Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Virol ; 96(4): e0196921, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702819

ABSTRACT

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Central Nervous System Viral Diseases/immunology , Microglia/immunology , SARS-CoV-2/physiology , Virus Replication/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Central Nervous System/immunology , Central Nervous System/virology , Central Nervous System Viral Diseases/genetics , Central Nervous System Viral Diseases/virology , Chemokines/genetics , Chemokines/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Microglia/virology , Neurons/immunology , Neurons/virology , Virus Replication/genetics
4.
Inflammopharmacology ; 29(4): 1049-1059, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1303332

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can enter the central nervous system and cause several neurological manifestations. Data from cerebrospinal fluid analyses and postmortem samples have been shown that SARS-CoV-2 has neuroinvasive properties. Therefore, ongoing studies have focused on mechanisms involved in neurotropism and neural injuries of SARS-CoV-2. The inflammasome is a part of the innate immune system that is responsible for the secretion and activation of several pro-inflammatory cytokines, such as interleukin-1ß, interleukin-6, and interleukin-18. Since cytokine storm has been known as a major mechanism followed by SARS-CoV-2, inflammasome may trigger an inflammatory form of lytic programmed cell death (pyroptosis) following SARS-CoV-2 infection and contribute to associated neurological complications. We reviewed and discussed the possible role of inflammasome and its consequence pyroptosis following coronavirus infections as potential mechanisms of neurotropism by SARS-CoV-2. Further studies, particularly postmortem analysis of brain samples obtained from COVID-19 patients, can shed light on the possible role of the inflammasome in neurotropism of SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Central Nervous System/metabolism , Inflammasomes/metabolism , Pyroptosis/physiology , SARS-CoV-2/metabolism , Brain/immunology , Brain/metabolism , COVID-19/immunology , Central Nervous System/immunology , Humans , Inflammasomes/immunology , SARS-CoV-2/immunology
5.
Immunity ; 54(7): 1594-1610.e11, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1281436

ABSTRACT

COVID-19 can cause severe neurological symptoms, but the underlying pathophysiological mechanisms are unclear. Here, we interrogated the brain stems and olfactory bulbs in postmortem patients who had COVID-19 using imaging mass cytometry to understand the local immune response at a spatially resolved, high-dimensional, single-cell level and compared their immune map to non-COVID respiratory failure, multiple sclerosis, and control patients. We observed substantial immune activation in the central nervous system with pronounced neuropathology (astrocytosis, axonal damage, and blood-brain-barrier leakage) and detected viral antigen in ACE2-receptor-positive cells enriched in the vascular compartment. Microglial nodules and the perivascular compartment represented COVID-19-specific, microanatomic-immune niches with context-specific cellular interactions enriched for activated CD8+ T cells. Altered brain T-cell-microglial interactions were linked to clinical measures of systemic inflammation and disturbed hemostasis. This study identifies profound neuroinflammation with activation of innate and adaptive immune cells as correlates of COVID-19 neuropathology, with implications for potential therapeutic strategies.


Subject(s)
Brain/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Microglia/immunology , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Cell Communication , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Immune Checkpoint Proteins/metabolism , Inflammation , Lymphocyte Activation , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Olfactory Bulb/immunology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Respiratory Insufficiency/immunology , Respiratory Insufficiency/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
6.
Front Immunol ; 12: 656700, 2021.
Article in English | MEDLINE | ID: covidwho-1211815

ABSTRACT

SARS-CoV-2, the novel coronavirus infection has consistently shown an association with neurological anomalies in patients, in addition to its usual respiratory distress syndrome. Multi-organ dysfunctions including neurological sequelae during COVID-19 persist even after declining viral load. We propose that SARS-CoV-2 gene product, Spike, is able to modify the host exosomal cargo, which gets transported to distant uninfected tissues and organs and can initiate a catastrophic immune cascade within Central Nervous System (CNS). SARS-CoV-2 Spike transfected cells release a significant amount of exosomes loaded with microRNAs such as miR-148a and miR-590. microRNAs gets internalized by human microglia and suppress target gene expression of USP33 (Ubiquitin Specific peptidase 33) and downstream IRF9 levels. Cellular levels of USP33 regulate the turnover time of IRF9 via deubiquitylation. Our results also demonstrate that absorption of modified exosomes effectively regulate the major pro-inflammatory gene expression profile of TNFα, NF-κB and IFN-ß. These results uncover a bystander pathway of SARS-CoV-2 mediated CNS damage through hyperactivation of human microglia. Our results also attempt to explain the extra-pulmonary dysfunctions observed in COVID-19 cases when active replication of virus is not supported. Since Spike gene and mRNAs have been extensively picked up for vaccine development; the knowledge of host immune response against spike gene and protein holds a great significance. Our study therefore provides novel and relevant insights regarding the impact of Spike gene on shuttling of host microRNAs via exosomes to trigger the neuroinflammation.


Subject(s)
COVID-19/metabolism , Exosomes/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , MicroRNAs/metabolism , Microglia/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Ubiquitin Thiolesterase/metabolism , COVID-19/genetics , COVID-19/physiopathology , COVID-19/virology , Cell Line , Central Nervous System/immunology , Central Nervous System/physiopathology , Central Nervous System/virology , Endopeptidases/metabolism , Exosomes/genetics , Exosomes/pathology , Humans , Inflammation/immunology , Inflammation/virology , Interferon-beta/metabolism , MicroRNAs/genetics , Microglia/pathology , NF-kappa B/metabolism , Protein Stability , Tumor Necrosis Factor-alpha/metabolism
7.
Sci Rep ; 11(1): 5402, 2021 03 08.
Article in English | MEDLINE | ID: covidwho-1123146

ABSTRACT

Most multiple sclerosis (MS) patients given currently available disease-modifying drugs (DMDs) experience progressive disability. Accordingly, there is a need for new treatments that can limit the generation of new waves T cell autoreactivity that drive disease progression. Notably, immune cells express GABAA-receptors (GABAA-Rs) whose activation has anti-inflammatory effects such that GABA administration can ameliorate disease in models of type 1 diabetes, rheumatoid arthritis, and COVID-19. Here, we show that oral GABA, which cannot cross the blood-brain barrier (BBB), does not affect the course of murine experimental autoimmune encephalomyelitis (EAE). In contrast, oral administration of the BBB-permeable GABAA-R-specific agonist homotaurine ameliorates monophasic EAE, as well as advanced-stage relapsing-remitting EAE (RR-EAE). Homotaurine treatment beginning after the first peak of paralysis reduced the spreading of Th17 and Th1 responses from the priming immunogen to a new myelin T cell epitope within the CNS. Antigen-presenting cells (APC) isolated from homotaurine-treated mice displayed an attenuated ability to promote autoantigen-specific T cell proliferation. The ability of homotaurine treatment to limit epitope spreading within the CNS, along with its safety record, makes it an excellent candidate to help treat MS and other inflammatory disorders of the CNS.


Subject(s)
Central Nervous System/pathology , Multiple Sclerosis/immunology , T-Lymphocytes/immunology , Taurine/analogs & derivatives , Animals , Antigen Presentation/drug effects , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Cell Proliferation/drug effects , Central Nervous System/drug effects , Central Nervous System/immunology , Disease Models, Animal , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Myelin Proteolipid Protein/immunology , Peptide Fragments/immunology , Recurrence , Spleen/pathology , T-Lymphocytes/drug effects , Taurine/pharmacology , gamma-Aminobutyric Acid/pharmacology
8.
Rev Neurosci ; 32(4): 427-442, 2021 06 25.
Article in English | MEDLINE | ID: covidwho-1069660

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic continues to be a multidimensional threat to humanity, more evidence of neurological involvement associated with it has emerged. Neuroimmune interaction may prove to be important not only in the pathogenesis of neurological manifestations but also to prevent systemic hyperinflammation. In this review, we summarize reports of COVID-19 cases with neurological involvement, followed by discussion of possible routes of entry, immune responses against coronavirus infection in the central nervous system and mechanisms of nerve degeneration due to viral infection and immune responses. Possible mechanisms for neuroprotection and virus-associated neurological consequences are also discussed.


Subject(s)
COVID-19/complications , Central Nervous System/virology , Nervous System Diseases/complications , SARS-CoV-2/pathogenicity , COVID-19/immunology , Central Nervous System/immunology , Humans , Immunity/immunology , Nervous System Diseases/immunology , Neuroprotection/immunology , SARS-CoV-2/immunology
9.
Brain Behav Immun ; 91: 740-755, 2021 01.
Article in English | MEDLINE | ID: covidwho-1064860

ABSTRACT

Central nervous system (CNS) innate immunity plays essential roles in infections, neurodegenerative diseases, and brain or spinal cord injuries. Astrocytes and microglia are the principal cells that mediate innate immunity in the CNS. Pattern recognition receptors (PRRs), expressed by astrocytes and microglia, sense pathogen-derived or endogenous ligands released by damaged cells and initiate the innate immune response. Toll-like receptors (TLRs) are a well-characterized family of PRRs. The contribution of microglial TLR signaling to CNS pathology has been extensively investigated. Even though astrocytes assume a wide variety of key functions, information about the role of astroglial TLRs in CNS disease and injuries is limited. Because astrocytes display heterogeneity and exhibit phenotypic plasticity depending on the effectors present in the local milieu, they can exert both detrimental and beneficial effects. TLRs are modulators of these paradoxical astroglial properties. The goal of the current review is to highlight the essential roles played by astroglial TLRs in CNS infections, injuries and diseases. We discuss the contribution of astroglial TLRs to host defense as well as the dissemination of viral and bacterial infections in the CNS. We examine the link between astroglial TLRs and the pathogenesis of neurodegenerative diseases and present evidence showing the pivotal influence of astroglial TLR signaling on sterile inflammation in CNS injury. Finally, we define the research questions and areas that warrant further investigations in the context of astrocytes, TLRs, and CNS dysfunction.


Subject(s)
Astrocytes/metabolism , Neurodegenerative Diseases/physiopathology , Toll-Like Receptors/physiology , Animals , Astrocytes/physiology , Brain/metabolism , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System Diseases/immunology , Central Nervous System Infections/pathology , Encephalitis/immunology , Humans , Immunity, Innate/physiology , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Receptors, Pattern Recognition/immunology , Signal Transduction , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Toll-Like Receptors/metabolism
10.
Viruses ; 13(2)2021 01 23.
Article in English | MEDLINE | ID: covidwho-1052507

ABSTRACT

Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -ß) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.


Subject(s)
Central Nervous System/immunology , Central Nervous System/virology , Cytokines/metabolism , Immunity, Innate , Virus Diseases/immunology , Animals , Humans , Inflammasomes , Interferon Type I/metabolism , Lectins, C-Type/metabolism , Receptors, Pattern Recognition , Signal Transduction , Toll-Like Receptors/metabolism
11.
Nat Rev Immunol ; 21(7): 441-453, 2021 07.
Article in English | MEDLINE | ID: covidwho-1007586

ABSTRACT

Advancements in human pluripotent stem cell technology offer a unique opportunity for the neuroimmunology field to study host-virus interactions directly in disease-relevant cells of the human central nervous system (CNS). Viral encephalitis is most commonly caused by herpesviruses, arboviruses and enteroviruses targeting distinct CNS cell types and often leading to severe neurological damage with poor clinical outcomes. Furthermore, different neurotropic viruses will affect the CNS at distinct developmental stages, from early prenatal brain development to the aged brain. With the unique flexibility and scalability of human pluripotent stem cell technology, it is now possible to examine the molecular mechanisms underlying acute infection and latency, determine which CNS subpopulations are specifically infected, study temporal aspects of viral susceptibility, perform high-throughput chemical or genetic screens for viral restriction factors and explore complex cell-non-autonomous disease mechanisms. Therefore, human pluripotent stem cell technology has the potential to address key unanswered questions about antiviral immunity in the CNS, including emerging questions on the potential CNS tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
Central Nervous System/immunology , Host Microbial Interactions/immunology , Pluripotent Stem Cells/immunology , Viral Tropism , COVID-19 , Humans , Microglia , Neuroglia , Neurons , SARS-CoV-2
12.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: covidwho-840609

ABSTRACT

Alpha/beta interferon (IFN-α/ß) signaling through the IFN-α/ß receptor (IFNAR) is essential to limit virus dissemination throughout the central nervous system (CNS) following many neurotropic virus infections. However, the distinct expression patterns of factors associated with the IFN-α/ß pathway in different CNS resident cell populations implicate complex cooperative pathways in IFN-α/ß induction and responsiveness. Here we show that mice devoid of IFNAR1 signaling in calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) expressing neurons (CaMKIIcre:IFNARfl/fl mice) infected with a mildly pathogenic neurotropic coronavirus (mouse hepatitis virus A59 strain [MHV-A59]) developed severe encephalomyelitis with hind-limb paralysis and succumbed within 7 days. Increased virus spread in CaMKIIcre:IFNARfl/fl mice compared to IFNARfl/fl mice affected neurons not only in the forebrain but also in the mid-hind brain and spinal cords but excluded the cerebellum. Infection was also increased in glia. The lack of viral control in CaMKIIcre:IFNARfl/fl relative to control mice coincided with sustained Cxcl1 and Ccl2 mRNAs but a decrease in mRNA levels of IFNα/ß pathway genes as well as Il6, Tnf, and Il1ß between days 4 and 6 postinfection (p.i.). T cell accumulation and IFN-γ production, an essential component of virus control, were not altered. However, IFN-γ responsiveness was impaired in microglia/macrophages irrespective of similar pSTAT1 nuclear translocation as in infected controls. The results reveal how perturbation of IFN-α/ß signaling in neurons can worsen disease course and disrupt complex interactions between the IFN-α/ß and IFN-γ pathways in achieving optimal antiviral responses.IMPORTANCE IFN-α/ß induction limits CNS viral spread by establishing an antiviral state, but also promotes blood brain barrier integrity, adaptive immunity, and activation of microglia/macrophages. However, the extent to which glial or neuronal signaling contributes to these diverse IFN-α/ß functions is poorly understood. Using a neurotropic mouse hepatitis virus encephalomyelitis model, this study demonstrated an essential role of IFN-α/ß receptor 1 (IFNAR1) specifically in neurons to control virus spread, regulate IFN-γ signaling, and prevent acute mortality. The results support the notion that effective neuronal IFNAR1 signaling compensates for their low basal expression of genes in the IFN-α/ß pathway compared to glia. The data further highlight the importance of tightly regulated communication between the IFN-α/ß and IFN-γ signaling pathways to optimize antiviral IFN-γ activity.


Subject(s)
Central Nervous System/virology , Interferon Type I/metabolism , Interferon-gamma/metabolism , Macrophages/metabolism , Microglia/metabolism , Neurons/metabolism , Signal Transduction , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Central Nervous System/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Encephalomyelitis/immunology , Encephalomyelitis/virology , Macrophages/virology , Mice , Mice, Mutant Strains , Microglia/virology , Murine hepatitis virus/physiology , Neurons/virology , Neutrophil Infiltration , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Virus Replication
13.
Proc Natl Acad Sci U S A ; 117(27): 15902-15910, 2020 07 07.
Article in English | MEDLINE | ID: covidwho-611002

ABSTRACT

Neurotropic strains of mouse hepatitis virus (MHV), a coronavirus, cause acute and chronic demyelinating encephalomyelitis with similarities to the human disease multiple sclerosis. Here, using a lineage-tracking system, we show that some cells, primarily oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs), survive the acute MHV infection, are associated with regions of demyelination, and persist in the central nervous system (CNS) for at least 150 d. These surviving OLs express major histocompatibility complex (MHC) class I and other genes associated with an inflammatory response. Notably, the extent of inflammatory cell infiltration was variable, dependent on anatomic location within the CNS, and without obvious correlation with numbers of surviving cells. We detected more demyelination in regions with larger numbers of T cells and microglia/macrophages compared to those with fewer infiltrating cells. Conversely, in regions with less inflammation, these previously infected OLs more rapidly extended processes, consistent with normal myelinating function. Together, these results show that OLs are inducers as well as targets of the host immune response and demonstrate how a CNS infection, even after resolution, can induce prolonged inflammatory changes with CNS region-dependent impairment in remyelination.


Subject(s)
Central Nervous System/immunology , Coronavirus Infections/complications , Demyelinating Diseases/etiology , Oligodendroglia/immunology , Animals , Coronavirus Infections/immunology , Histocompatibility Antigens Class I/metabolism , Luminescent Proteins , Male , Mice , Murine hepatitis virus , Oligodendroglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL