Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Virol ; 96(6): e0205921, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1788916

ABSTRACT

The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs. The different patterns of genomic variation accumulated during this process means that the exact mechanism of attenuation is unknown and presents a risk of reversion to virulence. Additionally, the passaging process adapts the virus to replicate in chicken embryos, increasing embryo lethality. Vaccines produced in this manner are therefore unsuitable for in ovo application. We have developed a reverse genetics system, based on the pathogenic IBV strain M41, to identify genes which can be targeted for rational attenuation. During the development of this reverse genetics system, we identified four amino acids, located in nonstructural proteins (nsps) 10, 14, 15, and 16, which resulted in attenuation both in vivo and in ovo. Further investigation highlighted a role of amino acid changes, Pro85Leu in nsp 10 and Val393Leu in nsp 14, in the attenuated in vivo phenotype observed. This study provides evidence that mutations in nsps offer a promising mechanism for the development of rationally attenuated live vaccines against IBV, which have the potential for in ovo application. IMPORTANCE The Gammacoronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute, highly contagious, economically important disease of poultry. Vaccination is achieved using a mixture of live attenuated vaccines for young chicks and inactivated vaccines as boosters for laying hens. Live attenuated vaccines are generated through serial passage in embryonated hens' eggs, an empirical process which achieves attenuation but retains immunogenicity. However, these vaccines have a risk of reversion to virulence, and they are lethal to the embryo. In this study, we identified amino acids in the replicase gene which attenuated IBV strain M41, both in vivo and in ovo. Stability assays indicate that the attenuating amino acids are stable and unlikely to revert. The data in this study provide evidence that specific modifications in the replicase gene offer a promising direction for IBV live attenuated vaccine development, with the potential for in ovo application.


Subject(s)
Coronavirus Infections , Gammacoronavirus , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Amino Acids , Animals , Chick Embryo , Chickens , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Female , Poultry , Vaccines, Attenuated/genetics
2.
Front Immunol ; 12: 824728, 2021.
Article in English | MEDLINE | ID: covidwho-1686477

ABSTRACT

We generated an optimized COVID-19 vaccine candidate based on the modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, termed MVA-CoV2-S(3P). The S(3P) protein was expressed at higher levels (2-fold) than the non-stabilized S in cells infected with the corresponding recombinant MVA viruses. One single dose of MVA-CoV2-S(3P) induced higher IgG and neutralizing antibody titers against parental SARS-CoV-2 and variants of concern than MVA-CoV2-S in wild-type C57BL/6 and in transgenic K18-hACE2 mice. In immunized C57BL/6 mice, two doses of MVA-CoV2-S or MVA-CoV2-S(3P) induced similar levels of SARS-CoV-2-specific B- and T-cell immune responses. Remarkably, a single administration of MVA-CoV2-S(3P) protected all K18-hACE2 mice from morbidity and mortality caused by SARS-CoV-2 infection, reducing SARS-CoV-2 viral loads, histopathological lesions, and levels of pro-inflammatory cytokines in the lungs. These results demonstrated that expression of a novel full-length prefusion-stabilized SARS-CoV-2 S protein by the MVA poxvirus vector enhanced immunogenicity and efficacy against SARS-CoV-2 in animal models, further supporting MVA-CoV2-S(3P) as an optimized vaccine candidate for clinical trials.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/mortality , COVID-19 Vaccines/genetics , Cell Line, Tumor , Chick Embryo , Chlorocebus aethiops , Cytokines/analysis , Female , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasmids/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, DNA/genetics , Vaccinia virus/immunology , Vero Cells , Viral Vaccines/genetics
3.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-1674673

ABSTRACT

The SARS-CoV-2 pandemic caused a massive health and societal crisis, although the fast development of effective vaccines reduced some of the impact. To prepare for future respiratory virus pandemics, a pan-viral prophylaxis could be used to control the initial virus outbreak in the period prior to vaccine approval. The liposomal vaccine adjuvant CAF®09b contains the TLR3 agonist polyinosinic:polycytidylic acid, which induces a type I interferon (IFN-I) response and an antiviral state in the affected tissues. When testing CAF09b liposomes as a potential pan-viral prophylaxis, we observed that intranasal administration of CAF09b liposomes to mice resulted in an influx of innate immune cells into the nose and lungs and upregulation of IFN-I-related gene expression. When CAF09b liposomes were administered prior to challenge with mouse-adapted influenza A/Puerto Rico/8/1934 virus, it protected from severe disease, although the virus was still detectable in the lungs. However, when CAF09b liposomes were administered after influenza challenge, the mice had a similar disease course to controls. In conclusion, CAF09b may be a suitable candidate as a pan-viral prophylactic treatment for epidemic viruses, but must be administered prior to virus exposure to be effective.


Subject(s)
/therapeutic use , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , /methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , /chemistry , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/therapeutic use , Cells, Cultured , Chick Embryo , Gene Expression Regulation/drug effects , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/pharmacology , Interferon Type I/genetics , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Primary Prevention/methods , SARS-CoV-2/immunology
4.
Antiviral Res ; 197: 105232, 2022 01.
Article in English | MEDLINE | ID: covidwho-1588314

ABSTRACT

We report the in vitro antiviral activity of DZNep (3-Deazaneplanocin A; an inhibitor of S-adenosylmethionine-dependent methyltransferase) against SARS-CoV-2, besides demonstrating its protective efficacy against lethal infection of infectious bronchitis virus (IBV, a member of the Coronaviridae family). DZNep treatment resulted in reduced synthesis of SARS-CoV-2 RNA and proteins without affecting other steps of viral life cycle. We demonstrated that deposition of N6-methyl adenosine (m6A) in SARS-CoV-2 RNA in the infected cells recruits heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), an RNA binding protein which serves as a m6A reader. DZNep inhibited the recruitment of hnRNPA1 at m6A-modified SARS-CoV-2 RNA which eventually suppressed the synthesis of the viral genome. In addition, m6A-marked RNA and hnRNPA1 interaction was also shown to regulate early translation to replication switch of SARS-CoV-2 genome. Furthermore, abrogation of methylation by DZNep also resulted in defective synthesis of the 5' cap of viral RNA, thereby resulting in its failure to interact with eIF4E (a cap-binding protein), eventually leading to a decreased synthesis of viral proteins. Most importantly, DZNep-resistant mutants could not be observed upon long-term sequential passage of SARS-CoV-2 in cell culture. In summary, we report the novel role of methylation in the life cycle of SARS-CoV-2 and propose that targeting the methylome using DZNep could be of significant therapeutic value against SARS-CoV-2 infection.


Subject(s)
Adenosine/analogs & derivatives , Genome, Viral/drug effects , Methyltransferases/antagonists & inhibitors , SARS-CoV-2/drug effects , Adenosine/pharmacology , Animals , Chick Embryo , Chlorocebus aethiops , Chromatin Immunoprecipitation Sequencing , DNA Methylation/drug effects , DNA Methylation/physiology , Drug Resistance, Viral/drug effects , Genome, Viral/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Lethal Dose 50 , Mice , Protein Biosynthesis/drug effects , RNA, Viral/drug effects , RNA, Viral/metabolism , Rabbits , SARS-CoV-2/genetics , Specific Pathogen-Free Organisms , Transcription, Genetic/drug effects , Vero Cells
5.
Transbound Emerg Dis ; 68(6): 3038-3042, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526426

ABSTRACT

The susceptibility of turkeys, chickens and chicken embryos to SARS-CoV-2 was evaluated by experimental infection. Turkeys and chickens were inoculated using a combination of intranasal, oral and ocular routes. Both turkeys and chickens did not develop clinical disease or seroconvert following inoculation. Viral RNA was not detected in oral swabs, cloacal swabs or in tissues using quantitative real-time RT-PCR. In addition, chicken embryos were inoculated by various routes including the yolk sac, intravenous, chorioallantoic membrane and allantoic cavity. In all instances, chicken embryos failed to support replication of the virus. SARS-CoV-2 does not affect turkeys or chickens in the current genetic state and does not pose any potential risk to establish an infection in both species of domestic poultry.


Subject(s)
COVID-19 , Poultry Diseases , Animals , COVID-19/veterinary , Chick Embryo , Chickens , SARS-CoV-2 , Turkeys
6.
Bioorg Chem ; 114: 105131, 2021 09.
Article in English | MEDLINE | ID: covidwho-1293593

ABSTRACT

Sets of 3-alkenyl-2-oxindoles (6,10,13) were synthesized in a facile synthetic pathway through acid dehydration (EtOH/HCl) of the corresponding 3-hydroxy-2-oxoindolines (5,9,12). Single crystal (10a,c) and powder (12a,26f) X-ray studies supported the structures. Compounds 6c and 10b are the most effective agents synthesized (about 3.4, 3.3 folds, respectively) against PaCa2 (pancreatic) cancer cell line relative to the standard reference used (Sunitinib). Additionally, compound 10b reveals antiproliferative properties against MCF7 (breast) cancer cell with IC50 close to that of Sunitinib. CAM testing reveals that compounds 6 and 10 demonstrated qualitative and quantitative decreases in blood vessel count and diameter with efficacy comparable to that of Sunitinib, supporting their anti-angiogenic properties. Kinase inhibitory properties support their multi-targeted inhibitory activities against VEGFR-2 and c-kit in similar behavior to that of Sunitinib. Cell cycle analysis studies utilizing MCF7 exhibit that compound 6b arrests the cell cycle at G1/S phase while, 10b reveals accumulation of the tested cell at S phase. Compounds 6a and 10b reveal potent antiviral properties against SARS-CoV-2 with high selectivity index relative to the standards (hydroxychloroquine, chloroquine). Safe profile of the potent synthesized agents, against normal cells (VERO-E6, RPE1), support the possible development of better hits based on the attained observations.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/chemical synthesis , Oxindoles/chemical synthesis , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , Cell Cycle , Cell Line, Tumor , Chick Embryo , Chlorocebus aethiops , Humans , Oxindoles/pharmacology , Vero Cells
7.
J Vet Diagn Invest ; 33(3): 577-581, 2021 May.
Article in English | MEDLINE | ID: covidwho-1271943

ABSTRACT

The H2 subtypes of avian influenza A viruses (avian IAVs) have been circulating in poultry, and they have the potential to infect humans. Therefore, establishing a method to quickly detect this subtype is pivotal. We developed a TaqMan minor groove binder real-time RT-PCR assay that involved probes and primers based on conserved sequences of the matrix and hemagglutinin genes. The detection limit of this assay was as low as one 50% egg infectious dose (EID50)/mL per reaction. This assay is specific, sensitive, and rapid for detecting avian IAV H2 subtypes.


Subject(s)
Influenza A virus/isolation & purification , Influenza in Birds/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Animals , Chick Embryo , Chickens , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity
8.
Virol J ; 18(1): 113, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1279301

ABSTRACT

BACKGROUND: Respiratory RNA viruses including influenza virus have been a cause of health and economic hardships. These viruses depend on its host for replication and infection. Influenza virus infection is lethal to the chick embryo. We examined whether a combination of trimethoprim and zinc (Tri-Z), that acts on the host, can reduce the lethal effect of influenza A virus in chick embryo model. METHOD: Influenza virus was isolated from patients and propagated in eggs. We determined viral load that infects 50% of eggs (50% egg lethal dose, ELD50). We introduced 10 ELD50 into embryonated eggs and repeated the experiments using 100 ELD50. A mixture of zinc oxide (Zn) and trimethoprim (TMP) (weight/weight ratios ranged from 0.01 to 0.3, Zn/TMP with increment of 0.1) was tested for embryo survival of the infection (n = 12 per ratio, in triplicates). Embryo survival was determined by candling eggs daily for 7 days. Controls of Zn, TMP, saline or convalescent serum were conducted in parallel. The effect of Tri-Z on virus binding to its cell surface receptor was evaluated in a hemagglutination inhibition (HAI) assay using chicken red cells. Tri-Z was prepared to concentration of 10 mg TMP and 1.8 mg Zn per ml, then serial dilutions were made. HAI effect was expressed as scores where ++++ = no effect; 0 = complete HAI effect. RESULTS: TMP, Zn or saline separately had no effect on embryo survival, none of the embryos survived influenza virus infection. All embryos treated with convalescent serum survived. Tri-Z, at ratio range of 0.15-0.2 (optimal ratio of 0.18) Zn/TMP, enabled embryos to survive influenza virus despite increasing viral load (> 80% survival at optimal ratio). At concentration of 15 µg/ml of optimal ratio, Tri-Z had total HAI effect (scored 0). However, at clinical concentration of 5 µg/ml, Tri-Z had partial HAI effect (+ +). CONCLUSION: Acting on host cells, Tri-Z at optimal ratio can reduce the lethal effect of influenza A virus in chick embryo. Tri-Z has HAI effect. These findings suggest that combination of trimethoprim and zinc at optimal ratio can be provided as treatment for influenza and possibly other respiratory RNA viruses infection in man.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Trimethoprim/pharmacology , Zinc/pharmacology , Animals , Chick Embryo , Humans , Orthomyxoviridae Infections/drug therapy
9.
Vet Microbiol ; 254: 109014, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1107294

ABSTRACT

TW-like infectious bronchitis virus (IBV) with high pathogenicity is becoming the predominant IBV type circulating in China. To develop vaccines against TW-like IBV strains and investigate the critical genes associated with their virulence, GD strain was attenuated by 140 serial passages in specific-pathogen-free embryonated eggs and the safety and efficacy of the attenuated GD strain (aGD) were examined. The genome sequences of GD and aGD were also compared and the effects of mutations in the S gene were observed. The results revealed that aGD strain showed no obvious pathogenicity with superior protective efficacy against TW-like and QX-like virulent IBV strains. The genomes of strains aGD and GD shared high similarity (99.87 %) and most of the mutations occurred in S gene. Recombinant IBV strain rGDaGD-S, in which the S gene was replaced with the corresponding regions from aGD, showed decreased pathogenicity compared with its parental strain. In conclusion, attenuated TW-like IBV strain aGD is a potential vaccine candidate and the S gene is responsible for its attenuation. Our research has laid the foundation for future exploration of the attenuating molecular mechanism of IBV.


Subject(s)
Chickens/virology , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Viral Vaccines/genetics , Virulence Factors/genetics , Animals , Chick Embryo , Coronavirus Infections/prevention & control , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Reverse Genetics/methods , Serial Passage , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Attenuated/immunology , Viral Vaccines/immunology
10.
Int J Nanomedicine ; 16: 2689-2702, 2021.
Article in English | MEDLINE | ID: covidwho-1186650

ABSTRACT

BACKGROUND: The COVID-19 pandemic is requesting highly effective protective personnel equipment, mainly for healthcare professionals. However, the current demand has exceeded the supply chain and, consequently, shortage of essential medical materials, such as surgical masks. Due to these alarming limitations, it is crucial to develop effective means of disinfection, reusing, and thereby applying antimicrobial shielding protection to the clinical supplies. PURPOSE: Therefore, in this work, we developed a novel, economical, and straightforward approach to promote antimicrobial activity to surgical masks by impregnating silver nanoparticles (AgNPs). METHODS: Our strategy consisted of fabricating a new alcohol disinfectant formulation combining special surfactants and AgNPs, which is demonstrated to be extensively effective against a broad number of microbial surrogates of SARS-CoV-2. RESULTS: The present nano-formula reported a superior microbial reduction of 99.999% against a wide number of microorganisms. Furthermore, the enveloped H5N1 virus was wholly inactivated after 15 min of disinfection. Far more attractive, the current method for reusing surgical masks did not show outcomes of detrimental amendments, suggesting that the protocol does not alter the filtration effectiveness. CONCLUSION: The nano-disinfectant provides a valuable strategy for effective decontamination, reuse, and even antimicrobial promotion to surgical masks for frontline clinical personnel.


Subject(s)
Anti-Infective Agents/pharmacology , Disinfectants/pharmacology , Masks , Metal Nanoparticles/chemistry , Silver/pharmacology , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/transmission , Chick Embryo , Disinfectants/administration & dosage , Disinfectants/chemistry , Disinfection/methods , Dynamic Light Scattering , Equipment Reuse , Humans , Influenza A Virus, H5N1 Subtype/drug effects , Masks/virology , Metal Nanoparticles/administration & dosage , Microbial Sensitivity Tests , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Textiles , X-Ray Diffraction
11.
Antiviral Res ; 189: 105056, 2021 05.
Article in English | MEDLINE | ID: covidwho-1126675

ABSTRACT

Emetine is a FDA-approved drug for the treatment of amebiasis. Previously we demonstrated the antiviral efficacy of emetine against some RNA and DNA viruses. In this study, we evaluated the in vitro antiviral efficacy of emetine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and found it to be a low nanomolar (nM) inhibitor. Interestingly, emetine exhibited protective efficacy against lethal challenge with infectious bronchitis virus (IBV; a chicken coronavirus) in the embryonated chicken egg infection model. Emetine treatment led to a decrease in viral RNA and protein synthesis without affecting other steps of viral life cycle such as attachment, entry and budding. In a chromatin immunoprecipitation (CHIP) assay, emetine was shown to disrupt the binding of SARS-CoV-2 mRNA with eIF4E (eukaryotic translation initiation factor 4E, a cellular cap-binding protein required for initiation of protein translation). Further, molecular docking and molecular dynamics simulation studies suggested that emetine may bind to the cap-binding pocket of eIF4E, in a similar conformation as m7-GTP binds. Additionally, SARS-CoV-2 was shown to exploit ERK/MNK1/eIF4E signalling pathway for its effective replication in the target cells. Collectively our results suggest that further detailed evaluation of emetine as a potential treatment for COVID-19 may be warranted.


Subject(s)
Antiviral Agents , Emetine , Infectious bronchitis virus/drug effects , RNA, Viral/metabolism , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chick Embryo , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Emetine/pharmacology , Emetine/therapeutic use , Eukaryotic Initiation Factor-4E/metabolism , Protein Binding/drug effects , RNA, Messenger/metabolism , Signal Transduction , Vero Cells
12.
EMBO J ; 40(6): e105543, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1084490

ABSTRACT

Influenza A virus (IAV) and SARS-CoV-2 (COVID-19) cause pandemic infections where cytokine storm syndrome and lung inflammation lead to high mortality. Given the high social and economic cost of respiratory viruses, there is an urgent need to understand how the airways defend against virus infection. Here we use mice lacking the WD and linker domains of ATG16L1 to demonstrate that ATG16L1-dependent targeting of LC3 to single-membrane, non-autophagosome compartments - referred to as non-canonical autophagy - protects mice from lethal IAV infection. Mice with systemic loss of non-canonical autophagy are exquisitely sensitive to low-pathogenicity IAV where extensive viral replication throughout the lungs, coupled with cytokine amplification mediated by plasmacytoid dendritic cells, leads to fulminant pneumonia, lung inflammation and high mortality. IAV was controlled within epithelial barriers where non-canonical autophagy reduced IAV fusion with endosomes and activation of interferon signalling. Conditional mouse models and ex vivo analysis showed that protection against IAV infection of lung was independent of phagocytes and other leucocytes. This establishes non-canonical autophagy in airway epithelial cells as a novel innate defence that restricts IAV infection and lethal inflammation at respiratory surfaces.


Subject(s)
Autophagy-Related Proteins/genetics , Influenza A virus/pathogenicity , Microtubule-Associated Proteins/metabolism , Orthomyxoviridae Infections/genetics , Sequence Deletion , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Animals , Autophagy , Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/metabolism , Chick Embryo , Cytokines/metabolism , Dogs , Madin Darby Canine Kidney Cells , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Protein Domains , Virus Replication
13.
Transbound Emerg Dis ; 68(6): 3038-3042, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-999160

ABSTRACT

The susceptibility of turkeys, chickens and chicken embryos to SARS-CoV-2 was evaluated by experimental infection. Turkeys and chickens were inoculated using a combination of intranasal, oral and ocular routes. Both turkeys and chickens did not develop clinical disease or seroconvert following inoculation. Viral RNA was not detected in oral swabs, cloacal swabs or in tissues using quantitative real-time RT-PCR. In addition, chicken embryos were inoculated by various routes including the yolk sac, intravenous, chorioallantoic membrane and allantoic cavity. In all instances, chicken embryos failed to support replication of the virus. SARS-CoV-2 does not affect turkeys or chickens in the current genetic state and does not pose any potential risk to establish an infection in both species of domestic poultry.


Subject(s)
COVID-19 , Poultry Diseases , Animals , COVID-19/veterinary , Chick Embryo , Chickens , SARS-CoV-2 , Turkeys
14.
Sci Rep ; 10(1): 16631, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834914

ABSTRACT

The aim of this study was to test in vitro the ability of a mixture of citrus extract, maltodextrin, sodium chloride, lactic acid and citric acid (AuraShield L) to inhibit the virulence of infectious bronchitis, Newcastle disease, avian influenza, porcine reproductive and respiratory syndrome (PRRS) and bovine coronavirus viruses. Secondly, in vivo, we have investigated its efficacy against infectious bronchitis using a broiler infection model. In vitro, these antimicrobials had expressed antiviral activity against all five viruses through all phases of the infection process of the host cells. In vivo, the antimicrobial mixture reduced the virus load in the tracheal and lung tissue and significantly reduced the clinical signs of infection and the mortality rate in the experimental group E2 receiving AuraShield L. All these effects were accompanied by a significant reduction in the levels of pro-inflammatory cytokines and an increase in IgA levels and short chain fatty acids (SCFAs) in both trachea and lungs. Our study demonstrated that mixtures of natural antimicrobials, such AuraShield L, can prevent in vitro viral infection of cell cultures. Secondly, in vivo, the efficiency of vaccination was improved by preventing secondary viral infections through a mechanism involving significant increases in SCFA production and increased IgA levels. As a consequence the clinical signs of secondary infections were significantly reduced resulting in recovered production performance and lower mortality rates in the experimental group E2.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus, Bovine/drug effects , Epithelial Cells/drug effects , Infectious bronchitis virus/drug effects , Influenza A Virus, H9N2 Subtype/drug effects , Newcastle disease virus/drug effects , Porcine respiratory and reproductive syndrome virus/drug effects , Poultry Diseases/drug therapy , Animals , Cell Line , Chick Embryo , Chickens , Coronavirus Infections/virology , Disease Models, Animal , Epithelial Cells/virology , Humans , Influenza in Birds/metabolism , Influenza in Birds/virology , Influenza, Human/metabolism , Influenza, Human/virology , Newcastle Disease/metabolism , Newcastle Disease/virology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Poultry Diseases/virology , Swine
15.
Vaccine ; 38(31): 4837-4845, 2020 06 26.
Article in English | MEDLINE | ID: covidwho-822932

ABSTRACT

In ovo vaccination with herpesvirus of turkey (HVT) or recombinant HVT (rHVT) is commonly used in meat-type chickens. Previous studies showed that in ovo vaccination with HVT enhances innate, cellular, and humoral immune responses in egg-type chicken embryos. This study evaluated if in ovo vaccination with HVT hastens immunocompetence of commercial meat-type chickens and optimized vaccination variables (dose and strain of HVT) to accelerate immunocompetence. A conventional HVT vaccine was given at recommended dose (RD), HVT-RD = 6080 plaque forming units (PFU), double-dose (2x), half-dose (1/2), or quarter-dose (1/4). Two rHVTs were given at RD: rHVT-A = 7380 PFU, rHVT-B = 8993 PFU. Most, if not all, treatments enhanced splenic lymphoproliferation with Concanavalin A and increased the percentage of granulocytes at day of age. Dose had an effect and HVT-RD was ideal. An increase of wing-web thickness after exposure to phytohemagglutinin-L was only detected after vaccination with HVT-RD. Furthermore, compared to sham-inoculated chickens, chickens in the HVT-RD had an increased percentage of CD3+ T cells and CD4+ T-helper cells, and increased expression of major histocompatibility complex (MHC)-II on most cell subsets (CD45+ cells, non-T leukocytes, T cells and the CD8+ and T cell receptor γδ T-cell subsets). Other treatments (HVT-1/2 and rHVT-B) share some of these features but differences were not as remarkable as in the HVT-RD group. Expression of MHC-I was reduced, compared to sham-inoculated chickens, in most of the cell phenotypes evaluated in the HVT-RD, HVT-2x and rHVT-A groups, while no effect was observed in other treatments. The effect of in ovo HVT on humoral immune responses (antibody responses to keyhole limpet hemocyanin and to a live infectious bronchitis/Newcastle disease vaccine) was minimal. Our study demonstrates in ovo vaccination with HVT in meat-type chickens can accelerate innate and adaptive immunity and we could optimize such effect by modifying the vaccine dose.


Subject(s)
Marek Disease , Poultry Diseases , Viral Vaccines , Animals , Chick Embryo , Chickens , Herpesvirus 1, Meleagrid , Meat , Poultry Diseases/prevention & control , Vaccination
16.
Avian Pathol ; 49(1): 21-28, 2020 Feb.
Article in English | MEDLINE | ID: covidwho-822641

ABSTRACT

Since the emergence of low pathogenic avian influenza (LPAI) H9N2 viruses in Morocco in 2016, severe respiratory problems have been encountered in the field. Infectious bronchitis virus (IBV) is often detected together with H9N2, suggesting disease exacerbation in cases of co-infections. This hypothesis was therefore tested and confirmed in laboratory conditions using specific-pathogen-free chickens. Most common field vaccine programmes were then tested to compare their efficacies against these two co-infecting agents. IBV γCoV/chicken/Morocco/I38/2014 (Mor-IT02) and LPAI virus A/chicken/Morocco/SF1/2016 (Mor-H9N2) were thus inoculated to commercial chickens. We showed that vaccination with two heterologous IBV vaccines (H120 at day one and 4/91 at day 14 of age) reduced the severity of clinical signs as well as macroscopic lesions after simultaneous experimental challenge. In addition, LPAI H9N2 vaccination was more efficient at day 7 than at day 1 in limiting disease post simultaneous challenge.RESEARCH HIGHLIGHTS Simultaneous challenge with IBV and AIV H9N2 induced higher pathogenicity in SPF birds than inoculation with IBV or AIV H9N2 alone.Recommended vaccination programme in commercial broilers to counter Mor-IT02 IBV and LPAIV H9N2 simultaneous infections: IB live vaccine H120 (d1), AIV H9N2 inactivated vaccine (d7), IB live vaccine 4-91 (d14).


Subject(s)
Chickens , Coinfection/veterinary , Coronavirus Infections/veterinary , Infectious bronchitis virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds/virology , Animals , Antibodies, Viral/blood , Chick Embryo , Coinfection/prevention & control , Coinfection/virology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Influenza in Birds/prevention & control , Lung/pathology , Morocco , Oropharynx/virology , Pilot Projects , Poultry Diseases/prevention & control , Poultry Diseases/virology , RNA, Viral/chemistry , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/veterinary , Specific Pathogen-Free Organisms , Trachea/pathology , Vaccination/veterinary , Vaccines, Attenuated , Viral Vaccines , Virus Shedding
17.
Methods Mol Biol ; 2203: 107-117, 2020.
Article in English | MEDLINE | ID: covidwho-728131

ABSTRACT

The embryonated egg is a complex structure comprised of an embryo and its supporting membranes (chorioallantoic, amniotic, and yolk). The developing embryo and its membranes provide a diversity of cell types that allow for the successful replication of a wide variety of different viruses. Within the family Coronaviridae the embryonated egg has been used as a host system primarily for two avian coronaviruses within the genus Gammacoronavirus, infectious bronchitis virus (IBV) and turkey coronavirus (TCoV). IBV replicates well in the embryonated chicken egg, regardless of inoculation route; however, the allantoic route is favored as the virus replicates well in epithelium lining the chorioallantoic membrane, with high virus titers found in these membranes and associated allantoic fluids. TCoV replicates only in epithelium lining the embryo intestines and bursa of Fabricius; thus, amniotic inoculation is required for isolation and propagation of this virus. Embryonated eggs also provide a potential host system for detection, propagation, and characterization of other, novel coronaviruses.


Subject(s)
Chick Embryo/virology , Coronavirus, Turkey/isolation & purification , Infectious bronchitis virus/isolation & purification , Allantois/virology , Amnion/virology , Animals , Chick Embryo/cytology , Coronavirus, Turkey/physiology , Infectious bronchitis virus/physiology , Viral Tropism
18.
Cell Rep ; 32(6): 108016, 2020 08 11.
Article in English | MEDLINE | ID: covidwho-670926

ABSTRACT

The influenza virus hemagglutinin (HA) and coronavirus spike (S) protein mediate virus entry. HA and S proteins are heavily glycosylated, making them potential targets for carbohydrate binding agents such as lectins. Here, we show that the lectin FRIL, isolated from hyacinth beans (Lablab purpureus), has anti-influenza and anti-SARS-CoV-2 activity. FRIL can neutralize 11 representative human and avian influenza strains at low nanomolar concentrations, and intranasal administration of FRIL is protective against lethal H1N1 infection in mice. FRIL binds preferentially to complex-type N-glycans and neutralizes viruses that possess complex-type N-glycans on their envelopes. As a homotetramer, FRIL is capable of aggregating influenza particles through multivalent binding and trapping influenza virions in cytoplasmic late endosomes, preventing their nuclear entry. Remarkably, FRIL also effectively neutralizes SARS-CoV-2, preventing viral protein production and cytopathic effect in host cells. These findings suggest a potential application of FRIL for the prevention and/or treatment of influenza and COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Fabaceae/chemistry , Orthomyxoviridae Infections/drug therapy , Plant Lectins/therapeutic use , Pneumonia, Viral/drug therapy , A549 Cells , Administration, Intranasal , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Chick Embryo , Chlorocebus aethiops , Dogs , Female , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Pandemics , Plant Lectins/administration & dosage , Plant Lectins/pharmacology , Protein Binding , SARS-CoV-2 , Vero Cells , Viral Envelope Proteins/metabolism
19.
J Gen Virol ; 101(6): 599-608, 2020 06.
Article in English | MEDLINE | ID: covidwho-662965

ABSTRACT

Infection of chicken coronavirus infectious bronchitis virus (IBV) is initiated by binding of the viral heavily N-glycosylated attachment protein spike to the alpha-2,3-linked sialic acid receptor Neu5Ac. Previously, we have shown that N-glycosylation of recombinantly expressed receptor binding domain (RBD) of the spike of IBV-M41 is of critical importance for binding to chicken trachea tissue. Here we investigated the role of N-glycosylation of the RBD on receptor specificity and virus replication in the context of the virus particle. Using our reverse genetics system we were able to generate recombinant IBVs for nine-out-of-ten individual N-glycosylation mutants. In vitro growth kinetics of these viruses were comparable to the virus containing the wild-type M41-S1. Furthermore, Neu5Ac binding by the recombinant viruses containing single N-glycosylation site knock-out mutations matched the Neu5Ac binding observed with the recombinant RBDs. Five N-glycosylation mutants lost the ability to bind Neu5Ac and gained binding to a different, yet unknown, sialylated glycan receptor on host cells. These results demonstrate that N-glycosylation of IBV is a determinant for receptor specificity.


Subject(s)
Coronavirus Infections/immunology , Host Specificity/immunology , Infectious bronchitis virus/chemistry , Protein Domains , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Animals , Cell Line , Chick Embryo , Coronavirus Infections/virology , Glycosylation , Infectious bronchitis virus/immunology , Kidney/cytology , Kidney/embryology , Protein Binding , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism , Recombinant Proteins , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism/immunology , Virus Attachment , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL