Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Cell Biochem ; 123(2): 161-182, 2022 02.
Article in English | MEDLINE | ID: covidwho-1405827

ABSTRACT

Viruses are known to cause various diseases in human and also infect other species such as animal plants, fungi, and bacteria. Replication of viruses depends upon their interaction with hosts. Human cells are prone to such unwanted viral infections. Disintegration and reconstitution require host machinery and various macromolecules like DNA, RNA, and proteins are invaded by viral particles. E3 ubiquitin ligases are known for their specific function, that is, recognition of their respective substrates for intracellular degradation. Still, we do not understand how ubiquitin proteasome system-based enzymes E3 ubiquitin ligases do their functional interaction with different viruses. Whether E3 ubiquitin ligases help in the elimination of viral components or viruses utilize their molecular capabilities in their intracellular propagation is not clear. The first time our current article comprehends fundamental concepts and new insights on the different viruses and their interaction with various E3 Ubiquitin Ligases. In this review, we highlight the molecular pathomechanism of viruses linked with E3 Ubiquitin Ligases dependent mechanisms. An enhanced understanding of E3 Ubiquitin Ligase-mediated removal of viral proteins may open new therapeutic strategies against viral infections.


Subject(s)
Ubiquitin-Protein Ligases/physiology , Viral Proteins/physiology , Virus Diseases/enzymology , Virus Replication/physiology , COVID-19/drug therapy , Cell Transformation, Viral/physiology , Cullin Proteins/physiology , Endosomes/virology , Host-Pathogen Interactions , Humans , Immunity, Innate , Inflammation/enzymology , Inflammation/virology , Neoplasms/enzymology , Neoplasms/virology , Oncogenic Viruses/physiology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Tripartite Motif Proteins/physiology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Virus Diseases/immunology , Virus Diseases/virology , Virus Replication/drug effects
3.
OMICS ; 25(6): 358-371, 2021 06.
Article in English | MEDLINE | ID: covidwho-1243453

ABSTRACT

About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.


Subject(s)
Epstein-Barr Virus Infections/virology , Neoplasms/virology , Papillomavirus Infections/virology , Retroviridae Infections/virology , Retroviridae/physiology , Sarcoma, Kaposi/virology , Tumor Virus Infections/virology , Alphapapillomavirus/physiology , Carcinogenesis , Cell Transformation, Viral , Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human/physiology , Herpesvirus 8, Human/physiology , Humans , Molecular Targeted Therapy , Neoplasms/pathology , Neoplasms/therapy , Papillomavirus Infections/pathology , Retroviridae Infections/pathology , Sarcoma, Kaposi/pathology , Signal Transduction , Tumor Microenvironment , Tumor Virus Infections/pathology
5.
Int Immunopharmacol ; 91: 107331, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1065225

ABSTRACT

The present review provides an overview of recent advances regarding the function of Th17 cells and their produced cytokines in the progression of viral diseases. Viral infections alone do not lead to virus-induced malignancies, as both genetic and host safety factors are also involved in the occurrence of malignancies. Acquired immune responses, through the differentiation of Th17 cells, form the novel components of the Th17 cell pathway when reacting with viral infections all the way from the beginning to its final stages. As a result, instead of inducing the right immune responses, these events lead to the suppression of the immune system. In fact, the responses from Th17 cells during persistent viral infections causes chronic inflammation through the production of IL-17 and other cytokines which provide a favorable environment for tumor growth and its development. Additionally, during the past decade, these cells have been understood to be involved in tumor progression and metastasis. However, further research is required to understand Th17 cells' immune mechanisms in the vast variety of viral diseases. This review aims to determine the roles and effects of the immune system, especially Th17 cells, in the progression of viral diseases; which can be highly beneficial for the diagnosis and treatment of these infections.


Subject(s)
Cell Transformation, Viral , Neoplasms/virology , Th17 Cells/virology , Tumor Virus Infections/virology , Viruses/pathogenicity , Animals , Host-Pathogen Interactions , Humans , Neoplasms/immunology , Neoplasms/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Tumor Microenvironment , Tumor Virus Infections/immunology , Tumor Virus Infections/metabolism , Viruses/immunology
6.
Viruses ; 13(1)2021 Jan 16.
Article in English | MEDLINE | ID: covidwho-1040132

ABSTRACT

BACKGROUND: Type-1 cryoglobulinemia (CG) is a rare disease associated with B-cell lymphoproliferative disorder. Some viral infections, such as Epstein-Barr Virus infections, are known to cause malignant lymphoproliferation, like certain B-cell lymphomas. However, their role in the pathogenesis of chronic lymphocytic leukemia (CLL) is still debatable. Here, we report a unique case of Type-1 CG associated to a CLL transformation diagnosed in the course of a human metapneumovirus (hMPV) infection. CASE PRESENTATION: A 91-year-old man was initially hospitalized for delirium. In a context of febrile rhinorrhea, the diagnosis of hMPV infection was made by molecular assay (RT-PCR) on nasopharyngeal swab. Owing to hyperlymphocytosis that developed during the course of the infection and unexplained peripheral neuropathy, a type-1 IgG Kappa CG secondary to a CLL was diagnosed. The patient was not treated for the CLL because of Binet A stage classification and his poor physical condition. CONCLUSIONS: We report the unique observation in the literature of CLL transformation and hMPV infection. We provide a mini review on the pivotal role of viruses in CLL pathophysiology.


Subject(s)
Cell Transformation, Viral , Disease Susceptibility , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Metapneumovirus/physiology , Paramyxoviridae Infections/complications , Paramyxoviridae Infections/virology , Aged, 80 and over , Biomarkers , Clonal Evolution , Cryoglobulinemia/diagnosis , Cryoglobulinemia/etiology , Humans , Immunoglobulin G/blood , Immunoglobulin kappa-Chains/blood , Immunophenotyping , Male
SELECTION OF CITATIONS
SEARCH DETAIL