Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Int J Mol Sci ; 23(16)2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-1997648

ABSTRACT

The aims of our study are to: (i) investigate the ability of nicotine to modulate the expression level of inflammatory cytokines in A549 cells infected with SARS-CoV-2; (ii) elucidate the ultrastructural features caused by the combination nicotine+SARS-CoV-2; and (iii) demonstrate the mechanism of action. In this study, A549 cells pretreated with nicotine were either exposed to LPS or poly(I:C), or infected with SARS-CoV-2. Treated and untreated cells were analyzed for cytokine production, cytotoxicity, and ultrastructural modifications. Vero E6 cells were used as a positive reference. Cells pretreated with nicotine showed a decrease of IL6 and TNFα in A549 cells induced by LPS or poly(I:C). In contrast, cells exposed to SARS-CoV-2 showed a high increase of IL6, IL8, IL10 and TNFα, high cytopathic effects that were dose- and time-dependent, and profound ultrastructural modifications. These modifications were characterized by membrane ruptures and fragmentation, the swelling of cytosol and mitochondria, the release of cytoplasmic content in extracellular spaces (including osmiophilic granules), the fragmentation of endoplasmic reticulum, and chromatin disorganization. Nicotine increased SARS-CoV-2 cytopathic effects, elevating the levels of inflammatory cytokines, and inducing severe cellular damage, with features resembling pyroptosis and necroptosis. The protective role of nicotine in COVID-19 is definitively ruled out.


Subject(s)
Nicotine , SARS-CoV-2 , A549 Cells , COVID-19 , Cell Survival/drug effects , Cytokines/metabolism , Humans , Interleukin-6 , Lipopolysaccharides , Nicotine/adverse effects , Nicotine/pharmacology , Tumor Necrosis Factor-alpha
2.
J Med Chem ; 64(19): 14465-14476, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1894373

ABSTRACT

In this work, a series of novel substituted polycyclic pyridone derivatives were designed and synthesized as potent anti-influenza agents. The cytopathic effect (CPE) assay and cytotoxicity assay indicated that all of the compounds possessed potent anti-influenza virus activity and relatively low cytotoxicity; some of them inhibited the replication of influenza A virus (IAV) at picomolar concentrations. Further studies revealed that, at a concentration of 3 nM, three compounds (10a, 10d, and 10g) could significantly reduce the M2 RNA amounts and M2 protein expression of IAV and inhibit the activity of RNA-dependent RNA polymerase (RdRp). Among them, (R)-12-(5H-dibenzo[a,d][7]annulen-5-yl)-7-hydroxy-3,4,12,12a-tetrahydro-1H-[1,4]oxazino[3,4-c]pyrido[2,1-f][1,2,4]triazine-6,8-dione (10a) was found to be a promising anti-influenza drug candidate with good human liver microsomal stability, as well as with better selectivity index and oral bioavailability than Baloxavir.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Dibenzothiepins/chemistry , Influenza A virus/drug effects , Morpholines/chemistry , Pyridones/chemical synthesis , Pyridones/pharmacology , Triazines/chemistry , Animals , Cell Survival/drug effects , Cytopathogenic Effect, Viral/drug effects , Dogs , Humans , Madin Darby Canine Kidney Cells , Male , Pyridones/chemistry , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
3.
Pharmacol Res Perspect ; 9(3): e00800, 2021 05.
Article in English | MEDLINE | ID: covidwho-1898944

ABSTRACT

Antiprotozoal drug nitazoxanide (NTZ) has shown diverse pharmacological properties and has appeared in several clinical trials. Herein we present the synthesis, characterization, in vitro biological investigation, and in silico study of four hetero aryl amide analogs of NTZ. Among the synthesized molecules, compound 2 and compound 4 exhibited promising antibacterial activity against Escherichia coli (E. coli), superior to that displayed by the parent drug nitazoxanide as revealed from the in vitro antibacterial assay. Compound 2 displayed zone of inhibition of 20 mm, twice as large as the parent drug NTZ (10 mm) in their least concentration (12.5 µg/ml). Compound 1 also showed antibacterial effect similar to that of nitazoxanide. The analogs were also tested for in vitro cytotoxic activity by employing cell counting kit-8 (CCK-8) assay technique in HeLa cell line, and compound 2 was identified as a potential anticancer agent having IC50 value of 172 µg which proves it to be more potent than nitazoxanide (IC50  = 428 µg). Furthermore, the compounds were subjected to molecular docking study against various bacterial and cancer signaling proteins. The in vitro test results corroborated with the in silico docking study as compound 2 and compound 4 had comparatively stronger binding affinity against the proteins and showed a higher docking score than nitazoxanide toward human mitogen-activated protein kinase (MAPK9) and fatty acid biosynthesis enzyme (FabH) of E. coli. Moreover, the docking study demonstrated dihydrofolate reductase (DHFR) and thymidylate synthase (TS) as probable new targets for nitazoxanide and its synthetic analogs. Overall, the study suggests that nitazoxanide and its analogs can be a potential lead compound in the drug development.


Subject(s)
Amides , Anti-Bacterial Agents , Antineoplastic Agents , Antiparasitic Agents , Nitro Compounds , Thiazoles , Amides/chemistry , Amides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Bacterial Proteins/metabolism , Biological Assay , Cell Survival/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , HeLa Cells , Humans , Mitogen-Activated Protein Kinase 9/metabolism , Molecular Docking Simulation , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology , Thymidylate Synthase/metabolism
4.
ACS Appl Bio Mater ; 5(2): 483-491, 2022 02 21.
Article in English | MEDLINE | ID: covidwho-1805546

ABSTRACT

Interleukin-mediated deep cytokine storm, an aggressive inflammatory response to SARS-CoV-2 virus infection in COVID-19 patients, is correlated directly with lung injury, multi-organ failure, and poor prognosis of severe COVID-19 patients. Curcumin (CUR), a phenolic antioxidant compound obtained from turmeric (Curcuma longa L.), is well-known for its strong anti-inflammatory activity. However, its in vivo efficacy is constrained due to poor bioavailability. Herein, we report that CUR-encapsulated polysaccharide nanoparticles (CUR-PS-NPs) potently inhibit the release of cytokines, chemokines, and growth factors associated with damage of SARS-CoV-2 spike protein (CoV2-SP)-stimulated liver Huh7.5 and lung A549 epithelial cells. Treatment with CUR-PS-NPs effectively attenuated the interaction of ACE2 and CoV2-SP. The effects of CUR-PS-NPs were linked to reduced NF-κB/MAPK signaling which in turn decreased CoV2-SP-mediated phosphorylation of p38 MAPK, p42/44 MAPK, and p65/NF-κB as well as nuclear p65/NF-κB expression. The findings of the study strongly indicate that organic NPs of CUR can be used to control hyper-inflammatory responses and prevent lung and liver injuries associated with CoV2-SP-mediated cytokine storm.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Curcumin/pharmacology , Cytokine Release Syndrome/prevention & control , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Nanoparticles/chemistry , Signal Transduction/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacokinetics , Cell Survival/drug effects , Chemokines/biosynthesis , Curcumin/chemistry , Curcumin/pharmacokinetics , Cytokines/biosynthesis , Humans , Intercellular Signaling Peptides and Proteins/biosynthesis , Phosphorylation , Spike Glycoprotein, Coronavirus/physiology
5.
Int J Mol Sci ; 23(5)2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-1732066

ABSTRACT

The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Enoxaparin/pharmacology , Furin/antagonists & inhibitors , Spermine/analogs & derivatives , Zeaxanthins/pharmacology , Amino Acid Chloromethyl Ketones/chemistry , Amino Acid Chloromethyl Ketones/metabolism , COVID-19/transmission , COVID-19/virology , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Enoxaparin/chemistry , Enoxaparin/metabolism , Furin/chemistry , Furin/metabolism , HEK293 Cells , Humans , Molecular Docking Simulation , Molecular Structure , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Proteolysis , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spermine/chemistry , Spermine/metabolism , Spermine/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Virus Replication , Zeaxanthins/chemistry , Zeaxanthins/metabolism
6.
Front Immunol ; 13: 841459, 2022.
Article in English | MEDLINE | ID: covidwho-1731786

ABSTRACT

In late 2019, COVID-19 emerged in Wuhan, China. Currently, it is an ongoing global health threat stressing the need for therapeutic compounds. Linking the virus life cycle and its interaction with cell receptors and internal cellular machinery is key to developing therapies based on the control of infectivity and inflammation. In this framework, we evaluate the combination of cannabidiol (CBD), as an anti-inflammatory molecule, and terpenes, by their anti-microbiological properties, in reducing SARS-CoV-2 infectivity. Our group settled six formulations combining CBD and terpenes purified from Cannabis sativa L, Origanum vulgare, and Thymus mastichina. The formulations were analyzed by HPLC and GC-MS and evaluated for virucide and antiviral potential by in vitro studies in alveolar basal epithelial, colon, kidney, and keratinocyte human cell lines. Conclusions and Impact: We demonstrate the virucide effectiveness of CBD and terpene-based formulations. F2TC reduces the infectivity by 17%, 24%, and 99% for CaCo-2, HaCat, and A549, respectively, and F1TC by 43%, 37%, and 29% for Hek293T, HaCaT, and Caco-2, respectively. To the best of our knowledge, this is the first approach that tackles the combination of CBD with a specific group of terpenes against SARS-CoV-2 in different cell lines. The differential effectiveness of formulations according to the cell line can be relevant to understanding the pattern of virus infectivity and the host inflammation response, and lead to new therapeutic strategies.


Subject(s)
Antiviral Agents/pharmacology , Cannabidiol/pharmacology , SARS-CoV-2/drug effects , Terpenes/pharmacology , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/chemistry , Cannabidiol/chemistry , Cell Line , Cell Survival/drug effects , Drug Synergism , Humans , Plants, Medicinal/chemistry , Terpenes/chemistry , Virus Internalization/drug effects , Virus Replication/drug effects
7.
Sci Rep ; 12(1): 2145, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1692555

ABSTRACT

The most common host entry point of human adapted coronaviruses (CoV) including SARS-CoV-2 is through the initial colonization in the nostril and mouth region which is responsible for spread of the infection. Most recent studies suggest that the commercially available oral and nasal rinse products are effective in inhibiting the viral replication. However, the anti-viral mechanism of the active ingredients present in the oral rinses have not been studied. In the present study, we have assessed in vitro enzymatic inhibitory activity of active ingredients in the oral mouth rinse products: aloin A and B, chlorhexidine, eucalyptol, hexetidine, menthol, triclosan, methyl salicylate, sodium fluoride and povidone, against two important proteases of SARS-CoV-2 PLpro and 3CLpro. Our results indicate only aloin A and B effectively inhibited proteolytic activity of PLpro with an IC50 of 13.16 and 16.08 µM. Interestingly, neither of the aloin isoforms inhibited 3CLpro enzymatic activity. Computational structural modelling of aloin A and B interaction with PLpro revealed that, both aloin isoforms form hydrogen bond with Tyr268 of PLpro, which is critical for their proteolytic activity. Furthermore, 100 ns molecular dynamics (MD) simulation studies predicted that both aloin isoforms have strong interaction with Glu167, which is required for PLpro deubiquitination activity. Our results from the in vitro deubiquitinase inhibition assay show that aloin A and B isomers exhibit deubiquitination inhibitory activity with an IC50 value of 15.68 and 17.51 µM, respectively. In conclusion, the isoforms of aloin inhibit both proteolytic and the deubiquitinating activity of SARS-CoV-2 PLpro, suggesting potential in inhibiting the replication of SARS-CoV-2 virus.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Emodin/analogs & derivatives , SARS-CoV-2/enzymology , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Emodin/chemistry , Emodin/metabolism , Emodin/pharmacology , Humans , Molecular Dynamics Simulation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , SARS-CoV-2/isolation & purification , Vero Cells
8.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1686819

ABSTRACT

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Subject(s)
Amphibian Proteins/pharmacology , Amphibians/metabolism , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , DNA Viruses/drug effects , RNA Viruses/drug effects , Amino Acid Sequence , Amphibian Proteins/chemistry , Amphibian Proteins/metabolism , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Antiviral Agents/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Lipids/chemistry , SARS-CoV-2/drug effects , Vero Cells
9.
Life Sci ; 295: 120411, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1683412

ABSTRACT

AIMS: Virus-infected host cells switch their metabolism to a more glycolytic phenotype, required for new virion synthesis and packaging. Therefore, we investigated the effect and mechanistic action of glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) on virus multiplication in host cells following SARS-CoV-2 infection. MAIN METHODS: SARS-CoV-2 induced change in glycolysis was examined in Vero E6 cells. Effect of 2-DG on virus multiplication was evaluated by RT-PCR (N and RdRp genes) analysis, protein expression analysis of Nucleocapsid (N) and Spike (S) proteins and visual indication of cytopathy effect (CPE), The mass spectrometry analysis was performed to examine the 2-DG induced change in glycosylation status of receptor binding domain (RBD) in SARS-CoV-2 spike protein. KEY FINDINGS: We observed SARS-COV-2 infection induced increased glucose influx and glycolysis, resulting in selectively high accumulation of the fluorescent glucose analog, 2-NBDG in Vero E6 cells. 2-DG inhibited glycolysis, reduced virus multiplication and alleviated cells from virus-induced cytopathic effect (CPE) in SARS-CoV-2 infected cells. The progeny virions produced from 2-DG treated cells were found unglycosylated at crucial N-glycosites (N331 and N343) of the receptor-binding domain (RBD) in the spike protein, resulting in production of defective progeny virions with compromised infective potential. SIGNIFICANCE: The mechanistic study revealed that the inhibition of SARS-COV-2 multiplication is attributed to 2-DG induced glycolysis inhibition and possibly un-glycosylation of the spike protein, also. Therefore, based on its previous human trials in different types of Cancer and Herpes patients, it could be a potential molecule to study in COVID-19 patients.


Subject(s)
COVID-19/drug therapy , Deoxyglucose/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Adenosine Triphosphate/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/metabolism , COVID-19/virology , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Glucose/metabolism , Glycolysis/drug effects , Glycosylation , Host-Pathogen Interactions/drug effects , Mannose/pharmacology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virion/drug effects , Virion/pathogenicity , Virus Replication/drug effects
10.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1637017

ABSTRACT

Malignant melanoma is still a serious medical problem. Relatively high mortality, a still-growing number of newly diagnosed cases, and insufficiently effective methods of therapy necessitate melanoma research. Tetracyclines are compounds with pleiotropic pharmacological properties. Previously published studies on melanotic melanoma cells ascertained that minocycline and doxycycline exerted an anti-melanoma effect. The purpose of the study was to assess the anti-melanoma potential and mechanisms of action of minocycline and doxycycline using A375 and C32 human amelanotic melanoma cell lines. The obtained results indicate that the tested drugs inhibited proliferation, decreased cell viability, and induced apoptosis in amelanotic melanoma cells. The treatment caused changes in the cell cycle profile and decreased the intracellular level of reduced thiols and mitochondrial membrane potential. The exposure of A375 and C32 cells to minocycline and doxycycline triggered the release of cytochrome c and activated initiator and effector caspases. The anti-melanoma effect of analyzed drugs appeared to be related to the up-regulation of ERK1/2 and MITF. Moreover, it was noticed that minocycline and doxycycline increased the level of LC3A/B, an autophagy marker, in A375 cells. In summary, the study showed the pleiotropic anti-cancer action of minocycline and doxycycline against amelanotic melanoma cells. Considering all results, it could be concluded that doxycycline was a more potent drug than minocycline.


Subject(s)
Antineoplastic Agents/pharmacology , Doxycycline/pharmacology , Minocycline/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Biomarkers, Tumor , Caspases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Melanoma, Amelanotic , Membrane Potential, Mitochondrial/drug effects
11.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625084

ABSTRACT

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Subject(s)
Amphibian Proteins/pharmacology , Antiviral Agents/pharmacology , Ranidae/metabolism , Animals , Antimicrobial Cationic Peptides/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , DNA Viruses/drug effects , RNA Viruses/drug effects , SARS-CoV-2/drug effects , Vero Cells , Viral Envelope/drug effects , Viral Plaque Assay , Virus Diseases/drug therapy
12.
Viruses ; 14(1)2022 01 08.
Article in English | MEDLINE | ID: covidwho-1614009

ABSTRACT

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Photosensitizing Agents/pharmacology , Virus Inactivation/drug effects , Animals , Antiviral Agents/radiation effects , Cell Line , Cell Survival/drug effects , Cricetinae , Emodin/pharmacology , Emodin/radiation effects , Humans , Light , Photosensitizing Agents/radiation effects , Plant Extracts/pharmacology , Plant Extracts/radiation effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Virion/drug effects
13.
Viruses ; 14(1)2022 01 07.
Article in English | MEDLINE | ID: covidwho-1614008

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), has spread worldwide, affecting over 250 million people and resulting in over five million deaths. Antivirals that are effective are still limited. The antiviral activities of the Petasites hybdridus CO2 extract Ze 339 were previously reported. Thus, to assess the anti-SARS-CoV-2 activity of Ze 339 as well as isopetasin and neopetasin as major active compounds, a CPE and plaque reduction assay in Vero E6 cells was used for viral output. Antiviral effects were tested using the original virus (Wuhan) and the Delta variant of SARS-CoV-2. The antiviral drug remdesivir was used as control. Pre-treatment with Ze 339 in SARS-CoV-2-infected Vero E6 cells with either virus variant significantly inhibited virus replication with IC50 values of 0.10 and 0.40 µg/mL, respectively. The IC50 values obtained for isopetasin ranged between 0.37 and 0.88 µM for both virus variants, and that of remdesivir ranged between 1.53 and 2.37 µM. In conclusion, Ze 339 as well as the petasins potently inhibited SARS-CoV-2 replication in vitro of the Wuhan and Delta variants. Since time is of essence in finding effective treatments, clinical studies will have to demonstrate if Ze339 can become a therapeutic option to treat SARS-CoV-2 infections.


Subject(s)
Antiviral Agents/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Carbon Dioxide/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Genetic Variation , Petasites/chemistry , Plant Extracts/chemistry , SARS-CoV-2/genetics , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Vero Cells
14.
J Med Chem ; 65(1): 876-884, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1606194

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic, a global health threat, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 papain-like cysteine protease (PLpro) was recognized as a promising drug target because of multiple functions in virus maturation and antiviral immune responses. Inhibitor GRL0617 occupied the interferon-stimulated gene 15 (ISG15) C-terminus-binding pocket and showed an effective antiviral inhibition. Here, we described a novel peptide-drug conjugate (PDC), in which GRL0617 was linked to a sulfonium-tethered peptide derived from PLpro-specific substrate LRGG. The EM-C and EC-M PDCs showed a promising in vitro IC50 of 7.40 ± 0.37 and 8.63 ± 0.55 µM, respectively. EC-M could covalently label PLpro active site C111 and display anti-ISGylation activities in cellular assays. The results represent the first attempt to design PDCs composed of stabilized peptide inhibitors and GRL0617 to inhibit PLpro. These novel PDCs provide promising opportunities for antiviral drug design.


Subject(s)
Aniline Compounds/chemistry , Antiviral Agents/metabolism , Benzamides/chemistry , Coronavirus Papain-Like Proteases/metabolism , Drug Design , Naphthalenes/chemistry , Peptides/chemistry , SARS-CoV-2/enzymology , Aniline Compounds/metabolism , Aniline Compounds/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzamides/metabolism , Benzamides/pharmacology , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Coronavirus Papain-Like Proteases/chemistry , Cytokines/chemistry , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Naphthalenes/metabolism , Naphthalenes/pharmacology , SARS-CoV-2/isolation & purification , Ubiquitins/chemistry
15.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: covidwho-1580701

ABSTRACT

Using drugs to treat COVID-19 symptoms may induce adverse effects and modify patient outcomes. These adverse events may be further aggravated in obese patients, who often present different illnesses such as metabolic-associated fatty liver disease. In Rennes University Hospital, several drug such as hydroxychloroquine (HCQ) have been used in the clinical trial HARMONICOV to treat COVID-19 patients, including obese patients. The aim of this study is to determine whether HCQ metabolism and hepatotoxicity are worsened in obese patients using an in vivo/in vitro approach. Liquid chromatography high resolution mass spectrometry in combination with untargeted screening and molecular networking were employed to study drug metabolism in vivo (patient's plasma) and in vitro (HepaRG cells and RPTEC cells). In addition, HepaRG cells model were used to reproduce pathophysiological features of obese patient metabolism, i.e., in the condition of hepatic steatosis. The metabolic signature of HCQ was modified in HepaRG cells cultured under a steatosis condition and a new metabolite was detected (carboxychloroquine). The RPTEC model was found to produce only one metabolite. A higher cytotoxicity of HCQ was observed in HepaRG cells exposed to exogenous fatty acids, while neutral lipid accumulation (steatosis) was further enhanced in these cells. These in vitro data were compared with the biological parameters of 17 COVID-19 patients treated with HCQ included in the HARMONICOV cohort. Overall, our data suggest that steatosis may be a risk factor for altered drug metabolism and possibly toxicity of HCQ.


Subject(s)
Antiviral Agents/adverse effects , Antiviral Agents/metabolism , COVID-19/drug therapy , Hydroxychloroquine/adverse effects , Hydroxychloroquine/metabolism , Aged , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/metabolism , Cell Line , Cell Survival/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Correlation of Data , Drug-Related Side Effects and Adverse Reactions , Fatty Acids/pharmacology , Fatty Liver/complications , Fatty Liver/metabolism , Female , Humans , Hydroxychloroquine/therapeutic use , Linear Models , Male , Metabolic Networks and Pathways , Middle Aged , Obesity/complications , Obesity/metabolism , Risk Factors
16.
Viruses ; 14(1)2021 12 31.
Article in English | MEDLINE | ID: covidwho-1580398

ABSTRACT

We report the discovery of several highly potent small molecules with low-nM potency against severe acute respiratory syndrome coronavirus (SARS-CoV; lowest half-maximal inhibitory concentration (IC50: 13 nM), SARS-CoV-2 (IC50: 23 nM), and Middle East respiratory syndrome coronavirus (MERS-CoV; IC50: 76 nM) in pseudovirus-based assays with excellent selectivity index (SI) values (>5000), demonstrating potential pan-coronavirus inhibitory activities. Some compounds showed 100% inhibition against the cytopathic effects (CPE; IC100) of an authentic SARS-CoV-2 (US_WA-1/2020) variant at 1.25 µM. The most active inhibitors also potently inhibited variants of concern (VOCs), including the UK (B.1.1.7) and South African (B.1.351) variants and the Delta variant (B.1.617.2) originally identified in India in pseudovirus-based assay. Surface plasmon resonance (SPR) analysis with one potent inhibitor confirmed that it binds to the prefusion SARS-CoV-2 spike protein trimer. These small-molecule inhibitors prevented virus-mediated cell-cell fusion. The absorption, distribution, metabolism, and excretion (ADME) data for one of the most active inhibitors, NBCoV1, demonstrated drug-like properties. An in vivo pharmacokinetics (PK) study of NBCoV1 in rats demonstrated an excellent half-life (t1/2) of 11.3 h, a mean resident time (MRT) of 14.2 h, and oral bioavailability. We expect these lead inhibitors to facilitate the further development of preclinical and clinical candidates.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Biological Availability , Cell Line , Cell Survival/drug effects , Coronavirus/classification , Coronavirus/drug effects , HIV Fusion Inhibitors/chemistry , HIV Fusion Inhibitors/pharmacokinetics , HIV Fusion Inhibitors/pharmacology , Humans , Protein Binding , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
17.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: covidwho-1576965

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, causes neonatal pig acute gastrointestinal infection with a characterization of severe diarrhea, vomiting, high morbidity, and high mortality, resulting in tremendous damages to the swine industry. Neither specific antiviral drugs nor effective vaccines are available, posing a high priority to screen antiviral drugs. The aim of this study is to investigate anti-PEDV effects of carbazole alkaloid derivatives. Eighteen carbazole derivatives (No.1 to No.18) were synthesized, and No.5, No.7, and No.18 were identified to markedly reduce the replication of enhanced green fluorescent protein (EGFP) inserted-PEDV, and the mRNA level of PEDV N. Flow cytometry assay, coupled with CCK8 assay, confirmed No.7 and No.18 carbazole derivatives displayed high inhibition effects with low cell toxicity. Furthermore, time course analysis indicated No.7 and No.18 carbazole derivatives exerted inhibition at the early stage of the viral life cycle. Collectively, the analysis underlines the benefit of carbazole derivatives as potential inhibitors of PEDV, and provides candidates for the development of novel therapeutic agents.


Subject(s)
Antiviral Agents/pharmacology , Carbazoles/pharmacology , Porcine epidemic diarrhea virus/drug effects , Animals , Antiviral Agents/chemistry , Carbazoles/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Molecular Structure , Vero Cells , Virus Attachment/drug effects , Virus Replication/drug effects
18.
Bioorg Chem ; 119: 105550, 2022 02.
Article in English | MEDLINE | ID: covidwho-1561636

ABSTRACT

Infectious diseases caused by new or unknown bacteria and viruses, such as anthrax, cholera, tuberculosis and even COVID-19, are a major threat to humanity. Thus, the development of new synthetic compounds with efficient antimicrobial activity is a necessity. Herein, rationally designed novel multifunctional cationic alternating copolymers were directly synthesized through a step-growth polymerization reaction using a bivalent electrophilic cross-linker containing disulfide bonds and a diamine heterocyclic ring. To optimize the activity of these alternating copolymers, several different diamines and cross-linkers were explored to find the highest antibacterial effects. The synthesized nanopolymers not only displayed good to excellent antibacterial activity as judged by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli, but also reduced the number of biofilm cells even at low concentrations, without killing mammalian cells. Furthermore, in vivo experiments using infected burn wounds in mice demonstrated good antibacterial activity and stimulated wound healing, without causing systemic inflammation. These findings suggest that the multifunctional cationic nanopolymers have potential as a novel antibacterial agent for eradication of multidrug resistant bacterial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biofilms/drug effects , Cations/pharmacology , Polymers/pharmacology , Wound Healing/drug effects , Amines/chemistry , Animals , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/etiology , Burns/complications , COVID-19 , Cell Survival/drug effects , Cross-Linking Reagents , Drug Resistance, Multiple, Bacterial/drug effects , HEK293 Cells/drug effects , Humans , Mice , Microbial Sensitivity Tests , Polymers/chemistry
19.
J Cell Mol Med ; 26(1): 235-238, 2022 01.
Article in English | MEDLINE | ID: covidwho-1555067

ABSTRACT

Due to the restrictions in accessing research laboratories and the challenges in providing proper storage and transportation of cells during the COVID-19 pandemic, having an effective and feasible mean to solve these challenges would be of immense help. Therefore, we developed a 3D culture setting of cancer cells using alginate beads and tested its effectiveness in different storage and transportation conditions. The viability and proliferation of cancer cells were assessed using trypan blue staining and quantitative CCK-8 kit, respectively. The developed beads allowed cancer cells survival up to 4 weeks with less frequent maintenance measures such as change of the culture media or subculture of cells. In addition, the recovery of cancer cells and proliferation pattern were significantly faster with better outcomes in the developed 3D alginate beads compared to the standard cryopreservation of cells or the 2D culture conditions. The 3D alginate beads also supported the viability of cells while the shipment at room temperature for a duration of up to 5 days with no humidity or CO2  support. Therefore, 3D culture in alginate beads can be used to store or ship biological cells with ease at room temperature with minimal preparations.


Subject(s)
Alginates/pharmacology , COVID-19/epidemiology , Cell Culture Techniques , Hydrogels/pharmacology , Osteoblasts/drug effects , A549 Cells , Alginates/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Hep G2 Cells , Humans , Hydrogels/chemistry , Osteoblasts/cytology , SARS-CoV-2/pathogenicity , Time Factors
20.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: covidwho-1528616

ABSTRACT

Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin's potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.


Subject(s)
Antiviral Agents , Pyrimidine Nucleosides , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , COVID-19/virology , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , Female , Humans , Male , Mice , Pyrimidine Nucleosides/pharmacokinetics , Pyrimidine Nucleosides/pharmacology , Pyrimidine Nucleosides/toxicity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL