Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 949
Filter
1.
Front Immunol ; 14: 1166574, 2023.
Article in English | MEDLINE | ID: covidwho-20239034

ABSTRACT

Background: Dysregulated immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are thought to underlie the progression of coronavirus disease 2019 (COVID-19) to severe disease. We sought to determine whether early host immune-related gene expression could predict clinical progression to severe disease. Methods: We analysed the expression of 579 immunological genes in peripheral blood mononuclear cells taken early after symptom onset using the NanoString nCounter and compared SARS-CoV-2 negative controls with SARS-CoV-2 positive subjects with mild (SARS+ Mild) and Moderate/Severe disease to evaluate disease outcomes. Biobanked plasma samples were also assessed for type I (IFN-α2a and IFN-ß), type II (IFN-γ) and type III (IFN-λ1) interferons (IFNs) as well as 10 additional cytokines using multiplex immunoassays. Results: We identified 19 significantly deregulated genes in 62 SARS-CoV-2 positive subject samples within 5 days of symptom onset and 58 SARS-CoV-2 negative controls and found that type I interferon (IFN) signalling (MX1, IRF7, IFITM1, IFI35, STAT2, IRF4, PML, BST2, STAT1) and genes encoding proinflammatory cytokines (TNF, TNFSF4, PTGS2 and IL1B) were upregulated in both SARS+ groups. Moreover, we found that FCER1, involved in mast cell activation, was upregulated in the SARS+ Mild group but significantly downregulated in the SARS+ Moderate/Severe group. In both SARS+ groups we discovered elevated interferon type I IFN-α2a, type II IFN and type III IFN λ1 plasma levels together with higher IL-10 and IL-6. These results indicate that those with moderate or severe disease are characterised by deficiencies in a mast cell response together with IFN hyper-responsiveness, suggesting that early host antiviral immune responses could be a cause and not a consequence of severe COVID-19. Conclusions: This study suggests that early host immune responses linking defects in mast cell activation with host interferon responses correlates with more severe outcomes in COVID-19. Further characterisation of this pathway could help inform better treatment for vulnerable individuals.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2 , Leukocytes, Mononuclear , Mast Cells , Cell Line , Cytokines , OX40 Ligand
2.
J Med Virol ; 95(6): e28832, 2023 06.
Article in English | MEDLINE | ID: covidwho-20238746

ABSTRACT

The protein activator of protein kinase R (PKR) (PACT) has been shown to play a crucial role in stimulating the host antiviral response through the activation of PKR, retinoic acid-inducible gene I, and melanoma differentiation-associated protein 5. Whether PACT can inhibit viral replication independent of known mechanisms is still unrevealed. In this study, we show that, like many viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks GSK-3ß to facilitate its replication. GSK-3ß-induced phosphorylation on N protein increased the interaction between N protein and nsp3. Thus, GSK-3ß-N-nsp3 cascade promotes viral replication. Although SARS-CoV-2 can sabotage the activation of AKT, the upstream proteins suppressing the activation of GSK-3ß, we found that the host can use PACT, another protein kinase, instead of AKT to decrease the activity of GSK-3ß and the interaction between PACT and GSK-3ß is enhanced upon viral infection. Moreover, PACT inhibited the activity of GSK-3ß independent of its well-studied double-stranded RNA binding and PKR activating ability. In summary, this study identified an unknown function of PACT in inhibiting SARS-CoV-2 replication through the blockage of GSK-3ß-N-nsp3 cascade.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , SARS-CoV-2/metabolism , Cell Line , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation
3.
Viruses ; 15(5)2023 05 22.
Article in English | MEDLINE | ID: covidwho-20245260

ABSTRACT

Infectious bronchitis virus (IBV) belongs to the gamma-coronavirus genus of Coronaviridae and causes serious infectious diseases in the poultry industry. However, only a few IBV strains can infect avian passage cell lines, seriously hindering the progress of basic research on IBV pathogenesis. Whereas IBV field strains can replicate in tracheal ring organ culture (TOC) without any previous adaptation in chicken embryos or primary cells. In this study, to investigate the potential use of TOC as an in vitro infection model for the study of IBV-host interaction, we first established a chicken embryo TOC culture system and carried out an investigation on the IBV replication kinetics in the system. We found that the selected strains of the IBV GI-1, GI-7, GI-13, GI-19, and GI-22 genotypes could successfully replicate in TOC and bring about damage to the infected trachea. Next, we identified host proteins of the chicken embryo trachea that interact with the IBV S1 protein by immunoprecipitation and protein mass spectrometry. A total of 127 candidate proteins were initially identified with major involvement in cell adhesion pathways and apoptosis- and autophagy-related pathways. The heat shock protein 70 (HSP70) was selected for further investigation in the interaction with IBV viral proteins. Our results showed that HSP70 interacted with IBV S1 in both TOC and CEK cells, whereas HSP70 overexpression inhibited viral replication. This study indicates that TOC is a good system for the elucidation of IBV-host interactions and HSP70 is a potential host antiviral factor.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chick Embryo , Infectious bronchitis virus/genetics , Organ Culture Techniques , Trachea , Chickens , Cell Line , Coronavirus Infections/veterinary
4.
Biochem Soc Trans ; 51(3): 1047-1056, 2023 06 28.
Article in English | MEDLINE | ID: covidwho-2323612

ABSTRACT

Interferons (IFNs) are crucial components of the cellular innate immune response to viral infections. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown a remarkable capacity to suppress the host IFN production to benefit viral replication and spread. Thus far, of the 28 known virus-encoded proteins, 16 have been found to impair the host's innate immune system at various levels ranging from detection and signaling to transcriptional and post-transcriptional regulation of expression of the components of the cellular antiviral response. Additionally, there is evidence that the viral genome encodes non-protein-coding microRNA-like elements that could also target IFN-stimulated genes. In this brief review, we summarise the current state of knowledge regarding the factors and mechanisms by which SARS-CoV-2 impairs the production of IFNs and thereby dampens the host's innate antiviral immune response.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cell Line , Interferons , Antiviral Agents , Immunity, Innate , Viral Proteins
5.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2319054

ABSTRACT

Vertical transmission of rubella virus (RuV) occurs at a high rate during the first trimester of pregnancy. The modes of vertical transmission including the response of trophoblasts to RuV are not well understood. Here, RuV-trophoblast interaction was studied in the BeWo trophoblast cell line. Analysis included early and late time-point kinetics of virus infection rate and the antiviral innate immune response at mRNA and protein level. BeWo characteristics were addressed through metabolic activity by extracellular flux analysis and syncytiotrophoblast formation through incubation with forskolin. We found that RuV infection of BeWo led to profuse type III interferon (IFN) production. Transfecting trophoblast cells with dsRNA analog induced an increase in the production of type I IFN-ß and type III IFNs; however, this did not occur in RuV-infected BeWo trophoblasts. IFN-ß and to a lesser extent type III IFN-λ1 were inhibitory to RuV. While no significant metabolic alteration was detected, RuV infection reduced the cell number in the monolayer culture in comparison to the mock control and resulted in detached and floating cells. Syncytia formation restricted RuV infection. The use of BeWo as a relevant cell culture model for infection of trophoblasts highlights cytopathogenicity in the absence of a type I IFN response as a pathogenic alteration by RuV.


Subject(s)
Interferon Type I , Rubella , Pregnancy , Female , Humans , Placenta/metabolism , Trophoblasts/metabolism , Rubella/metabolism , Cell Line , Interferon Type I/metabolism
6.
Proc Natl Acad Sci U S A ; 119(32): e2204539119, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-2311672

ABSTRACT

Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a mechanism by which the SARS-CoV-2 virus coopts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-ß. We reveal that the SARS-CoV-2 encoded nonstructural protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-ß production, which inhibits SARS-CoV-2 replication. Our findings reveal a target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.


Subject(s)
COVID-19 , Carrier Proteins , Interferon Type I , Viral Nonstructural Proteins , COVID-19/genetics , Carrier Proteins/metabolism , Cell Line , Eukaryotic Initiation Factor-4E/metabolism , Humans , Immunity, Innate , Interferon Type I/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Virus Replication
7.
Viruses ; 15(4)2023 04 13.
Article in English | MEDLINE | ID: covidwho-2300977

ABSTRACT

Various coronaviruses have emerged as a result of cross-species transmission among humans and domestic animals. Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets. Porcine small intestinal epithelial cells (IPEC-J2 cells) can be used as target cells for PEDV infection. However, the origin of PEDV in pigs, the host range, and cross-species infection of PEDV remain unclear. To determine whether PEDV has the ability to infect human cells in vitro, human small intestinal epithelial cells (FHs 74 Int cells) were inoculated with PEDV LJX and PEDV CV777 strains. The results indicated that PEDV LJX, but not PEDV CV777, could infect FHs 74 Int cells. Furthermore, we observed M gene mRNA transcripts and N protein expression in infected FHs 74 Int cells. A one-step growth curve showed that the highest viral titer of PEDV occurred at 12 h post infection. Viral particles in vacuoles were observed in FHs 74 Int cells at 24 h post infection. The results proved that human small intestinal epithelial cells are susceptible to PEDV infection, suggesting the possibility of cross-species transmission of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Humans , Animals , Swine , Cell Line , Porcine epidemic diarrhea virus/genetics , Intestines , Epithelial Cells , Coronavirus Infections/veterinary , Diarrhea
8.
ACS Infect Dis ; 9(5): 1064-1077, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2304204

ABSTRACT

Entry of enveloped viruses in host cells requires the fusion of viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. These viral fusion proteins need to be triggered by host factors, and for some viruses, this event occurs inside endosomes and/or lysosomes. Consequently, these 'late-penetrating viruses' must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late-penetrating viruses also depend on specific host proteins for efficient delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1/2 inhibited entry of Ebola virus (EBOV) into host cells. Mechanistically, inhibition of SK1/2 prevented EBOV from reaching late-endosomes and lysosomes that contain the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests that the trafficking defect caused by SK1/2 inhibition occurs independently of sphingosine-1-phosphate (S1P) signaling through cell-surface S1P receptors. Lastly, we found that chemical inhibition of SK1/2 prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, and inhibits infection by replication-competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SK1/2 in endocytic trafficking, which can be targeted to inhibit entry of late-penetrating viruses and could serve as a starting point for the development of broad-spectrum antiviral therapeutics.


Subject(s)
Arenavirus , COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Cell Line , Sphingosine , SARS-CoV-2 , Viral Fusion Proteins
10.
mBio ; 14(3): e0340822, 2023 06 27.
Article in English | MEDLINE | ID: covidwho-2305930

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the main etiologic agent causing acute swine epidemic diarrhea, leading to severe economic losses to the pig industry. PEDV has evolved to deploy complicated antagonistic strategies to escape from host antiviral innate immunity. Our previous study demonstrated that PEDV downregulates histone deacetylase 1 (HDAC1) expression by binding viral nucleocapsid (N) protein to the transcription factor Sp1, inducing enhanced protein acetylation. We hypothesized that PEDV inhibition of HDAC1 expression would enhance acetylation of the molecules critical in innate immune signaling. Signal transducer and activator of transcription 1 (STAT1) is a crucial transcription factor regulating expression of interferon (IFN)-stimulated genes (ISGs) and anti-PEDV immune responses, as shown by overexpression, chemical inhibition, and gene knockdown in IPEC-J2 cells. We further show that PEDV infection and its N protein overexpression, although they upregulated STAT1 transcription level, could significantly block poly(I·C) and IFN-λ3-induced STAT1 phosphorylation and nuclear localization. Western blotting revealed that PEDV and its N protein promote STAT1 acetylation via downregulation of HDAC1. Enhanced STAT1 acetylation due to HDAC1 inhibition by PEDV or MS-275 (an HDAC1 inhibitor) impaired STAT1 phosphorylation, indicating that STAT1 acetylation negatively regulated its activation. These results, together with our recent report on PEDV N-mediated inhibition of Sp1, clearly indicate that PEDV manipulates the Sp1-HDAC1-STAT1 signaling axis to inhibit transcription of OAS1 and ISG15 in favor of its replication. This novel immune evasion mechanism is realized by suppression of STAT1 activation through preferential modulation of STAT1 acetylation over phosphorylation as a result of HDAC1 expression inhibition. IMPORTANCE PEDV has developed sophisticated evasion mechanisms to escape host IFN signaling via its structural and nonstructural proteins. STAT1 is one of the key transcription factors in regulating expression of ISGs. We found that PEDV and its N protein inhibit STAT1 phosphorylation and nuclear localization via inducing STAT1 acetylation as a result of HDAC1 downregulation, which, in turn, dampens the host IFN signaling activation. Our study demonstrates a novel mechanism that PEDV evades host antiviral innate immunity through manipulating the reciprocal relationship of STAT1 acetylation and phosphorylation. This provides new insights into the pathogenetic mechanisms of PEDV and even other coronaviruses.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Swine , Interferon Lambda , Phosphorylation , Cell Line , Acetylation , Antiviral Agents , Transcription Factors , STAT1 Transcription Factor
11.
J Med Chem ; 65(4): 2809-2819, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-2285958

ABSTRACT

Hexameric structure formation through packing of three C-terminal helices and an N-terminal trimeric coiled-coil core has been proposed as a general mechanism of class I enveloped virus entry. In this process, the C-terminal helical repeat (HR2) region of viral membrane fusion proteins becomes transiently exposed and accessible to N-terminal helical repeat (HR1) trimer-based fusion inhibitors. Herein, we describe a mimetic of the HIV-1 gp41 HR1 trimer, N3G, as a promising therapeutic against HIV-1 infection. Surprisingly, we found that in addition to protection against HIV-1 infection, N3G was also highly effective in inhibiting infection of human ß-coronaviruses, including MERS-CoV, HCoV-OC43, and SARS-CoV-2, possibly by binding the HR2 region in the spike protein of ß-coronaviruses to block their hexameric structure formation. These studies demonstrate the potential utility of anti-HIV-1 HR1 peptides in inhibiting human ß-coronavirus infection. Moreover, this strategy could be extended to the design of broad-spectrum antivirals based on the supercoiling structure of peptides.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Drug Design , HIV Envelope Protein gp41/antagonists & inhibitors , HIV-1/drug effects , Peptides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Coronavirus Infections/metabolism , Dose-Response Relationship, Drug , HIV Envelope Protein gp41/metabolism , HIV-1/metabolism , Humans , Microbial Sensitivity Tests , Peptides/chemical synthesis , Peptides/chemistry , Structure-Activity Relationship
12.
Bioorg Chem ; 129: 106185, 2022 12.
Article in English | MEDLINE | ID: covidwho-2268978

ABSTRACT

The evolving SARS-CoV-2 epidemic buffets the world, and the concerted efforts are needed to explore effective drugs. Mpro is an intriguing antiviral target for interfering with viral RNA replication and transcription. In order to get potential anti-SARS-CoV-2 agents, we established an enzymatic assay using a fluorogenic substrate to screen the inhibitors of Mpro. Fortunately, Acriflavine (ACF) and Proflavine Hemisulfate (PRF) with the same acridine scaffold were picked out for their good inhibitory activity against Mpro with IC50 of 5.60 ± 0.29 µM and 2.07 ± 0.01 µM, respectively. Further evaluation of MST assay and enzymatic kinetics experiment in vitro showed that they had a certain affinity to SARS-CoV-2 Mpro and were both non-competitive inhibitors. In addition, they inhibited about 90 % HCoV-OC43 replication in BHK-21 cells at 1 µM. Both compounds showed nano-molar activities against SARS-CoV-2 virus, which were superior to GC376 for anti-HCoV-43, and equivalent to the standard molecule remdesivir. Our study demonstrated that ACF and PRF were inhibitors of Mpro, and ACF has been previously reported as a PLpro inhibitor. Taken together, ACF and PRF might be dual-targeted inhibitors to provide protection against infections of coronaviruses.


Subject(s)
Acriflavine , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors , Proflavine , SARS-CoV-2 , Viral Protease Inhibitors , Acriflavine/pharmacology , Proflavine/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Viral Protease Inhibitors/pharmacology , Mesocricetus , Animals , Cricetinae , Cell Line , Virus Replication/drug effects
13.
PeerJ ; 11: e14776, 2023.
Article in English | MEDLINE | ID: covidwho-2272668

ABSTRACT

CCCH-type zinc figure proteins (ZFP) are small cellular proteins that are structurally maintained by zinc ions. Zinc ions coordinate the protein structure in a tetrahedral geometry by binding to cystine-cystine or cysteines-histidine amino acids. ZFP's unique structure enables it to interact with a wide variety of molecules including RNA; thus, ZFP modulates several cellular processes including the host immune response and virus replication. CCCH-type ZFPs have shown their antiviral efficacy against several DNA and RNA viruses. However, their role in the human coronavirus is little explored. We hypothesized that ZFP36L1 also suppresses the human coronavirus. To test our hypothesis, we used OC43 human coronavirus (HCoV) strain in our study. We overexpressed and knockdown ZFP36L1 in HCT-8 cells using lentivirus transduction. Wild type, ZFP36L1 overexpressed, and ZFP36L1 knockdown cells were each infected with HCoV-OC43, and the virus titer in each cell line was measured over 96 hours post-infection (p.i.). Our results show that HCoV-OC43 replication was significantly reduced with ZFP36L1 overexpression while ZFP36L1 knockdown significantly enhanced virus replication. ZFP36L1 knockdown HCT-8 cells started producing infectious virus at 48 hours p.i. which was an earlier timepoint as compared to wild -type and ZFP36L1 overexpressed cells. Wild-type and ZFP36L1 overexpressed HCT-8 cells started producing infectious virus at 72 hours p.i. Overall, the current study showed that overexpression of ZFP36L1 suppressed human coronavirus (OC43) production.


Subject(s)
Coronavirus OC43, Human , Humans , Coronavirus OC43, Human/genetics , Cystine , Cell Line , Virus Replication/genetics , Butyrate Response Factor 1 , Tristetraprolin
14.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2269622

ABSTRACT

SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte-platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.


Subject(s)
Blood Platelets , COVID-19 , Humans , Blood Platelets/metabolism , SARS-CoV-2 , COVID-19/metabolism , Megakaryocytes/metabolism , Cell Line
15.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2283883

ABSTRACT

The SARS-CoV-2 pandemic highlighted the need for broad-spectrum antivirals to increase our preparedness. Patients often require treatment by the time that blocking virus replication is less effective. Therefore, therapy should not only aim to inhibit the virus, but also to suppress pathogenic host responses, e.g., leading to microvascular changes and pulmonary damage. Clinical studies have previously linked SARS-CoV-2 infection to pathogenic intussusceptive angiogenesis in the lungs, involving the upregulation of angiogenic factors such as ANGPTL4. The ß-blocker propranolol is used to suppress aberrant ANGPTL4 expression in the treatment of hemangiomas. Therefore, we investigated the effect of propranolol on SARS-CoV-2 infection and the expression of ANGPTL4. SARS-CoV-2 upregulated ANGPTL4 in endothelial and other cells, which could be suppressed with R-propranolol. The compound also inhibited the replication of SARS-CoV-2 in Vero-E6 cells and reduced the viral load by up to ~2 logs in various cell lines and primary human airway epithelial cultures. R-propranolol was as effective as S-propranolol but lacks the latter's undesired ß-blocker activity. R-propranolol also inhibited SARS-CoV and MERS-CoV. It inhibited a post-entry step of the replication cycle, likely via host factors. The broad-spectrum antiviral effect and suppression of factors involved in pathogenic angiogenesis make R-propranolol an interesting molecule to further explore for the treatment of coronavirus infections.


Subject(s)
COVID-19 , Animals , Chlorocebus aethiops , Humans , Propranolol/pharmacology , SARS-CoV-2 , Vero Cells , Cell Line , Antiviral Agents/pharmacology , Virus Replication
16.
Antiviral Res ; 212: 105570, 2023 04.
Article in English | MEDLINE | ID: covidwho-2288776

ABSTRACT

Coronaviruses, as enveloped positive-strand RNA viruses, manipulate host lipid compositions to enable robust viral replication. Temporal modulation of the host lipid metabolism is a potential novel strategy against coronaviruses. Here, the dihydroxyflavone pinostrobin (PSB) was identified through bioassay that inhibited the increment of human coronavirus OC43 (HCoV-OC43) in human ileocecal colorectal adenocarcinoma cells. Lipid metabolomic studies showed that PSB interfered with linoleic acid and arachidonic acid metabolism pathways. PSB significantly decreased the level of 12, 13- epoxyoctadecenoic (12, 13-EpOME) and increased the level of prostaglandin E2. Interestingly, exogenous supplement of 12, 13-EpOME in HCoV-OC43-infected cells significantly stimulated HCoV-OC43 virus replication. Transcriptomic analyses showed that PSB is a negative modulator of aryl hydrocarbon receptor (AHR)/cytochrome P450 (CYP) 1A1signaling pathway and its antiviral effects can be counteracted by supplement of FICZ, a well-known AHR agonist. Integrative analyses of metabolomic and transcriptomic indicated that PSB could affect linoleic acid and arachidonic acid metabolism axis through AHR/CYP1A1 pathway. These results highlight the importance of the AHR/CYP1A1 pathway and lipid metabolism in the anti-coronavirus activity of the bioflavonoid PSB.


Subject(s)
Coronavirus Infections , Coronavirus OC43, Human , Coronavirus , Propolis , Humans , Lipid Metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/pharmacology , Propolis/metabolism , Propolis/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/metabolism , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Cell Line
17.
Vaccine ; 41(17): 2793-2803, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2287284

ABSTRACT

Protein subunit vaccines have been widely used to combat infectious diseases, including the current COVID-19 pandemic. Adjuvants play the key role in shaping the quality and magnitude of the immune response to protein and inactivated vaccines. We previously developed a protein subunit COVID-19 vaccine, termed ZF2001, based on an aluminium hydroxide-adjuvanted tandem-repeat dimeric receptor-binding domain (RBD) of the viral spike (S) protein. Here, we described the use of a squalene-based oil-in-water adjuvant, Sepivac SWE™ (abbreviated to SWE), to further improve the immunogenicity of this RBD-dimer-based subunit vaccines. Compared with ZF2001, SWE adjuvant enhanced the antibody and CD4+ T-cell responses in mice with at least 10 fold of dose sparing compared with ZF2001 adjuvanted with aluminium hydroxide. SWE-adjuvanted vaccine protected mice against SARS-CoV-2 challenge. To ensure adequate protection against the currently circulating Omicron variant, we evaluated this adjuvant in combination with Delta-Omicron chimeric RBD-dimer. SWE significantly increased antibody responses compared with aluminium hydroxide adjuvant and afforded greater neutralization breadth. These data highlight the advantage of emulsion-based adjuvants to elevate the protective immune response of protein subunit COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , Adjuvants, Vaccine , Protein Multimerization , Antibodies, Viral/immunology , SARS-CoV-2/genetics , Mutation , Mice, Inbred BALB C , Humans , Animals , Mice , Binding Sites , Cell Line
18.
J Clin Lipidol ; 17(1): 78-86, 2023.
Article in English | MEDLINE | ID: covidwho-2250329

ABSTRACT

BACKGROUND: 25-hydroxycholesterol (25HC), produced by cholesterol 25-hydroxylase (CH25H) in macrophages, has been reported to inhibit the replication of viral pathogens such as severe acute respiratory syndrome coronavirus-2. Also, CH25H expression in macrophages is robustly induced by interferons (IFNs). OBJECTIVE: To better understand the serum level increase of 25HC in coronavirus disease 2019 (COVID-19) and how it relates to the clinical picture. METHODS: We measured the serum levels of 25HC and five other oxysterols in 17 hospitalized COVID-19 patients. RESULTS: On admission, 25HC and 27-hydroxycholesterol (27HC) serum levels were elevated; however, 7-ketocholesterol (7KC) levels were lower in patients with COVID-19 than in the healthy controls. There was no significant correlation between 25HC serum levels and disease severity markers, such as interferon-gamma (IFN-γ) and interleukin 6. Dexamethasone effectively suppressed cholesterol 25-hydroxylase (CH25H) mRNA expression in RAW 264.7 cells, a murine leukemia macrophage cell line, with or without lipopolysaccharide or IFNs; therefore, it might mitigate the increasing effects of COVID-19 on the serum levels of 25HC. CONCLUSIONS: Our results highlighted that 25HC could be used as a unique biomarker in severe COVID-19 and a potential therapeutic candidate for detecting the severity of COVID-19 and other infectious diseases.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Animals , Mice , Antiviral Agents/pharmacology , Virus Replication , Cell Line
19.
J Virol ; 97(4): e0012823, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2264675

ABSTRACT

Coronavirus membrane protein is a major component of the viral envelope and plays a central role in the viral life cycle. Studies of the coronavirus membrane protein (M) have mainly focused on its role in viral assembly and budding, but whether M protein is involved in the initial stage of viral replication remains unclear. In this study, eight proteins in transmissible gastroenteritis virus (TGEV)-infected cells coimmunoprecipitated with monoclonal antibodies (MAb) against M protein in PK-15 cells, heat shock cognate protein 70 (HSC70), and clathrin were identified by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF MS). Further studies demonstrated that HSC70 and TGEV M colocalized on the cell surface in early stages of TGEV infection; specifically, HSC70 bound M protein through its substrate-binding domain (SBD) and preincubation of TGEV with anti-M serum to block the interaction of M and HSC70 reduced the internalization of TGEV, thus demonstrating that the M-HSC70 interaction mediates the internalization of TGEV. Remarkably, the process of internalization was dependent on clathrin-mediated endocytosis (CME) in PK-15 cells. Furthermore, inhibition of the ATPase activity of HSC70 reduced the efficiency of CME. Collectively, our results indicated that HSC70 is a newly identified host factor involved in TGEV infection. Taken together, our findings clearly illustrate a novel role for TGEV M protein in the viral life cycle and present a unique strategy used by HSC70 to promote TGEV infection in which the interaction with M protein directs viral internalization. These studies provide new insights into the life cycle of coronaviruses. IMPORTANCE TGEV is the causative agent of porcine diarrhea, a viral disease that economically affects the pig industry in many countries. However, the molecular mechanisms underlying viral replication remain incompletely understood. Here, we provide evidence of a previously undescribed role of M protein in viral replication during early stages. We also identified HSC70 as a new host factor affecting TGEV infection. We demonstrate that the interaction between M and HSC70 directs TGEV internalization in a manner dependent on CME, thus revealing a novel mechanism for TGEV replication. We believe that this study may change our understanding of the first steps of infection of cells with coronavirus. This study should facilitate the development of anti-TGEV therapeutic agents by targeting the host factors and may provide a new strategy for the control of porcine diarrhea.


Subject(s)
Clathrin , Coronavirus M Proteins , Endocytosis , HSC70 Heat-Shock Proteins , Transmissible gastroenteritis virus , Virus Internalization , Transmissible gastroenteritis virus/physiology , Clathrin/metabolism , Coronavirus M Proteins/metabolism , Cell Line , Humans , Animals , Virus Replication
20.
Appl Microbiol Biotechnol ; 107(7-8): 2451-2468, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2254613

ABSTRACT

Maximizing the expression level of therapeutic proteins in cells is the general goal for DNA/mRNA therapies. It is particularly challenging to achieve efficient protein expression in the cellular contexts with inhibited translation machineries, such as in the presence of cellular Nonstructural protein 1 (Nsp1) of coronaviruses (CoVs) that has been reported to inhibit overall protein synthesis of host genes and exogenously delivered mRNAs/DNAs. In this study, we thoroughly examined the sequence and structure contexts of viral and non-viral 5'UTRs that determine the protein expression levels of exogenously delivered DNAs and mRNAs in cells expressing SARS-CoV-2 Nsp1. It was found that high 5'-proximal A/U content promotes an escape from Nsp1-directed inhibition of protein synthesis and results in selective protein expression. Furthermore, 5'-proximal Cs were found to significantly enhance the protein expression in an Nsp1-dependent manner, while Gs located at a specific window close to the 5'-end counteract such enhancement. The distinct protein expression levels resulted from different 5'UTRs were found correlated to Nsp1-induced mRNA degradations. These findings ultimately enabled rational designs for optimized 5'UTRs that lead to strong expression of exogenous proteins regardless of the translationally repressive Nsp1. On the other hand, we have also identified several 5'-proximal sequences derived from host genes that are capable of mediating the escapes. These results provided novel perspectives to the optimizations of 5'UTRs for DNA/mRNA therapies and/or vaccinations, as well as shedding light on the potential host escapees from Nsp1-directed translational shutoffs. KEY POINTS: • The 5'-proximal SL1 and 5a/b derived from SARS-CoV-2 genomic RNA promote exogenous protein synthesis in cells expressing Nsp1 comparing with non-specific 5'UTRs. • Specific 5'-proximal sequence contexts are the key determinants of the escapes from Nsp1-directed translational repression and thereby enhance protein expressions. • Systematic mutagenesis identified optimized 5'UTRs that strongly enhance protein expression and promote resistance to Nsp1-induced translational repression and RNA degradation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 5' Untranslated Regions , SARS-CoV-2/genetics , RNA, Messenger/metabolism , Cell Line , Viral Nonstructural Proteins/genetics , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL