Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
Drug Deliv ; 29(1): 386-398, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2187330

ABSTRACT

The potential of nucleic acid therapeutics to treat diseases by targeting specific cells has resulted in its increasing number of uses in clinical settings. However, the major challenge is to deliver bio-macromolecules into target cells and/or subcellular locations of interest ahead in the development of delivery systems. Although, supercharged residues replaced protein 36 + GFP can facilitate itself and cargoes delivery, its efficiency is still limited. Therefore, we combined our recent progress to further improve 36 + GFP based delivery efficiency. We found that the penetration efficacy of 36 + GFP protein was significantly improved by fusion with CPP-Dot1l or treatment with penetration enhancer dimethyl sulfoxide (DMSO) in vitro. After safely packaged with plasmid DNA, we found that the efficacy of in vitro and in vivo transfection mediated by 36 + GFP-Dot1l fusion protein is also significantly improved than 36 + GFP itself. Our findings illustrated that fusion with CPP-Dot1l or incubation with DMSO is an alternative way to synergically promote 36 + GFP mediated plasmid DNA delivery in vitro and in vivo.


Subject(s)
Cell-Penetrating Peptides/pharmacokinetics , Drug Delivery Systems/methods , Green Fluorescent Proteins/pharmacokinetics , Histone-Lysine N-Methyltransferase/pharmacokinetics , Nucleic Acids/administration & dosage , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dimethyl Sulfoxide/chemistry , Green Fluorescent Proteins/chemistry , Hemolysis/drug effects , Humans , Mice , Particle Size , Surface Properties , Transfection/methods
2.
Cell Rep ; 41(4): 111540, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2104500

ABSTRACT

The cellular fate after infection with human coronaviruses (HCoVs) is typically death. Previous data suggest, however, that the transcriptional state of an individual cell may sometimes allow additional outcomes of infection. Here, to probe the range of interactions a permissive cell type can have with a HCoV, we perform a CRISPR activation screen with HCoV-229E. The screen identified the transcription factor ZBTB7A, which strongly promotes cell survival after infection. Rather than suppressing viral infection, ZBTB7A upregulation allows the virus to induce a persistent infection and homeostatic state with the cell. We also find that control of oxidative stress is a primary driver of cellular survival during HCoV-229E infection. These data illustrate that, in addition to the nature of the infecting virus and the type of cell that it encounters, the cellular gene expression profile prior to infection can affect the eventual fate.


Subject(s)
Coronavirus 229E, Human , Humans , Coronavirus 229E, Human/genetics , Cell Line, Tumor , DNA-Binding Proteins , Transcription Factors/genetics , Homeostasis
3.
Molecules ; 27(17)2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2023948

ABSTRACT

The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives.


Subject(s)
Bacterial Infections , Graphite , Nanocomposites , Neoplasms , Bacterial Infections/diagnostic imaging , Bacterial Infections/therapy , Cell Line, Tumor , Graphite/therapeutic use , Humans , Multimodal Imaging , Nanocomposites/therapeutic use , Neoplasms/drug therapy , Neoplasms/therapy , Phototherapy , Theranostic Nanomedicine/methods
4.
Mol Pharm ; 19(11): 4264-4274, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2016525

ABSTRACT

Tracking the pathogen of coronavirus disease 2019 (COVID-19) in live subjects may help estimate the spatiotemporal distribution of SARS-CoV-2 infection in vivo. This study developed a positron emission tomography (PET) tracer of the S2 subunit of spike (S) protein for imaging SARS-CoV-2. A pan-coronavirus inhibitor, EK1 peptide, was synthesized and radiolabeled with copper-64 after being conjugated with 1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid (NOTA). The in vitro stability tests indicated that [64Cu]Cu-NOTA-EK1 was stable up to 24 h both in saline and in human serum. The binding assay showed that [64Cu]Cu-NOTA-EK1 has a nanomolar affinity (Ki = 3.94 ± 0.51 nM) with the S-protein of SARS-CoV-2. The cell uptake evaluation used HEK293T/S+ and HEK293T/S- cell lines that showed that the tracer has a high affinity with the S-protein on the cellular level. For the in vivo study, we tested [64Cu]Cu-NOTA-EK1 in HEK293T/S+ cell xenograft-bearing mice (n = 3) and pseudovirus of SARS-CoV-2-infected HEK293T/ACE2 cell bearing mice (n = 3). The best radioactive xenograft-to-muscle ratio (X/Nxenograft 8.04 ± 0.99, X/Npseudovirus 6.47 ± 0.71) was most evident 4 h postinjection. Finally, PET imaging in the surrogate mouse model of beta-coronavirus, mouse hepatic virus-A59 infection in C57BL/6 J mice showed significantly enhanced accumulation in the liver than in the uninfected mice (1.626 ± 0.136 vs 0.871 ± 0.086 %ID/g, n = 3, P < 0.05) at 4 h postinjection. In conclusion, our experimental results demonstrate that [64Cu]Cu-NOTA-EK1 is a potential molecular imaging probe for tracking SARS-CoV-2 in extrapulmonary infections in living subjects.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , HEK293 Cells , COVID-19/diagnostic imaging , Mice, Inbred C57BL , Copper Radioisotopes/chemistry , Positron-Emission Tomography/methods , Molecular Probes , Cell Line, Tumor
5.
J Virol ; 96(18): e0102422, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2008764

ABSTRACT

Zoonotic coronaviruses represent an ongoing threat to public health. The classical porcine epidemic diarrhea virus (PEDV) first appeared in the early 1970s. Since 2010, outbreaks of highly virulent PEDV variants have caused great economic losses to the swine industry worldwide. However, the strategies by which PEDV variants escape host immune responses are not fully understood. Complement component 3 (C3) is considered a central component of the three complement activation pathways and plays a crucial role in preventing viral infection. In this study, we found that C3 significantly inhibited PEDV replication in vitro, and both variant and classical PEDV strains induced high levels of interleukin-1ß (IL-1ß) in Huh7 cells. However, the PEDV variant strain reduces C3 transcript and protein levels induced by IL-1ß compared with the PEDV classical strain. Examination of key molecules of the C3 transcriptional signaling pathway revealed that variant PEDV reduced C3 by inhibiting CCAAT/enhancer-binding protein ß (C/EBP-ß) phosphorylation. Mechanistically, PEDV nonstructural protein 1 (NSP1) inhibited C/EBP-ß phosphorylation via amino acid residue 50. Finally, we constructed recombinant PEDVs to verify the critical role of amino acid 50 of NSP1 in the regulation of C3 expression. In summary, we identified a novel antiviral role of C3 in inhibiting PEDV replication and the viral immune evasion strategies of PEDV variants. Our study reveals new information on PEDV-host interactions and furthers our understanding of the pathogenic mechanism of this virus. IMPORTANCE The complement system acts as a vital link between the innate and the adaptive immunity and has the ability to recognize and neutralize various pathogens. Activation of the complement system acts as a double-edged sword, as appropriate levels of activation protect against pathogenic infections, but excessive responses can provoke a dramatic inflammatory response and cause tissue damage, leading to pathological processes, which often appear in COVID-19 patients. However, how PEDV, as the most severe coronavirus causing diarrhea in piglets, regulates the complement system has not been previously reported. In this study, for the first time, we identified a novel mechanism of a PEDV variant in the suppression of C3 expression, showing that different coronaviruses and even different subtype strains differ in regulation of C3 expression. In addition, this study provides a deeper understanding of the mechanism of the PEDV variant in immune escape and enhanced virulence.


Subject(s)
Complement C3 , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Nonstructural Proteins , Virus Replication , Animals , Antiviral Agents , COVID-19/immunology , Cell Line, Tumor , Complement C3/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Swine , Swine Diseases/immunology , Swine Diseases/virology , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology
6.
Int J Mol Sci ; 23(15)2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1994083

ABSTRACT

In recent years, studies on the effects of combining novel plant compounds with cytostatics used in cancer therapy have received considerable attention. Since emodin sensitizes tumor cells to chemotherapeutics, we evaluated changes in cervical cancer cells after its combination with the antimitotic drug vinblastine. Cellular changes were demonstrated using optical, fluorescence, confocal and electron microscopy. Cell viability was assessed by MTT assay. The level of apoptosis, caspase 3/7, Bcl-2 protein, ROS, mitochondrial membrane depolarization, cell cycle and degree of DNA damage were analyzed by flow cytometry. The microscopic image showed indicators characteristic for emodin- and vinblastine-induced mitotic catastrophe, i.e., multinucleated cells, giant cells, cells with micronuclei, and abnormal mitotic figures. These compounds also increased blocking of cells in the G2/M phase, and the generated ROS induced swelling and mitochondrial damage. This translated into the growth of apoptotic cells with active caspase 3/7 and inactivation of Bcl-2 protein and active ATM kinase. Emodin potentiated the cytotoxic effect of vinblastine, increasing oxidative stress, mitotic catastrophe and apoptosis. Preliminary studies show that the combined action of both compounds, may constitute an interesting form of anticancer therapy.


Subject(s)
Emodin , Uterine Cervical Neoplasms , Apoptosis , Caspase 3 , Cell Line, Tumor , Emodin/pharmacology , Female , Humans , Proto-Oncogene Proteins c-bcl-2 , Reactive Oxygen Species/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Vinblastine/pharmacology
7.
Sci Rep ; 12(1): 13880, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1991664

ABSTRACT

A series of 1″-(alkylsulfonyl)-dispiro[indoline-3,2'-pyrrolidine-3',3″-piperidine]-2,4″-diones 6a‒o has been synthesized through regioselective multi-component azomethine dipolar cycloaddition reaction of 1-(alkylsulfonyl)-3,5-bis(ylidene)-piperidin-4-ones 3a‒h. X-ray diffraction studies (6b‒d,h) confirmed the structures. The majority of the synthesized analogs reveal promising antiproliferation properties against a variety of human cancer cell lines (MCF7, HCT116, A431 and PaCa2) with good selectivity index towards normal cell (RPE1). Some of the synthesized agents exhibit potent inhibitory properties against the tested cell lines with higher efficacies than the standard references (sunitinib and 5-fluorouracil). Compound 6m is the most potent. Multi-targeted inhibitory properties against EGFR and VEGFR-2 have been observed for the synthesized agents. Flow cytometry supports the antiproliferation properties and shows the tested agents as apoptosis and necrosis forming. Vero cell viral infection model demonstrates the anti-SARS-CoV-2 properties of the synthesized agents. Compound 6f is the most promising (about 3.3 and 4.8 times the potency of the standard references, chloroquine and hydroxychloroquine). QSAR models explain and support the observed biological properties.


Subject(s)
Antineoplastic Agents , COVID-19 , Spiro Compounds , Antineoplastic Agents/chemistry , COVID-19/drug therapy , Cell Line, Tumor , Humans , Indoles , Molecular Structure , SARS-CoV-2 , Spiro Compounds/chemistry , Spiro Compounds/pharmacology
8.
Future Oncol ; 18(24): 2627-2638, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1957139

ABSTRACT

Patients with advanced, recurrent or metastatic cancer have poor prognosis despite treatment advancements. Vesicular stomatitis virus (VSV)-glycoprotein (GP; BI 1831169) is a chimeric VSV with its neurotropic glycoprotein G replaced by the non-neurotropic GP of the lymphocytic choriomeningitis virus. This live, recombinant oncolytic virus has demonstrated preclinical efficacy as a viral-based immunotherapy due to its interferon-dependent tumor specificity, potent oncolysis and stimulation of antitumor immune activity. Co-administration of the immune checkpoint inhibitor, ezabenlimab (BI 754091), alongside VSV-GP may synergistically enhance antitumor immune activity. Here, we describe the rationale and design of the first-in-human, phase I, dose-escalation study of VSV-GP alone and in combination with the immune checkpoint inhibitor ezabenlimab in patients with advanced, metastatic or relapsed and refractory solid tumors (NCT05155332).


There is a need to develop new treatments for people living with cancer. Immunotherapy is a type of medicine that works by helping the body's natural defenses, known as the immune system, to destroy cancer cells. There are different types of immunotherapies such as oncolytic viruses (OVs) and immune checkpoint inhibitors (ICIs). OVs are viruses that may help destroy cancer cells while leaving normal cells unharmed. They work by replicating within cancer cells; this causes them to burst and release more of the virus which then infects nearby cancer cells and activates the body's immune system. ICIs may be able to work together with OVs to amplify this effect. Vesicular stomatitis virus (VSV)-glycoprotein (GP) is a type of OV that has been shown to effectively destroy cancer cells in animal studies. This first-in-human study will investigate VSV-GP on its own and in combination with an ICI called ezabenlimab for the treatment of late-stage cancer or cancer that has spread to multiple parts of the body. Here, we describe the background and design of this study in progress which aims to find out if VSV-GP alone or in combination with ezabenlimab is effective against cancer, the suitable dose and if any side effects occur. Trial Registration Number: NCT05155332 (ClinicalTrials.gov).


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Antibodies, Monoclonal , Cell Line, Tumor , Clinical Trials, Phase I as Topic , Glycoproteins , Humans , Immune Checkpoint Inhibitors , Neoplasms/genetics , Neoplasms/therapy , Oncolytic Viruses/genetics
9.
Mol Cell Proteomics ; 21(7): 100247, 2022 07.
Article in English | MEDLINE | ID: covidwho-1907570

ABSTRACT

Since the discovery of oncogenes, there has been tremendous interest to understand their mechanistic basis and to develop broadly actionable therapeutics. Some of the most frequently activated oncogenes driving diverse cancers are c-MYC, EGFR, HER2, AKT, KRAS, BRAF, and MEK. Using a reductionist approach, we explored how cellular proteomes are remodeled in isogenic cell lines engineered with or without these driver oncogenes. The most striking discovery for all oncogenic models was the systematic downregulation of scores of antiviral proteins regulated by type 1 interferon. These findings extended to cancer cell lines and patient-derived xenograft models of highly refractory pancreatic cancer and osteosarcoma driven by KRAS and MYC oncogenes. The oncogenes reduced basal expression of and autocrine stimulation by type 1 interferon causing remarkable convergence on common phenotypic and functional profiles. In particular, there was dramatically lower expression of dsRNA sensors including DDX58 (RIG-I) and OAS proteins, which resulted in attenuated functional responses when the oncogenic cells were treated with the dsRNA mimetic, polyI:C, and increased susceptibility to infection with an RNA virus shown using SARS-CoV-2. Our reductionist approach provides molecular and functional insights connected to immune evasion hallmarks in cancers and suggests therapeutic opportunities.


Subject(s)
COVID-19 , Interferon-beta , Oncogenes , Proteomics , Animals , Antiviral Restriction Factors , COVID-19/immunology , Carcinogenesis , Cell Line, Tumor , Humans , Interferon-beta/immunology , Proto-Oncogene Proteins p21(ras)/genetics , SARS-CoV-2
10.
Chem Biol Interact ; 363: 110025, 2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-1906835

ABSTRACT

In order to discover new dual-active agents, a series of novel Biginelli hybrids (tetrahydropyrimidines) and their ruthenium(II) complexes were synthesized. Newly synthesized compounds were characterized by IR, NMR, and X-ray techniques and investigated for their cytotoxic effect on human cancer cell lines HeLa, LS174, A549, A375, K562 and normal fibroblasts (MRC-5). For further examination of the cytotoxic mechanisms of novel complexes, two of them were chosen for analyzing their effects on the distribution of HeLa cells in the cell cycle phases. The results of the flow cytometry analysis suggest that the proportion of cells in G2/M phase was decreased following the increase of subG1 phase in all treatments. These results confirmed that cells treated with 5b and 5c were induced to undergo apoptotic death. The ruthenium complexes 5a-5d show significant inhibitory potency against SARS-CoV-2 Mpro. Therefore, molecule 5b has significance, while 5e possesses the lowest values of ΔGbind and Ki, which are comparable to cinanserin, and hydroxychloroquine. In addition, achieved results will open a new avenue in drug design for more research on the possible therapeutic applications of dual-active Biginelli-based drugs (anticancer-antiviral). Dual-active drugs based on the hybridization concept "one drug curing two diseases" could be a successful tactic in healing patients who have cancer and the virus SARS-CoV-2 at the same time.


Subject(s)
Antineoplastic Agents , COVID-19 , Coordination Complexes , Ruthenium , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , COVID-19/drug therapy , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , SARS-CoV-2
11.
Int J Mol Sci ; 23(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1892892

ABSTRACT

A major cause of cancer cell resistance to chemotherapeutics is the blocking of apoptosis and induction of autophagy in the context of cell adaptation and survival. Therefore, new compounds are being sought, also among drugs that are commonly used in other therapies. Due to the involvement of histamine in the regulation of processes occurring during the development of many types of cancer, antihistamines are now receiving special attention. Our study concerned the identification of new mechanisms of action of azelastine hydrochloride, used in antiallergic treatment. The study was performed on HeLa cells treated with different concentrations of azelastine (15-90 µM). Cell cycle, level of autophagy (LC3 protein activity) and apoptosis (annexin V assay), activity of caspase 3/7, anti-apoptotic protein of Bcl-2 family, ROS concentration, measurement of mitochondrial membrane potential (Δψm), and level of phosphorylated H2A.X in response to DSB were evaluated by cytometric method. Cellular changes were also demonstrated at the level of transmission electron microscopy and optical and fluorescence microscopy. Lysosomal enzyme activities-cathepsin D and L and cell viability (MTT assay) were assessed spectrophotometrically. Results: Azelastine in concentrations of 15-25 µM induced degradation processes, vacuolization, increase in cathepsin D and L activity, and LC3 protein activation. By increasing ROS, it also caused DNA damage and blocked cells in the S phase of the cell cycle. At the concentrations of 45-90 µM, azelastine clearly promoted apoptosis by activation of caspase 3/7 and inactivation of Bcl-2 protein. Fragmentation of cell nucleus was confirmed by DAPI staining. Changes were also found in the endoplasmic reticulum and mitochondria, whose damage was confirmed by staining with rhodamine 123 and in the MTT test. Azelastine decreased the mitotic index and induced mitotic catastrophe. Studies demonstrated the multidirectional effects of azelastine on HeLa cells, including anti-proliferative, cytotoxic, autophagic, and apoptotic properties, which were the predominant mechanism of death. The revealed novel properties of azelastine may be practically used in anti-cancer therapy in the future.


Subject(s)
Cathepsin D , Uterine Cervical Neoplasms , Apoptosis , Autophagy , Caspase 3/metabolism , Cell Line, Tumor , Female , HeLa Cells , Humans , Phthalazines , Proto-Oncogene Proteins c-bcl-2 , Reactive Oxygen Species/metabolism , Uterine Cervical Neoplasms/drug therapy
12.
Int J Mol Sci ; 23(12)2022 Jun 12.
Article in English | MEDLINE | ID: covidwho-1887212

ABSTRACT

The majority of transcribed RNAs do not codify for proteins, nevertheless they display crucial regulatory functions by affecting the cellular protein expression profile. MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) are effectors of interfering mechanisms, so that their biogenesis is a tightly regulated process. Onconase (ONC) is an amphibian ribonuclease known for cytotoxicity against tumors and antiviral activity. Additionally, ONC administration in patients resulted in clinical effectiveness and in a well-tolerated feature, at least for lung carcinoma and malignant mesothelioma. Moreover, the ONC therapeutic effects are actually potentiated by cotreatment with many conventional antitumor drugs. This review not only aims to describe the ONC activity occurring either in different tumors or in viral infections but also to analyze the molecular mechanisms underlying ONC pleiotropic and cellular-specific effects. In cancer, data suggest that ONC affects malignant phenotypes by generating tRNA fragments and miRNAs able to downregulate oncogenes expression and upregulate tumor-suppressor proteins. In cells infected by viruses, ONC hampers viral spread by digesting the primer tRNAs necessary for viral DNA replication. In this scenario, new therapeutic tools might be developed by exploiting the action of ONC-elicited RNA derivatives.


Subject(s)
Antineoplastic Agents , MicroRNAs , Neoplasms , Virus Diseases , Antineoplastic Agents/metabolism , Cell Line, Tumor , DNA Replication , DNA, Viral , Humans , MicroRNAs/genetics , Neoplasms/drug therapy , Neoplasms/genetics , RNA, Transfer/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Virus Diseases/drug therapy , Virus Diseases/genetics , Virus Replication
14.
J Virol ; 96(11): e0059422, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1840553

ABSTRACT

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.


Subject(s)
Lung , Membrane Proteins , SARS-CoV-2 , Virus Replication , COVID-19/virology , Cell Line, Tumor , Humans , Lung/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Internalization
15.
Front Immunol ; 13: 876555, 2022.
Article in English | MEDLINE | ID: covidwho-1809408

ABSTRACT

SARS-CoV-2 infects cells via binding to ACE2 and TMPRSS2, which allows the virus to fuse with host cells. The viral RNA is detected in the placenta of SARS-CoV-2-infected pregnant women and infection is associated with adverse pregnancy complications. Therefore, we hypothesize that SARS-CoV-2 infection of placental cells induces pro-inflammatory cytokine release to contribute to placental dysfunction and impaired pregnancy outcomes. First, expression of ACE2 and TMPRSS2 was measured by qPCR in human primary cultured term cytotrophoblasts (CTBs), syncytiotrophoblast (STBs), term and first trimester decidual cells (TDCs and FTDCs, respectively), endometrial stromal cells (HESCs) as well as trophoblast cell lines HTR8, JEG3, placental microvascular endothelial cells (PMVECs) and endometrial endothelial cells (HEECs). Later, cultured HTR8, JEG3, PMVECs and HEECs were treated with 10, 100, 1000 ng/ml of recombinant (rh-) SARS-CoV-2 S-protein ± 10 ng/ml rh-IFNγ. Pro-inflammatory cytokines IL-1ß, 6 and 8, chemokines CCL2, CCL5, CXCL9 and CXCL10 as well as tissue factor (F3), the primary initiator of the extrinsic coagulation cascade, were measured by qPCR as well as secreted IL-6 and IL-8 levels were measured by ELISA. Immunohistochemical staining for SARS-CoV-2 spike protein was performed in placental specimens from SARS-CoV-2-positive and normal pregnancies. ACE2 levels were significantly higher in CTBs and STBs vs. TDCs, FTDCs and HESCs, while TMPRSS2 levels were not detected in TDCs, FTDCs and HESCs. HTR8 and JEG3 express ACE2 and TMPRSS2, while PMVECs and HEECs express only ACE2, but not TMPRSS2. rh-S-protein increased proinflammatory cytokines and chemokines levels in both trophoblast and endothelial cells, whereas rh-S-protein only elevated F3 levels in endothelial cells. rh-IFNγ ± rh-S-protein augments expression of cytokines and chemokines in trophoblast and endothelial cells. Elevated F3 expression by rh-IFNγ ± S-protein was observed only in PMVECs. In placental specimens from SARS-CoV-2-infected mothers, endothelial cells displayed higher immunoreactivity against spike protein. These findings indicated that SARS-CoV-2 infection in placental cells: 1) induces pro-inflammatory cytokine and chemokine release, which may contribute to the cytokine storm observed in severely infected pregnant women and related placental dysfunction; and 2) elevates F3 expression that may trigger systemic or placental thrombosis.


Subject(s)
COVID-19 , Placenta Diseases , Pregnancy Complications, Infectious , Angiotensin-Converting Enzyme 2 , Cell Line, Tumor , Cytokines/metabolism , Endothelial Cells/pathology , Female , Humans , Placenta/metabolism , Placenta Diseases/pathology , Pregnancy , Pregnant Women , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Thromboplastin/metabolism
16.
Hum Exp Toxicol ; 41: 9603271221089257, 2022.
Article in English | MEDLINE | ID: covidwho-1789083

ABSTRACT

BACKGROUND: Remdesivir is an anti-viral drug that inhibits RNA polymerase. In 2020, remdesivir was recognized as the most promising therapeutic agents against coronavirus disease 2019 (COVID-19). However, the effects of remdesivir on cancers have hardly been studied. PURPOSE: Here, we reported that the anti-carcinogenic effect of remdesivir on SKOV3 cells, one of human ovarian cancer cell lines. RESEARCH DESIGN: We anlalyzed the anti-carcarcinogenic effect of remdesivir in SKOV3 cells by performing in vitro cell assay and western blotting. RESULTS: WST-1 showed that remdesivir decreased cell viability in SKOV3 cells. Experiments conducted by Muse Cell Analyzer showed that remdesivir-induced apoptosis in SKOV3 cells. We found that the expression level of FOXO3, Bax, and Bim increased, whereas Bcl-2, caspase-3, and caspase-7 decreased by remdesivir in SKOV3 cells. Furthermore, we observed that intracellular reactive oxygen species (ROS) level increased after treatment of remdesivir in SKOV3 cells. Interestingly, cytotoxicity of remdesivir decreased after treatment of N-Acetylcysteine. CONCLUSION: Taken together, our results demonstrated that remdesivir has an anti-carcinogenic effect on SKOV3 cells vis up-regulation of reactive oxygen species, which suggests that remdesivir could be a promising reagent for treatment of ovarian cancer.


Subject(s)
Anticarcinogenic Agents , COVID-19 , Ovarian Neoplasms , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Anticarcinogenic Agents/pharmacology , Apoptosis , COVID-19/drug therapy , Cell Line, Tumor , Cell Proliferation , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Reactive Oxygen Species/metabolism
17.
Appl Radiat Isot ; 184: 110157, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1787999

ABSTRACT

According to the National Institute of Public Health, prostate cancer (PCa) is the leading cause of cancer death in Mexican men, highly associated with aggressiveness, resistance to treatment, and metastatic spread (Bharti et al., 2019) mediated by activation of the hypoxia-inducible factor 1 (HIF-1α). The objective of the present study was to evaluate the participation of HIF-1α activation in the radiobiological response of the human prostate adenocarcinoma cell line LNCaP, describing the phenomena with a mathematical model. Four groups were formed under different exposure conditions, including hypoxic cells treated with CoCl2 (300 µM for 22 h) with or without hypoxia-inducible factor inhibitor (150 nM chetomin for 4 h added after an incubation period of 18 h with CoCl2, just before completing the incubation period of 22 h). They were exposed to a source of 60Co in a dose range between 2 and 10 Gy to obtain survival curves that are fitted to a mathematical model. CoCl2 or chetomin treatments do not affect the viability of LNCaP cells that remained unchanged after irradiation. CoCl2 induced hypoxia reduces the survivability of LNCaP, and obstruction of HIF-1α signaling with chetomine produces a slight radioprotective effect. As others report, the genetic reprogramming induced by HIF-1α activation acts as an intrinsic agent that selects cells with more aggressive behavior (Pressley et al., 2017), while chetomin protects cells from death due to its scavenger properties. Interestingly, treatment with chetomin of cells induced to hypoxia (HIF-1 activation with CoCl2) produces a significant reduction in the radioresistance of LNCaP cells, demonstrating that the simultaneous use of chetomin and gamma radiation is an effective option for the treatment of hypoxic prostate cancer. At the molecular level, we suggest that the selective force exerted by HIF-1α depends on the production of free radicals by radiation. The proposed mathematical model showed that the rate of change in cell survival as a function of radiation dose is proportional to the product of two functions, one that describes cell death and the other that describes natural or artificial resistance to radiation.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Prostatic Neoplasms , Signal Transduction , Cell Line, Tumor , Cell Survival , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Tumor Hypoxia
18.
Genome Biol ; 23(1): 55, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1785167

ABSTRACT

BACKGROUND: Multiplexing of samples in single-cell RNA-seq studies allows a significant reduction of the experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or -lipids allow barcoding sample-specific cells, a process called "hashing." RESULTS: Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq. We also compare TotalSeq-B antibodies with CellPlex reagents (10x Genomics) on human PBMCs and TotalSeq-B with different lipids on primary mouse tissues. Hashing efficiency was evaluated using the intrinsic genetic variation of the cell lines and mouse strains. Antibody hashing was further evaluated on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where we demonstrate a more affordable approach for large single-cell sequencing clinical studies, while simultaneously reducing batch effects. CONCLUSIONS: Benchmarking of different hashing strategies and computational pipelines indicates that correct demultiplexing can be achieved with both lipid- and antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred demultiplexing function and antibody-based hashing as the most efficient protocol on cells. On nuclei datasets, lipid hashing delivers the best results. Lipid hashing also outperforms antibodies on cells isolated from mouse brain. However, antibodies demonstrate better results on tissues like spleen or lung.


Subject(s)
COVID-19/blood , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Antibodies/chemistry , Case-Control Studies , Cell Line, Tumor , Cell Nucleus/chemistry , Humans , Lipids/chemistry , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophils/chemistry , Neutrophils/immunology , Neutrophils/virology
19.
Circ Res ; 130(7): 978-980, 2022 04.
Article in English | MEDLINE | ID: covidwho-1770079
20.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1744920

ABSTRACT

Involvement of macrophages in the SARS-CoV-2-associated cytokine storm, the excessive secretion of inflammatory/anti-viral factors leading to the acute respiratory distress syndrome (ARDS) in COVID-19 patients, is unclear. In this study, we sought to characterize the interplay between the virus and primary human monocyte-derived macrophages (MDM). MDM were stimulated with recombinant IFN-α and/or infected with either live or UV-inactivated SARS-CoV-2 or with two reassortant influenza viruses containing external genes from the H1N1 PR8 strain and heterologous internal genes from a highly pathogenic avian H5N1 or a low pathogenic human seasonal H1N1 strain. Virus replication was monitored by qRT-PCR for the E viral gene for SARS-CoV-2 or M gene for influenza and TCID50 or plaque assay, and cytokine levels were assessed semiquantitatively with qRT-PCR and a proteome cytokine array. We report that MDM are not susceptible to SARS-CoV-2 whereas both influenza viruses replicated in MDM, albeit abortively. We observed a modest cytokine response in SARS-CoV-2 exposed MDM with notable absence of IFN-ß induction, which was instead strongly induced by the influenza viruses. Pre-treatment of MDM with IFN-α enhanced proinflammatory cytokine expression upon exposure to virus. Together, the findings concur that the hyperinflammation observed in SARS-CoV-2 infection is not driven by macrophages.


Subject(s)
Inflammation/virology , Macrophages/immunology , Macrophages/virology , SARS-CoV-2/immunology , Virus Replication/genetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Cytokines/analysis , Cytokines/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Interferon-alpha/pharmacology , Macrophages/drug effects , Male , SARS-CoV-2/genetics , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL