Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Cells ; 12(11)2023 May 25.
Article in English | MEDLINE | ID: covidwho-20240787

ABSTRACT

Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish. This suggests that cell death is induced upon expression of E or 3a protein. We confirmed this by using flow cytometry. In adhering cells expressing E or 3a protein, the whole-cell currents were not different from those of the control, suggesting that E and 3a proteins are not plasma membrane viroporins. In contrast, recording the currents on detached cells uncovered outwardly rectifying currents much larger than those observed in the control. We illustrate for the first time that carbenoxolone and probenecid block these outwardly rectifying currents; thus, these currents are most probably conducted by pannexin channels that are activated by cell morphology changes and also potentially by cell death. The truncation of C-terminal PDZ binding motifs reduces the proportion of dying cells but does not prevent these outwardly rectifying currents. This suggests distinct pathways for the induction of these cellular events by the two proteins. We conclude that SARS-CoV-2 E and 3a proteins are not viroporins expressed at the plasma membrane.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Cricetulus , Cell Membrane , CHO Cells
2.
Viruses ; 15(5)2023 04 23.
Article in English | MEDLINE | ID: covidwho-20236769

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) canonically utilizes clathrin-mediated endocytosis (CME) and several other endocytic mechanisms to invade airway epithelial cells. Endocytic inhibitors, particularly those targeting CME-related proteins, have been identified as promising antiviral drugs. Currently, these inhibitors are ambiguously classified as chemical, pharmaceutical, or natural inhibitors. However, their varying mechanisms may suggest a more realistic classification system. Herein, we present a new mechanistic-based classification of endocytosis inhibitors, in which they are segregated among four distinct classes including: (i) inhibitors that disrupt endocytosis-related protein-protein interactions, and assembly or dissociation of complexes; (ii) inhibitors of large dynamin GTPase and/or kinase/phosphatase activities associated with endocytosis; (iii) inhibitors that modulate the structure of subcellular components, especially the plasma membrane, and actin; and (iv) inhibitors that cause physiological or metabolic alterations in the endocytosis niche. Excluding antiviral drugs designed to halt SARS-CoV-2 replication, other drugs, either FDA-approved or suggested through basic research, could be systematically assigned to one of these classes. We observed that many anti-SARS-CoV-2 drugs could be included either in class III or IV as they interfere with the structural or physiological integrity of subcellular components, respectively. This perspective may contribute to our understanding of the relative efficacy of endocytosis-related inhibitors and support the optimization of their individual or combined antiviral potential against SARS-CoV-2. However, their selectivity, combined effects, and possible interactions with non-endocytic cellular targets need more clarification.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , Endocytosis , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Cell Membrane/metabolism
3.
Biochim Biophys Acta Biomembr ; 1865(6): 184174, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2324713

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID, replicates at intracellular membranes. Bone marrow stromal antigen 2 (BST-2; tetherin) is an antiviral response protein that inhibits transport of viral particles after budding within infected cells. RNA viruses such as SARS-CoV-2 use various strategies to disable BST-2, including use of transmembrane 'accessory' proteins that interfere with BST-2 oligomerization. ORF7a is a small, transmembrane protein present in SARS-CoV-2 shown previously to alter BST-2 glycosylation and function. In this study, we investigated the structural basis for BST-2 ORF7a interactions, with a particular focus on transmembrane and juxtamembrane interactions. Our results indicate that transmembrane domains play an important role in BST-2 ORF7a interactions and mutations to the transmembrane domain of BST-2 can alter these interactions, particularly single-nucleotide polymorphisms in BST-2 that result in mutations such as I28S. Using molecular dynamics simulations, we identified specific interfaces and interactions between BST-2 and ORF7a to develop a structural basis for the transmembrane interactions. Differences in glycosylation are observed for BST-2 transmembrane mutants interacting with ORF7a, consistent with the idea that transmembrane domains play a key role in their heterooligomerization. Overall, our results indicate that ORF7a transmembrane domain interactions play a key role along with extracellular and juxtamembrane domains in modulating BST-2 function.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cell Membrane/genetics , Cell Membrane/metabolism , COVID-19/metabolism , Membrane Proteins/metabolism , SARS-CoV-2/genetics , Viral Regulatory and Accessory Proteins/metabolism
4.
J Virol ; 97(5): e0199222, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-2319107

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to cell surface receptors and is activated for membrane fusion and cell entry via proteolytic cleavage. Phenomenological data have shown that SARS-CoV-2 can be activated for entry at either the cell surface or in endosomes, but the relative roles in different cell types and mechanisms of entry have been debated. Here, we used single-virus fusion experiments and exogenously controlled proteases to probe activation directly. We found that plasma membrane and an appropriate protease are sufficient to support SARS-CoV-2 pseudovirus fusion. Furthermore, fusion kinetics of SARS-CoV-2 pseudoviruses are indistinguishable no matter which of a broad range of proteases is used to activate the virus. This suggests that the fusion mechanism is insensitive to protease identity or even whether activation occurs before or after receptor binding. These data support a model for opportunistic fusion by SARS-CoV-2 in which the subcellular location of entry likely depends on the differential activity of airway, cellsurface, and endosomal proteases, but all support infection. Inhibition of any single host protease may thus reduce infection in some cells but may be less clinically robust. IMPORTANCE SARS-CoV-2 can use multiple pathways to infect cells, as demonstrated recently when new viral variants switched dominant infection pathways. Here, we used single-virus fusion experiments together with biochemical reconstitution to show that these multiple pathways coexist simultaneously and specifically that the virus can be activated by different proteases in different cellular compartments with mechanistically identical effects. The consequences of this are that the virus is evolutionarily plastic and that therapies targeting viral entry should address multiple pathways at once to achieve optimal clinical effects.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cell Membrane/metabolism , COVID-19/virology , Peptide Hydrolases/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
5.
Nano Lett ; 23(8): 3377-3384, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2317386

ABSTRACT

Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker.


Subject(s)
Influenza, Human , Spike Glycoprotein, Coronavirus , Humans , Membrane Fusion , Cell Membrane/metabolism , Membrane Proteins/metabolism , Lipids
6.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-2308229

ABSTRACT

Different serological assays were rapidly generated to study humoral responses against the SARS-CoV-2 Spike glycoprotein. Due to the intrinsic difficulty of working with SARS-CoV-2 authentic virus, most serological assays use recombinant forms of the Spike glycoprotein or its receptor binding domain (RBD). Cell-based assays expressing different forms of the Spike, as well as pseudoviral assays, are also widely used. To evaluate whether these assays recapitulate findings generated when the Spike is expressed in its physiological context (at the surface of the infected primary cells), we developed an intracellular staining against the SARS-CoV-2 nucleocapsid (N) to distinguish infected from uninfected cells. Human airway epithelial cells (pAECs) were infected with authentic SARS-CoV-2 D614G or Alpha variants. We observed robust cell-surface expression of the SARS-CoV-2 Spike at the surface of the infected pAECs using the conformational-independent anti-S2 CV3-25 antibody. The infected cells were also readily recognized by plasma from convalescent and vaccinated individuals and correlated with several serological assays. This suggests that the antigenicity of the Spike present at the surface of the infected primary cells is maintained in serological assays involving expression of the native full-length Spike.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Bronchioles/cytology , Cells, Cultured , Coronavirus Nucleocapsid Proteins/metabolism , Epithelial Cells/virology , HEK293 Cells , Humans , Neutralization Tests , Phosphoproteins/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
7.
J Phys Chem B ; 127(2): 486-494, 2023 01 19.
Article in English | MEDLINE | ID: covidwho-2308032

ABSTRACT

Viral infection usually begins with adhesion between the viral particle and viral receptors displayed on the cell membrane. The exterior surface of the cell membrane is typically coated with a brush-like layer of molecules, the glycocalyx, that the viruses need to penetrate. Although there is extensive literature on the biomechanics of virus-cell adhesion, much of it is based on continuum-level models that do not address the question of how virus/cell-membrane adhesion occurs through the glycocalyx. In this work, we present a simulation study of the penetration mechanism. Using a coarse-grained molecular model, we study the force-driven and diffusive penetration of a brush-like glycocalyx by viral particles. For force-driven penetration, we find that viral particles smaller than the spacing of molecules in the brush reach the membrane surface readily. For a given maximum force, viral particles larger than the minimum spacing of brush molecules arrest at some distance from the membrane, governed by the balance of elastic and applied forces. For the diffusive case, we find that weak but multivalent attraction between the glycocalyx molecules and the virus effectively leads to its engulfment by the glycocalyx. Our finding provides potential guidance for developing glycocalyx-targeting drugs and therapies by understanding how virus-cell adhesion works.


Subject(s)
Glycocalyx , Viruses , Glycocalyx/metabolism , Adhesives/metabolism , Cell Membrane/metabolism , Cell Adhesion
8.
Int J Mol Sci ; 24(6)2023 Mar 18.
Article in English | MEDLINE | ID: covidwho-2275095

ABSTRACT

A collection of repurposing drugs (Prestwick Chemical Library) containing 1200 compounds was screened to investigate the drugs' antimicrobial effects against planktonic cultures of the respiratory pathogen Streptococcus pneumoniae. After four discrimination rounds, a set of seven compounds was finally selected, namely (i) clofilium tosylate; (ii) vanoxerine; (iii) mitoxantrone dihydrochloride; (iv) amiodarone hydrochloride; (v) tamoxifen citrate; (vi) terfenadine; and (vii) clomiphene citrate (Z, E). These molecules arrested pneumococcal growth in a liquid medium and induced a decrease in bacterial viability between 90.0% and 99.9% at 25 µM concentration, with minimal inhibitory concentrations (MICs) also in the micromolar range. Moreover, all compounds but mitoxantrone caused a remarkable increase in the permeability of the bacterial membrane and share a common, minimal chemical structure consisting of an aliphatic amine linked to a phenyl moiety via a short carbon/oxygen linker. These results open new possibilities to tackle pneumococcal disease through drug repositioning and provide clues for the design of novel membrane-targeted antimicrobials with a related chemical structure.


Subject(s)
Anti-Infective Agents , Pneumococcal Infections , Humans , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Drug Repositioning , Mitoxantrone/pharmacology , Pneumococcal Infections/drug therapy , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Cell Membrane
9.
Anal Chem ; 95(7): 3789-3798, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2254734

ABSTRACT

Transmembrane protease serine 2 (TMPRSS2) is a plasma membrane protease that activates both spike protein of coronaviruses for cell entry and oncogenic signaling pathways for tumor progression. TMPRSS2 inhibition can reduce cancer invasion and metastasis and partially prevent the entry of SARS-CoV-2 into host cells. Thus, there is an urgent need for both TMPRSS2-selective imaging and precise screening of TMPRSS2 inhibitors. Here, we report a TMPRSS2-responsive surface-potential-tunable peptide-conjugated probe (EGTP) with aggregation-induced emission (AIE) features for TMPRSS2 selective imaging and accurate inhibitor screening. The amphiphilic EGTP was constructed with tunable surface potential and responsive efficiency with TMPRSS2 and its inhibitor. The rational construction of AIE luminogens (AIEgens) with modular peptides indicated that the cleavage of EGTP led to a gradual aggregation with bright fluorescence in high TMPRSS2-expressing cells. This strategy may have value for selective detection of cancer cells, SARS-CoV-2-target cells, and screening of protease inhibitors.


Subject(s)
COVID-19 , Peptide Hydrolases , Humans , SARS-CoV-2 , Cell Membrane , Protease Inhibitors , Virus Internalization , Serine Endopeptidases
10.
J Nanobiotechnology ; 20(1): 538, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2282177

ABSTRACT

Nanoparticles have now long demonstrated capabilities that make them attractive to use in biology and medicine. Some of them, such as lipid nanoparticles (SARS-CoV-2 vaccines) or metallic nanoparticles (contrast agents) are already approved for their use in the clinic. However, considering the constantly growing body of different formulations and the huge research around nanomaterials the number of candidates reaching clinical trials or being commercialized is minimal. The reasons behind being related to the "synthetic" and "foreign" character of their surface. Typically, nanomaterials aiming to develop a function or deliver a cargo locally, fail by showing strong off-target accumulation and generation of adverse responses, which is connected to their strong recognition by immune phagocytes primarily. Therefore, rendering in negligible numbers of nanoparticles developing their intended function. While a wide range of coatings has been applied to avoid certain interactions with the surrounding milieu, the issues remained. Taking advantage of the natural cell membranes, in an approach that resembles a cell transfer, the use of cell-derived surfaces has risen as an alternative to artificial coatings or encapsulation methods. Biomimetic technologies are based on the use of isolated natural components to provide autologous properties to the nanoparticle or cargo being encapsulated, thus, improving their therapeutic behavior. The main goal is to replicate the (bio)-physical properties and functionalities of the source cell and tissue, not only providing a stealthy character to the core but also taking advantage of homotypic properties, that could prove relevant for targeted strategies. Such biomimetic formulations have the potential to overcome the main issues of approaches to provide specific features and identities synthetically. In this review, we provide insight into the challenges of nano-biointerfaces for drug delivery; and the main applications of biomimetic materials derived from specific cell types, focusing on the unique strengths of the fabrication of novel nanotherapeutics in cancer therapy.


Subject(s)
Biomimetic Materials , COVID-19 , Nanoparticles , Neoplasms , Humans , Biomimetics , COVID-19 Vaccines , COVID-19/metabolism , SARS-CoV-2 , Drug Delivery Systems , Nanoparticles/therapeutic use , Cell Membrane/metabolism , Neoplasms/therapy , Neoplasms/metabolism
11.
J Chromatogr A ; 1693: 463903, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2285996

ABSTRACT

Patients have different responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and these may be life-threatening for critically ill patients. Screening components that act on host cell receptors, especially multi-receptor components, is challenging. The in-line combination of dual-targeted cell membrane chromatography and a liquid chromatography-mass spectroscopy (LC-MS) system for analyzing angiotensin-converting enzyme 2 (ACE2) and cluster of differentiation 147 (CD147) receptors based on SNAP-tag technology provides a comprehensive solution for screening multiple components in complex samples acting on the two receptors. The selectivity and applicability of the system were validated with encouraging results. Under the optimized conditions, this method was used to screen for antiviral components in Citrus aurantium extracts. The results showed that 25 µmol /L of the active ingredient could inhibit virus entry into cells. Hesperidin, neohesperidin, nobiletin, and tangeretin were identified as antiviral components. In vitro pseudovirus assays and macromolecular cell membrane chromatography further verified the interaction of these four components with host-virus receptors, showing good effects on some or all of the pseudoviruses and host receptors. In conclusion, the in-line dual-targeted cell membrane chromatography LC-MS system developed in this study can be used for the comprehensive screening of antiviral components in complex samples. It also provides new insight into small-molecule drug-receptor and macromolecular-protein-receptor interactions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Cell Membrane/metabolism , Antiviral Agents/pharmacology
12.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2268009

ABSTRACT

The influence of kaempferol (K), myricetin (M) and lipoic acid (LA) on the properties of natural erythrocytes, isolated from animal blood and biological membrane models (monolayers and liposomes) made of phosphatidylcholine (PC), cholesterol (CHOL), and sphingomyelin (SM), CHOL in a ratio of 10:9, was investigated. The Langmuir method, Brewster angle microscopy (BAM) and microelectrophoresis were used. The presented results showed that modification of liposomes with kaempferol, myricetin and lipoic acid caused changes in the surface charge density and the isoelectric point value. Comparing the tested systems, several conclusions were made. (1) The isoelectric point for the DPPC:Chol:M (~2.2) had lower pH values compared to lipoic acid (pH~2.5) and kaempferol (pH~2.6). (2) The isoelectric point for the SM-Chol with myricetin (~3.0) had lower pH values compared to kaempferol (pH~3.4) and lipoic acid (pH~4.7). (3) The surface charge density values for the DPPC:Chol:M system in the range of pH 2-9 showed values from 0.2 to -2.5 × 10-2 C m-2. Meanwhile, for the DPPC:Chol:K and DPPC:Chol:LA systems, these values were higher at pH~2 (0.7 × 10-2 C m-2 and 0.8 × 10-2 C m-2) and lower at pH~9 (-2.1 × 10-2 C m-2 and -1.8 × 10-2 C m-2), respectively. (4) The surface charge density values for the SM:Chol:M system in the range of pH 2-9 showed values from 0.5 to -2.3 × 10-2 C m-2. Meanwhile, for the DPPC:Chol:K and DPPC:Chol:LA systems, these values were higher at pH~2 (0.8 × 10-2 C m-2), and lower at pH~9 (-1.0 × 10-2 C m-2 and -1.8 × 10-2 C m-2), respectively. (5) The surface charge density values for the erythrocytes with myricetin in the range of pH 2-9 showed values from 1.0 to -1.8 × 10-2 C m-2. Meanwhile, for the erythrocytes:K and erythrocytes:LA systems, these values, at pH~2, were 1.3 × 10-2 C m-2 and 0.8 × 10-2 C m-2 and, at pH~9, -1.7 × 10-2 C m-2 and -1.0 × 10-2 C m-2, respectively.


Subject(s)
Liposomes , Thioctic Acid , Animals , Liposomes/chemistry , Kaempferols , Thioctic Acid/pharmacology , Sphingomyelins/chemistry , Cholesterol/chemistry , Lecithins , Cell Membrane , 1,2-Dipalmitoylphosphatidylcholine/chemistry
13.
Langmuir ; 39(15): 5408-5417, 2023 04 18.
Article in English | MEDLINE | ID: covidwho-2265219

ABSTRACT

We demonstrate that cholesterol-modified polyethylene glycol has antiviral activity, exerted by anchoring to plasma membranes and sterically inhibiting viruses from entering cells. These polymers distribute sparsely on cell membranes even at binding saturation. However, the polymers have sufficient elastic repulsion energy to repel various kinds of viruses with sizes larger than the mean distances between anchored polymers, including SARS-CoV-2 pseudoparticles. Our strategy can be applied to protect the epithelium from viruses. When these polymers are applied to the epithelium, they localize on the apical surface due to the tight junction barriers, resulting in surface-only coating. Therefore, these polymers can prevent the entry of viruses into cells of the epithelium with minimal disturbance to lateral cell-cell interactions and organizations.


Subject(s)
COVID-19 , Polymers , Humans , Polymers/pharmacology , Antiviral Agents/pharmacology , SARS-CoV-2 , Cell Membrane
14.
Proc Natl Acad Sci U S A ; 120(5): e2212577120, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2233252

ABSTRACT

SARS-CoV-2 spike requires proteolytic processing for viral entry. A polybasic furin-cleavage site (FCS) in spike, and evolution toward an optimized FCS by dominant variants of concern (VOCs), are linked to enhanced infectivity and transmission. Here we show interferon-inducible restriction factors Guanylate-binding proteins (GBP) 2 and 5 interfere with furin-mediated spike cleavage and inhibit the infectivity of early-lineage isolates Wuhan-Hu-1 and VIC. By contrast, VOCs Alpha and Delta escape restriction by GBP2/5 that we map to the spike substitution D614G present in these VOCs. Despite inhibition of spike cleavage, these viruses remained sensitive to plasma membrane IFITM1, but not endosomal IFITM2 and 3, consistent with a preference for TMPRSS2-dependent plasma membrane entry. Strikingly, we find that Omicron is unique among VOCs, being sensitive to restriction factors GBP2/5, and also IFITM1, 2, and 3. Using chimeric spike mutants, we map the Omicron phenotype and show that the S1 domain determines Omicron's sensitivity to GBP2/5, whereas the S2' domain determines its sensitivity to endosomal IFITM2/3 and preferential use of TMPRSS2-independent entry. We propose that evolution of SARS-CoV-2 for the D614G substitution has allowed for escape from GBP restriction factors, but the selective pressures on Omicron for spike changes that mediate antibody escape, and altered tropism, have come at the expense of increased sensitivity to innate immune restriction factors that target virus entry.


Subject(s)
COVID-19 , Furin , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Antibodies , Cell Membrane , Factor V , Spike Glycoprotein, Coronavirus/genetics , Membrane Proteins/genetics
15.
Nucleic Acids Res ; 50(D1): D497-D508, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-2232151

ABSTRACT

Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.


Subject(s)
Communicable Diseases/genetics , Databases, Protein , Host-Pathogen Interactions/genetics , Protein Interaction Domains and Motifs , Software , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Animals , Binding Sites , Cell Cycle/genetics , Cell Membrane/chemistry , Cell Membrane/metabolism , Communicable Diseases/metabolism , Communicable Diseases/virology , Cyclins/chemistry , Cyclins/genetics , Cyclins/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Eukaryotic Cells/virology , Gene Expression Regulation , Humans , Integrins/chemistry , Integrins/genetics , Integrins/metabolism , Mice , Molecular Sequence Annotation , Protein Binding , Rats , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Transport Vesicles/chemistry , Transport Vesicles/metabolism , Viruses/genetics , Viruses/metabolism
16.
Viruses ; 15(2)2023 02 06.
Article in English | MEDLINE | ID: covidwho-2225692

ABSTRACT

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are emerging rapidly and offer surfaces that are optimized for recognition of host cell membranes while also evading antibodies arising from vaccinations and previous infections. Host cell infection is a multi-step process in which spike heads engage lipid bilayers and one or more angiotensin-converting enzyme 2 (ACE-2) receptors. Here, the membrane binding surfaces of Omicron subvariants are compared using cryo-electron microscopy (cEM) structures of spike trimers from BA.2, BA.2.12.1, BA.2.13, BA.2.75, BA.3, BA.4, and BA.5 viruses. Despite significant differences around mutated sites, they all maintain strong membrane binding propensities that first appeared in BA.1. Both their closed and open states retain elevated membrane docking capacities, although the presence of more closed than open states diminishes opportunities to bind receptors while enhancing membrane engagement. The electrostatic dipoles are generally conserved. However, the BA.2.75 spike dipole is compromised, and its ACE-2 affinity is increased, and BA.3 exhibits the opposite pattern. We propose that balancing the functional imperatives of a stable, readily cleavable spike that engages both lipid bilayers and receptors while avoiding host defenses underlies betacoronavirus evolution. This provides predictive criteria for rationalizing future pandemic waves and COVID-19 transmissibility while illuminating critical sites and strategies for simultaneously combating multiple variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cryoelectron Microscopy , Lipid Bilayers , Antibodies , Cell Membrane
17.
Elife ; 122023 01 25.
Article in English | MEDLINE | ID: covidwho-2217494

ABSTRACT

Most of the cholesterol in the plasma membranes (PMs) of animal cells is sequestered through interactions with phospholipids and transmembrane domains of proteins. However, as cholesterol concentration rises above the PM's sequestration capacity, a new pool of cholesterol, called accessible cholesterol, emerges. The transport of accessible cholesterol between the PM and the endoplasmic reticulum (ER) is critical to maintain cholesterol homeostasis. This pathway has also been implicated in the suppression of both bacterial and viral pathogens by immunomodulatory oxysterols. Here, we describe a mechanism of depletion of accessible cholesterol from PMs by the oxysterol 25-hydroxycholesterol (25HC). We show that 25HC-mediated activation of acyl coenzyme A: cholesterol acyltransferase (ACAT) in the ER creates an imbalance in the equilibrium distribution of accessible cholesterol between the ER and PM. This imbalance triggers the rapid internalization of accessible cholesterol from the PM, and this depletion is sustained for long periods of time through 25HC-mediated suppression of SREBPs and continued activation of ACAT. In support of a physiological role for this mechanism, 25HC failed to suppress Zika virus and human coronavirus infection in ACAT-deficient cells, and Listeria monocytogenes infection in ACAT-deficient cells and mice. We propose that selective depletion of accessible PM cholesterol triggered by ACAT activation and sustained through SREBP suppression underpins the immunological activities of 25HC and a functionally related class of oxysterols.


Subject(s)
Oxysterols , Zika Virus Infection , Zika Virus , Animals , Humans , Mice , Oxysterols/metabolism , Acyltransferases/metabolism , Cholesterol/metabolism , Cell Membrane/metabolism , Bacteria/metabolism
18.
Drug Deliv ; 29(1): 2296-2319, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2187331

ABSTRACT

The emerging cell membrane (CM)-camouflaged poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) (CM@PLGA NPs) have witnessed tremendous developments since coming to the limelight. Donning a novel membrane coat on traditional PLGA carriers enables combining the strengths of PLGA with cell-like behavior, including inherently interacting with the surrounding environment. Thereby, the in vivo defects of PLGA (such as drug leakage and poor specific distribution) can be overcome, its therapeutic potential can be amplified, and additional novel functions beyond drug delivery can be conferred. To elucidate the development and promote the clinical transformation of CM@PLGA NPs, the commonly used anucleate and eukaryotic CMs have been described first. Then, CM engineering strategies, such as genetic and nongenetic engineering methods and hybrid membrane technology, have been discussed. The reviewed CM engineering technologies are expected to enrich the functions of CM@PLGA for diverse therapeutic purposes. Third, this article highlights the therapeutic and diagnostic applications and action mechanisms of PLGA biomimetic systems for cancer, cardiovascular diseases, virus infection, and eye diseases. Finally, future expectations and challenges are spotlighted in the concept of translational medicine.


Subject(s)
Biomimetics , Nanoparticles , Cell Membrane , Drug Carriers
19.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2143217

ABSTRACT

Lipids are hydrophobic molecules involved in a plethora of biological functions; for example, they are employed for the storage of energy, serve as essential constituents of cell membranes and participate in the assembly of bilayer configuration [...].


Subject(s)
Lipid Metabolism , Lipids , Cell Membrane/metabolism , Hydrophobic and Hydrophilic Interactions , Lipids/analysis
20.
Sci Rep ; 12(1): 17520, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2077118

ABSTRACT

SiRNA is a new generation of drug molecules and a new approach for treating a variety of diseases such as cancer and viral infections. SiRNA delivery to cells and translocation into cytoplasm are the main challenges in the clinical application of siRNA. Lipid carriers are one of the most successful carriers for siRNA delivery. In this study, we investigated the interaction of siRNA with a zwitterionic bilayer and how ion concentration and lipid conjugation can affect it. The divalent cation such as Mg2+ ions could promote the siRNA adsorption on the bilayer surface. The cation ions can bind to the head groups of lipids and the grooves of siRNA molecules and form bridges between the siRNA and bilayer surface. Our findings demonstrated the bridges formed by divalent ions could facilitate the attachment of siRNA to the membrane surface. We showed that the divalent cations can regulate the bridging-driven membrane attachment and it seems the result of this modulation can be used for designing biomimetic devices. In the following, we examined the effect of cations on the interaction between siRNA modified by cholesterol and the membrane surface. Our MD simulations showed that in the presence of Mg2+, the electrostatic and vdW energy between the membrane and siRNA were higher compared to those in the presence of NA+. We showed that the electrostatic interaction between membrane and siRNA cannot be facilitated only by cholesterol conjugated. Indeed, cations are essential to create coulomb repulsion and enable membrane attachment. This study provides important insight into liposome carriers for siRNA delivery and could help us in the development of siRNA-based therapeutics. Due to the coronavirus pandemic outbreak, these results may shed light on the new approach for treating these diseases and their molecular details.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , RNA, Small Interfering/genetics , Lipid Bilayers/metabolism , Liposomes , Cations, Divalent , Cell Membrane/metabolism , Cations , Cholesterol
SELECTION OF CITATIONS
SEARCH DETAIL