRACT

We report pilot studies to evaluate the susceptibility of common domestic livestock (cattle, sheep, goat, alpaca, rabbit, and horse) to intranasal infection with SARS-CoV-2. None of the infected animals shed infectious virus via nasal, oral, or faecal routes, although viral RNA was detected in several animals. Further, neutralizing antibody titres were low or non-existent one month following infection. These results suggest that domestic livestock are unlikely to contribute to SARS-CoV-2 epidemiology.


Subject(s)
COVID-19/veterinary , Host Specificity , Livestock/virology , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Camelids, New World/virology , Cattle/virology , Chlorocebus aethiops , Disease Reservoirs/virology , Goats/virology , Horses/virology , Host Specificity/immunology , Humans , Nasal Cavity/virology , RNA, Viral/analysis , Rabbits/virology , Rectum/virology , Respiratory System/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sheep/virology , Species Specificity , Vero Cells , Virus Shedding , Viscera/virology
6.
Mater Sci Eng C Mater Biol Appl ; 116: 111260, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1452344

ABSTRACT

Polymeric nanoparticulate systems allow the encapsulation of bio-active substances, giving them protection against external agents and increasing the drug's bioavailability. The use of biocompatible and biodegradable polymers usually guarantees the harmless character of the formulation, and a controlled drug release is also assured. A relatively easy procedure to obtain polymeric formulations of bioactive agents is ionotropic gelation, which allows the synthesis of chitosan (CS) - sodium tri-polyphosphate nanoparticles (NPs) loading encapsulated proteins. In this work, Bovine serum albumin (BSA) model protein and a recombinant porcine alpha interferon variant were used to obtain nanoparticulate formulations. The internalization of the encapsulated material by cells was studied using a BSA-fluorescein system; the fluorescent conjugate was observable inside the cells after 20 h of incubation. The therapeutic CS-alpha interferon formulation showed a maximum of protein released in vitro at around 90 h. This system was found to be safe in a cytotoxicity assay, while biological activity experiments in vitro showed antiviral protection of cells in the presence of encapsulated porcine alpha interferon. In vivo experiments in pigs revealed a significant and sustained antiviral response through overexpression of the antiviral markers OAS2 and PKR. This proves the preservation of porcine alpha interferon biological activity, and also that a lasting response was obtained. This procedure is an effective and safe method to formulate drugs in nanoparticulate systems, representing a significant contribution to the search for more effective drug delivery strategies.


Subject(s)
Chitosan , Nanoparticles , Pharmaceutical Preparations , Animals , Antiviral Agents/pharmacology , Biological Availability , Cattle , Drug Carriers , Drug Delivery Systems , Interferon-alpha , Particle Size , Polymers , Swine
7.
Int J Environ Res Public Health ; 18(20)2021 10 19.
Article in English | MEDLINE | ID: covidwho-1477947

ABSTRACT

Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients.


Subject(s)
COVID-19 , Lactoferrin , Animals , Antiviral Agents/therapeutic use , Cattle , Humans , RNA, Viral , SARS-CoV-2
8.
Viruses ; 13(10)2021 10 01.
Article in English | MEDLINE | ID: covidwho-1444334

ABSTRACT

Coronaviruses (CoVs) are a group of enveloped positive-sense RNA viruses and can cause deadly diseases in animals and humans. Cell entry is the first and essential step of successful virus infection and can be divided into two ongoing steps: cell binding and membrane fusion. Over the past two decades, stimulated by the global outbreak of SARS-CoV and pandemic of SARS-CoV-2, numerous efforts have been made in the CoV research. As a result, significant progress has been achieved in our understanding of the cell entry process. Here, we review the current knowledge of this essential process, including the viral and host components involved in cell binding and membrane fusion, molecular mechanisms of their interactions, and the sites of virus entry. We highlight the recent findings of host restriction factors that inhibit CoVs entry. This knowledge not only enhances our understanding of the cell entry process, pathogenesis, tissue tropism, host range, and interspecies-transmission of CoVs but also provides a theoretical basis to design effective preventive and therapeutic strategies to control CoVs infection.


Subject(s)
Coronavirus Infections/pathology , Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment , Virus Internalization , Animals , Cats/virology , Cattle/virology , Chickens/virology , Coronavirus/genetics , Dogs/virology , Livestock/virology , Membrane Fusion/physiology , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Swine/virology , Viral Tropism/physiology
9.
Sci Total Environ ; 801: 149656, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1356433

ABSTRACT

Wastewater based epidemiology (WBE) has drawn significant attention as an early warning tool to detect and predict the trajectory of COVID-19 cases in a community, in conjunction with public health data. This means of monitoring for outbreaks has been used at municipal wastewater treatment centers to analyze COVID-19 trends in entire communities, as well as by universities and other community living environments to monitor COVID-19 spread in buildings. Sample concentration is crucial, especially when viral abundance in raw wastewater is below the threshold of detection by RT-qPCR analysis. We evaluated the performance of a rapid ultrafiltration-based virus concentration method using InnovaPrep Concentrating Pipette (CP) Select and compared this to the established electronegative membrane filtration (EMF) method. We evaluated sensitivity of SARS-CoV-2 quantification, surrogate virus recovery rate, and sample processing time. Results suggest that the CP Select concentrator is more efficient at concentrating SARS-CoV-2 from wastewater compared to the EMF method. About 25% of samples that tested negative when concentrated with the EMF method produced a positive signal with the CP Select protocol. Increased recovery of the surrogate virus control using the CP Select confirms this observation. We optimized the CP Select protocol by adding AVL lysis buffer and sonication, to increase the recovery of virus. Sonication increased Bovine Coronavirus (BCoV) recovery by 19%, which seems to compensate for viral loss during centrifugation. Filtration time decreases by approximately 30% when using the CP Select protocol, making this an optimal choice for building surveillance applications where quick turnaround time is necessary.


Subject(s)
COVID-19 , Viruses , Animals , Cattle , Humans , SARS-CoV-2 , Waste Water , Wastewater-Based Epidemiological Monitoring
11.
Front Public Health ; 9: 647754, 2021.
Article in English | MEDLINE | ID: covidwho-1334962

ABSTRACT

The Amazon biome is under severe threat due to increasing deforestation rates and loss of biodiversity and ecosystem services while sustaining a high burden of neglected tropical diseases. Approximately two thirds of this biome are located within Brazilian territory. There, socio-economic and environmental landscape transformations are linked to the regional agrarian economy dynamics, which has developed into six techno-productive trajectories (TTs). These TTs are the product of the historical interaction between Peasant and Farmer and Rancher practices, technologies and rationalities. This article investigates the distribution of the dominant Brazilian Amazon TTs and their association with environmental degradation and vulnerability to neglected tropical diseases. The goal is to provide a framework for the joint debate of the local economic, environmental and health dimensions. We calculated the dominant TT for each municipality in 2017. Peasant trajectories (TT1, TT2, and TT3) are dominant in ca. fifty percent of the Amazon territory, mostly concentrated in areas covered by continuous forest where malaria is an important morbidity and mortality cause. Cattle raising trajectories are associated with higher deforestation rates. Meanwhile, Farmer and Rancher economies are becoming dominant trajectories, comprising large scale cattle and grain production. These trajectories are associated with rapid biodiversity loss and a high prevalence of neglected tropical diseases, such as leishmaniasis, Aedes-borne diseases and Chagas disease. Overall, these results defy simplistic views that the dominant development trajectory for the Amazon will optimize economic, health and environmental indicators. This approach lays the groundwork for a more integrated narrative consistent with the economic history of the Brazilian Amazon.


Subject(s)
COVID-19 , Malaria , Animals , Biodiversity , Brazil/epidemiology , Cattle , Conservation of Natural Resources , Ecosystem , Humans , SARS-CoV-2
12.
Virology ; 562: 142-148, 2021 10.
Article in English | MEDLINE | ID: covidwho-1331288

ABSTRACT

SARS-CoV, MERS-CoV, and potentially SARS-CoV-2 emerged as novel human coronaviruses following cross-species transmission from animal hosts. Although the receptor binding characteristics of human coronaviruses are well documented, the role of carbohydrate binding in addition to recognition of proteinaceous receptors has not been fully explored. Using natural glycan microarray technology, we identified N-glycans in the human lung that are recognized by various human and animal coronaviruses. All viruses tested, including SARS-CoV-2, bound strongly to a range of phosphorylated, high mannose N-glycans and to a very specific set of sialylated structures. Examination of two linked strains, human CoV OC43 and bovine CoV Mebus, reveals shared binding to the sialic acid form Neu5Gc (not found in humans), supporting the evidence for cross-species transmission of the bovine strain. Our findings, revealing robust recognition of lung glycans, suggest that these receptors could play a role in the initial stages of coronavirus attachment and entry.


Subject(s)
COVID-19/virology , Host Microbial Interactions/physiology , Middle East Respiratory Syndrome Coronavirus/metabolism , Polysaccharides/metabolism , SARS-CoV-2/metabolism , Animals , Cattle , Humans , Lung/metabolism , Mannose/chemistry , Middle East Respiratory Syndrome Coronavirus/physiology , N-Acetylneuraminic Acid/chemistry , Phosphorylation , Protein Array Analysis , Protein Binding , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology
13.
J Virol Methods ; 297: 114249, 2021 11.
Article in English | MEDLINE | ID: covidwho-1331022

ABSTRACT

In the pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) many strategies have been performed in order to control viral spread in the population and known the real-time situation about the number of infected persons. In this sense, Wastewater Based Epidemiology (WBE) has been applied as an excellent tool to evaluate the virus circulation in a population. In order to obtain reliable results, three low-cost viral concentration methods were evaluated in this study, polyethylene glycol (PEG) precipitation, skimmed milk flocculation (SM) and Aluminum polychloride flocculation, for Pseudomonas aeruginosa bacteriophage PP7 as a surrogate for non-enveloped viruses and Bovine Coronavirus (BCoV) as a surrogate for enveloped virus, with emphasis for SARS- CoV-2. Our results suggest that PEG precipitation for viral concentration, for both enveloped and non-enveloped virus from wastewater is an appropriate approach since it was more sensitive compared to SM flocculation and Aluminum polychloride flocculation. This methodology can be used for WBE studies in order to follow the epidemiology of the SARS-CoV-2 pandemic, mainly in developing countries where the economic resources are frequently limited.


Subject(s)
COVID-19 , Viruses , Animals , Cattle , Humans , Pandemics , SARS-CoV-2 , Waste Water
14.
BMJ Case Rep ; 14(7)2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1322783

ABSTRACT

Traumatic abdominal wall hernia (TAWH) is uncommon, mostly following motor vehicle accidents, fall from height and bullfighting. Bullhorn injury, common in rural areas, presents as either penetrating injuries to the abdomen or blunt injuries leading to internal organs injury. Rarely the bull horn injury may lead to TAWH. We report a 70-year-old female from a rural area who suffered bull horn injury to the abdomen leading to TAWH without penetrating the horn and was managed in the emergency by an open mesh hernioplasty. We suture closed the 10×5 cm size defect and reinforced it with a polypropylene mesh of 15×15 cm in the emergency setting. The patient recovered well without any complications or recurrence and doing well at 1 year of follow-up. Mesh hernioplasty can be considered a feasible and safe option in the emergency repair of traumatic abdominal hernia following bull horn injury.


Subject(s)
Abdominal Injuries , Abdominal Wall , Hernia, Abdominal , Hernia, Ventral , Wounds, Nonpenetrating , Abdominal Injuries/surgery , Abdominal Wall/surgery , Aged , Animals , Cattle , Female , Hernia, Abdominal/etiology , Hernia, Abdominal/surgery , Hernia, Ventral/surgery , Herniorrhaphy , Humans , Male , Surgical Mesh , Wounds, Nonpenetrating/surgery
15.
J Wound Care ; 30(Sup7): S18-S27, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1310247

ABSTRACT

AIM: The purpose of this clinical trial was to evaluate the safety and efficacy of a fetal bovine acellular dermal matrix (FBADM) plus standard of care (SOC) for treating hard-to-heal diabetic foot ulcers (DFUs). METHOD: A prospective, multi-centre, randomised controlled trial was carried out. The study included a 2-week run-in period, a 12-week treatment phase and a 4-week follow-up phase. The primary endpoint was complete wound closure at 12 weeks. RESULTS: Twenty-one US sites enrolled and randomised 226 patients with hard-to-heal DFUs. The study was terminated early due to the COVID-19 pandemic, which led to a modified intent-to-treat (mITT) population of 207 patients, with 103 in the FBADM group and 104 in the SOC group. Of these participants, 161 completed the study per protocol (mPP population), with 79 receiving FBADM, and 82 without. At the first analysis point, patients treated with FBADM were found to be significantly more likely to achieve complete wound closure compared with SOC alone (mITT: 45.6% versus 27.9% p=0.008; mPP: 59.5% versus 35.6% p=0.002). The difference in outcome yielded an odds ratio of 2.2 (95% confidence interval (CI): 1.2, 3.9; p=0.008). Median time to closure within 12 weeks was 43 days for the FBADM group compared to 57 days for the SOC group (p=0.36). The median number of applications of FBADM to achieve closure was one. Adverse events were similar between groups and no product-related serious adverse events occurred. CONCLUSIONS: These results indicate that in many cases a single application of FBADM in conjunction with SOC offers a safe, faster and more effective treatment of DFUs than SOC alone.


Subject(s)
Acellular Dermis , COVID-19 , Diabetes Mellitus , Diabetic Foot , Animals , Cattle , Diabetic Foot/surgery , Humans , Pandemics , Prospective Studies , SARS-CoV-2 , Treatment Outcome
16.
Biochem Biophys Res Commun ; 570: 21-25, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1309162

ABSTRACT

Natto, a traditional Japanese fermented soybean food, is well known to be nutritious and beneficial for health. In this study, we examined whether natto impairs infection by viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bovine herpesvirus 1 (BHV-1). Interestingly, our results show that both SARS-CoV-2 and BHV-1 treated with a natto extract were fully inhibited infection to the cells. We also found that the glycoprotein D of BHV-1 was shown to be degraded by Western blot analysis and that a recombinant SARS-CoV-2 receptor-binding domain (RBD) was proteolytically degraded when incubated with the natto extract. In addition, RBD protein carrying a point mutation (UK variant N501Y) was also degraded by the natto extract. When the natto extract was heated at 100 °C for 10 min, the ability of both SARS-CoV-2 and BHV-1 to infect to the cells was restored. Consistent with the results of the heat inactivation, a serine protease inhibitor inhibited anti-BHV-1 activity caused by the natto extract. Thus, our findings provide the first evidence that the natto extract contains a protease(s) that inhibits viral infection through the proteolysis of the viral proteins.


Subject(s)
COVID-19/drug therapy , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Soy Foods , Soybeans/chemistry , Animals , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Cattle , Cells, Cultured , Chlorocebus aethiops , Herpesviridae Infections/drug therapy , Herpesviridae Infections/metabolism , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Herpesvirus 1, Bovine/drug effects , Herpesvirus 1, Bovine/isolation & purification , Herpesvirus 1, Bovine/pathogenicity , Humans , Plant Extracts/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
17.
Arch Virol ; 166(9): 2461-2468, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1292555

ABSTRACT

Bovine coronavirus (BCoV) can be spread by animal activity. Although cattle farming is widespread in Turkey, there are few studies of BCoV. The aim of this study was to evaluate the current situation regarding BCoV in Turkey. This is the first study reporting the full-length nucleotide sequences of BCoV spike (S) genes in Turkey. Samples were collected from 119 cattle with clinical signs of respiratory (n = 78) or digestive tract (n = 41) infection on different farms located across widely separated provinces in Turkey. The samples were screened for BCoV using RT-nested PCR targeting the N gene, which identified BCoV in 35 samples (9 faeces and 26 nasal discharge). RT-PCR analysis of the S gene produced partial/full-length S gene sequences from 11 samples (8 faeces and 3 nasal discharge samples). A phylogenetic tree of the S gene sequences was made to analyze the genetic relationships among BCoVs from Turkey and other countries. The results showed that the local strains present in faeces and nasal discharge samples had many different amino acid changes. Some of these changes were shown in previous studies to be critical for tropism. This study provides new data on BCoV in Turkey that will be valuable in designing effective vaccine approaches and control strategies.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Bovine/genetics , Diarrhea/veterinary , RNA, Viral/genetics , Respiratory Tract Infections/veterinary , Spike Glycoprotein, Coronavirus/genetics , Agriculture , Amino Acid Substitution , Animals , Cattle , Cattle Diseases/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Bovine/classification , Diarrhea/epidemiology , Diarrhea/virology , Epidemiological Monitoring/veterinary , Evolution, Molecular , Feces/virology , Humans , Mutation , Nasal Cavity/virology , Phylogeny , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Turkey/epidemiology
18.
Sensors (Basel) ; 21(13)2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1295910

ABSTRACT

In this work, we report a new approach for detecting SARS-CoV-2 RBD protein (RBD) using the surface-enhanced Raman spectroscopy (SERS) technique. The optical enhancement was obtained thanks to the preparation of nanostructured Ag/Au substrates. Fabricated Au/Ag nanostructures were used in the SERS experiment for RBD protein detection. SERS substrates show higher capabilities and sensitivity to detect RBD protein in a short time (3 s) and with very low power. We were able to push the detection limit of proteins to a single protein detection level of 1 pM. The latter is equivalent to 1 fM as a detection limit of viruses. Additionally, we have shown that the SERS technique was useful to figure out the presence of RBD protein on antibody functionalized substrates. In this case, the SERS detection was based on protein-antibody recognition, which led to shifts in the Raman peaks and allowed signal discrimination between RBD and other targets such as Bovine serum albumin (BSA) protein. A perfect agreement between a 3D simulated model based on finite element method and experiment was reported confirming the SERS frequency shift potential for trace proteins detection. Our results could open the way to develop a new prototype based on SERS sensitivity and selectivity for rapid detection at a very low concentration of virus and even at a single protein level.


Subject(s)
COVID-19 , Metal Nanoparticles , Nanostructures , Animals , Cattle , Gold , Humans , SARS-CoV-2 , Serum Albumin, Bovine , Spectrum Analysis, Raman
19.
Carbohydr Polym ; 269: 118345, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1271581

ABSTRACT

This work reports novel chitosan functionalized graphene oxide (GO) nanocomposites combined fluorescence imaging and therapeutic functions in one agent, which can serve as a promising alternative to alleviate related diseases caused hyperinflammation. Briefly, GO was designed to be conjugated with chitosan, fluorescein-labeled peptide, toll-like receptor 4 antibody and hydroxycamptothecin/aloe emodin. We have demonstrated that such nanocomposites could effectively achieve active targeted delivery of pro-apoptotic and anti-inflammatory drugs into inflammatory cells and cause cells apoptosis by acid-responsive drug release. Moreover, confocal fluorescence imaging confirms that the drug-induced inflammatory cells apoptosis could be visualized the light-up fluorescence of fluorescein activated by caspase-3. Meanwhile, inflammatory-related biomarkers have down-regulated after the nanocomposites' treatment in both vitro and vivo experiments consistent with the results in histological sections. In summary, the bifunctional nanocomposites that possess anti-inflammation and fluorescence imaging could serve as a promising therapeutic agent for reducing hyperinflammation caused by numerous diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Apoptosis/physiology , Drug Carriers/chemistry , Inflammation/drug therapy , Nanocomposites/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antibodies/immunology , Camptothecin/analogs & derivatives , Camptothecin/chemistry , Camptothecin/therapeutic use , Cattle , Cell Line , Chitosan/chemistry , Drug Liberation , Emodin/chemistry , Emodin/therapeutic use , Fluorescent Dyes/chemistry , Graphite/chemistry , Humans , Lipopolysaccharides , Mammary Glands, Human/drug effects , Mammary Glands, Human/pathology , Mastitis/chemically induced , Mastitis/drug therapy , Mastitis/pathology , Mice , Toll-Like Receptor 4/immunology
20.
Nat Rev Urol ; 18(10): 611-622, 2021 10.
Article in English | MEDLINE | ID: covidwho-1284696

ABSTRACT

Bacillus Calmette-Guérin (BCG) is the most widely used vaccine worldwide and has been used to prevent tuberculosis for a century. BCG also stimulates an anti-tumour immune response, which urologists have harnessed for the treatment of non-muscle-invasive bladder cancer. A growing body of evidence indicates that BCG offers protection against various non-mycobacterial and viral infections. The non-specific effects of BCG occur via the induction of trained immunity and form the basis for the hypothesis that BCG vaccination could be used to protect against the severity of coronavirus disease 2019 (COVID-19). This Perspective article highlights key milestones in the 100-year history of BCG and projects its potential role in the COVID-19 pandemic.


Subject(s)
Adjuvants, Immunologic/history , BCG Vaccine/history , COVID-19 Vaccines , COVID-19/prevention & control , Immunotherapy/history , Animals , Cattle , History, 19th Century , History, 20th Century , Humans , Infant
SELECTION OF CITATIONS
SEARCH DETAIL
...