Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Viruses ; 14(10)2022 10 09.
Article in English | MEDLINE | ID: covidwho-2143671

ABSTRACT

For industrial vaccine production, overwhelming the existing antiviral innate immune response dominated by type I interferons (IFN-I) in cells would be a key factor improving the effectiveness and production cost of vaccines. In this study, we report the construction of an IFN-I receptor 1 (IFNAR1)-knockout DF-1 cell line (KO-IFNAR1), which supports much more efficient replication of the duck Tembusu virus (DTMUV), Newcastle disease virus (NDV) and gammacoronavirus infectious bronchitis virus (IBV). Transcriptomic analysis of DTMUV-infected KO-IFNAR1 cells demonstrated that DTMUV mainly activated genes and signaling pathways related to cell growth and apoptosis. Among them, JUN, MYC and NFKBIA were significantly up-regulated. Furthermore, knockdown of zinc-fingered helicase 2 (HELZ2) and interferon-α-inducible protein 6 (IFI6), the two genes up-regulated in both wild type and KO-IFNAR1 cells, significantly increased the replication of DTMUV RNA. This study paves the way for further studying the mechanism underlying the DTMUV-mediated IFN-I-independent regulation of virus replication, and meanwhile provides a potential cell resource for efficient production of cell-based avian virus vaccines.


Subject(s)
Flavivirus Infections , Flavivirus , Interferon Type I , Poultry Diseases , Animals , Ducks , Chickens/genetics , Transcriptome , Flavivirus/genetics , Cell Line , Interferon Type I/genetics , Antiviral Agents , Apoptosis , RNA , Interferon-alpha/genetics , Zinc
2.
J Vet Med Sci ; 84(11): 1520-1526, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2117425

ABSTRACT

The antigenic variant QX-like infectious bronchitis virus (IBV) is endemic in several countries. In Japan, the QX-like genotype is classified as the JP-III genotype based on the partial S1 gene and as the GI-19 genotype based on the complete S1 gene. This study showed that QX-like IBVs and JP-III IBVs can be identified based on the amino acid polymorphism of the S1 glycoprotein. Furthermore, genetic analysis of several IBV field strains detected in commercial broiler farms across the Kyushu area in 2020 revealed Japanese QX-like IBVs, which are highly homologous to the QX-like IBVs recently detected in China and South Korea. Herein, QX-like IBV field strains were isolated for evaluating commercial vaccine efficacy in our future studies.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Infectious bronchitis virus/genetics , Japan/epidemiology , Poultry Diseases/epidemiology , Chickens , Phylogeny , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Genotype
3.
Viruses ; 14(11)2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2116191

ABSTRACT

Infectious Bronchitis (IB) is a respiratory disease caused by a highly variable Gammacoronavirus, which generates a negative impact on poultry health worldwide. GI-11 and GI-16 lineages have been identified in South America based on Infectious Bronchitis virus (IBV) partial S1 sequences. However, full genome sequence information is limited. In this study we report, for the first time, the whole-genome sequence of IBV from Colombia. Seven IBV isolates obtained during 2012 and 2013 from farms with respiratory disease compatible with IB were selected and the complete genome sequence was obtained by NGS. According to S1 sequence phylogenetic analysis, six isolates belong to lineage GI-1 and one to lineage GVI-1. When whole genome was analyzed, five isolates were related to the vaccine strain Ma5 2016 and two showed mosaic genomes. Results from complete S1 sequence analysis provides further support for the hypothesis that GVI-1, considered a geographically confined lineage in Asia, could have originated in Colombia. Complete genome information reported in this research allow a deeper understanding of the phylogenetic evolution of variants and the recombination events between strains that are circulating worldwide, contributing to the knowledge of coronavirus in Latin America and the world.


Subject(s)
Infectious bronchitis virus , Poultry Diseases , Animals , Phylogeny , Colombia/epidemiology , Poultry Diseases/prevention & control , Chickens , Genome, Viral
4.
Int Immunopharmacol ; 112: 109280, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2105144

ABSTRACT

Coronavirus disease (COVID)-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become a global pandemic disease that has social and economic chaos. An alternative mitigation strategy may involve the use of specific immunoglobulin (Ig)-Y derived from chicken eggs. Our study aimed to evaluate the neutralizing potential of specific IgY targeting S1, receptor-binding-domain (RBD) of spike glycoprotein and nucleocapsid (N) of SARS-CoV-2 to inhibit RBD and angiotensin-converting-enzyme-2 (ACE2) binding interaction. Hy-Line Brown laying hens were immunized with recombinant S1, RBD spike glycoprotein, and nucleocapsid (N) of SARS-CoV-2. The presence of specific S1,RBD,N-IgY in serum and egg yolk was verified by indirect enzyme-linked immunosorbent assay (ELISA). Specific S1,RBD,N-IgY was purified and characterized from egg yolk using sodium-dodecyl-sulfate-polyacrylamide-gel-electrophoresis (SDS-PAGE), and was subsequently evaluated for inhibition of the RBD-ACE2 binding interaction in vitro. Specific IgY was present in serum at 1 week post-initial immunization (p.i.i), whereas its present in egg yolk was confirmed at 4 weeks p.i.i. Specific S1,RBD,N-IgY in serum was able to inhibit RBD-ACE2 binding interaction between 4 and 15 weeks p.i.i. The results of the SDS-PAGE revealed the presence of bands with molecular weights of 180 kDa, indicating the presence of whole IgY. Our results demonstrated that S1,RBD,N-IgY was able to inhibit RBD-ACE2 binding interaction in vitro, suggesting its potential use in blocking virus entry. Our study also demonstrated proof-of-concept that laying hens were able to produce this specific IgY, which could block the viral binding and large production of this specific IgY is feasible.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Female , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Chickens , Protein Binding , Immunoglobulins/metabolism , Nucleocapsid/metabolism , Glycoproteins/metabolism , Angiotensins/metabolism , Sulfates , Sodium
5.
Viruses ; 14(10)2022 09 21.
Article in English | MEDLINE | ID: covidwho-2099841

ABSTRACT

The gammacoronavirus avian infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of primary economic importance to the global poultry industry. Two IBV lineages (GI-11 and GI-16) have been widely circulating for decades in South America. GI-11 is endemic to South America, and the GI-16 is globally distributed. We obtained full-length IBV genomes from Argentine and Uruguayan farms using Illumina sequencing. Genomes of the GI-11 and GI-16 lineages from Argentina and Uruguay differ in part of the spike coding region. The remaining genome regions are similar to the Chinese and Italian strains of the GI-16 lineage that emerged in Asia or Europe in the 1970s. Our findings support that the indigenous GI-11 strains recombine extensively with the invasive GI-16 strains. During the recombination process, GI-11 acquired most of the sequences of the GI-16, retaining the original S1 sequence. GI-11 strains with recombinant genomes are circulating forms that underwent further local evolution. The current IBV scenario in South America includes the GI-16 lineage, recombinant GI-11 strains sharing high similarity with GI-16 outside S1, and Brazilian GI-11 strains with a divergent genomic background. There is also sporadic recombinant in the GI-11 and GI-16 lineages among vaccine and field strains. Our findings exemplified the ability of IBV to generate emergent lineage by using the S gene in different genomic backgrounds. This unique example of recombinational microevolution underscores the genomic plasticity of IBV in South America.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Infectious bronchitis virus/genetics , Chickens , Phylogeny , Mutation , Recombination, Genetic , Brazil
6.
Vet Microbiol ; 275: 109597, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2086823

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral proteins that inhibit numerous virus infections by impeding viral entry into target cells. However, increasing evidence suggests diverse functions of IFITMs in virus infection, especially with the coronavirus. We analyzed the effect of chicken interferon-induced transmembrane proteins (chIFITMs) on coronavirus infectious bronchitis virus (IBV) infection in vitro. We demonstrated that the antiviral effects of IFITMs are dependent on cell and virus types. The overexpression of chIFITM1 dramatically promoted the replication of IBV Beaudette strain in the chicken hepatocellular carcinoma cell line, LMH. Mechanistically, chIFITMs share roughly the same subcellular localization in different host cells, and overexpressed of chIFITM1 have no effect of viral attachment and entry. Further studies revealed that mutations of amino acids at key positions (60KSRD63, 68KDFV71) in the intracellular loop domain (CIL) caused loss of the promoted function. Interaction with downstream proteins in co-response to viral infection could be the primary reason behind variable functions of chIFITM1 in different cells. In all, our study explored the functions of chIFITMs in viral infection from a new perspective.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Animals , Infectious bronchitis virus/genetics , Chickens , Coronavirus Infections/veterinary , Antiviral Agents/pharmacology , Interferons/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Virus Replication
7.
Viruses ; 14(9)2022 09 09.
Article in English | MEDLINE | ID: covidwho-2055392

ABSTRACT

Infectious bronchitis virus (IBV) is a highly variable RNA virus that affects chickens worldwide. Due to its inherited tendency to suffer point mutations and recombination events during viral replication, emergent IBV strains have been linked to nephropathogenic and reproductive disease that are more severe than typical respiratory disease, leading, in some cases, to mortality, severe production losses, and/or unsuccessful vaccination. QX and DMV/1639 strains are examples of the above-mentioned IBV evolutionary pathway and clinical outcome. In this study, our purpose was to systematically compare whole genomes of QX and DMV strains looking at each IBV gene individually. Phylogenetic analyses and amino acid site searches were performed in datasets obtained from GenBank accounting for all IBV genes and using our own relevant sequences as a basis. The QX dataset studied is more genetically diverse than the DMV dataset, partially due to the greater epidemiological diversity within the five QX strains used as a basis compared to the four DMV strains from our study. Historically, QX strains have emerged and spread earlier than DMV strains in Europe and Asia. Consequently, there are more QX sequences deposited in GenBank than DMV strains, assisting in the identification of a larger pool of QX strains. It is likely that a similar evolutionary pattern will be observed among DMV strains as they develop and spread in North America.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Amino Acids/genetics , Animals , Chickens , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Genomics , Infectious bronchitis virus/genetics , Phylogeny , Poultry Diseases/epidemiology
8.
Genes (Basel) ; 13(9)2022 09 09.
Article in English | MEDLINE | ID: covidwho-2055194

ABSTRACT

Genetic diversity and evolution of infectious bronchitis virus (IBV) are mainly impacted by mutations in the spike 1 (S1) gene. This study focused on whole genome sequencing of an IBV isolate (IBV/Ck/Can/2558004), which represents strains highly prevalent in Canadian commercial poultry, especially concerning features related to its S1 gene and protein sequences. Based on the phylogeny of the S1 gene, IBV/Ck/Can/2558004 belongs to the GI-17 lineage. According to S1 gene and protein pairwise alignment, IBV/Ck/Can/2558004 had 99.44-99.63% and 98.88-99.25% nucleotide (nt) and deduced amino acid (aa) identities, respectively, with five Canadian Delmarva (DMV/1639) IBVs isolated in 2019, and it also shared 96.63-97.69% and 94.78-97.20% nt and aa similarities with US DMV/1639 IBVs isolated in 2011 and 2019, respectively. Further homology analysis of aa sequences showed the existence of some aa substitutions in the hypervariable regions (HVRs) of the S1 protein of IBV/Ck/Can/2558004 compared to US DMV/1639 isolates; most of these variant aa residues have been subjected to positive selection pressure. Predictive analysis of potential N-glycosylation and phosphorylation motifs showed either loss or acquisition in the S1 glycoprotein of IBV/Ck/Can/2558004 compared to S1 of US DMV/1639 IBV. Furthermore, bioinformatic analysis showed some of the aa changes within the S1 protein of IBV/Ck/Can/2558004 have been predicted to impact the function and structure of the S1 protein, potentially leading to a lower binding affinity of the S1 protein to its relevant ligand (sialic acid). In conclusion, these findings revealed that the DMV/1639 IBV isolates are under continuous evolution among Canadian poultry.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Amino Acids/genetics , Animals , Canada , Chickens , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Genotype , Glycoproteins/genetics , Infectious bronchitis virus/genetics , Ligands , N-Acetylneuraminic Acid , Nucleotides , Poultry
9.
Microbiome ; 10(1): 162, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2053974

ABSTRACT

BACKGROUND: Mammalian intestinal microbiomes are necessary for antagonizing systemic viral infections. However, very few studies have identified whether poultry commensal bacteria play a crucial role in protecting against systemic viral infections. Nephropathogenic infectious bronchitis virus (IBV) is a pathogenic coronavirus that causes high morbidity and multiorgan infection tropism in chickens. RESULTS: In this study, we used broad-spectrum oral antibiotics (ABX) to treat specific pathogen free (SPF) chickens to deplete the microbiota before infection with nephropathogenic IBV to analyze the impact of microbiota on IBV infections in vivo. Depletion of the SPF chicken microbiota increases pathogenicity and viral burden following IBV infection. The gnotobiotic chicken infection model further demonstrated that intestinal microbes are resistant to nephropathogenic IBV infection. In addition, ABX-treated chickens showed a severe reduction in macrophage activation, impaired type I IFN production, and IFN-stimulated gene expression in peripheral blood mononuclear cells and the spleen. Lactobacillus isolated from SPF chickens could restore microbiota-depleted chicken macrophage activation and the IFNAR-dependent type I IFN response to limit IBV infection. Furthermore, exopolysaccharide metabolites of Lactobacillus spp. could induce IFN-ß. CONCLUSIONS: This study revealed the resistance mechanism of SPF chicken intestinal microbiota to nephropathogenic IBV infection, providing new ideas for preventing and controlling nephropathogenic IBV. Video abstract.


Subject(s)
Gastrointestinal Microbiome , Infectious bronchitis virus , Poultry Diseases , Animals , Anti-Bacterial Agents , Chickens , Infectious bronchitis virus/genetics , Leukocytes, Mononuclear , Mammals
10.
J Vet Diagn Invest ; 34(6): 955-959, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2053669

ABSTRACT

Turkey coronavirus (TCoV) is a member of the Avian coronavirus species with infectious bronchitis virus (IBV), which is considered to be the source of TCoV. These 2 viruses are highly similar in all regions of their genomes, except for the spike gene, which is necessary for virus attachment. Although TCoV causes severe enteric disease in turkey poults, it does not cause clinical disease in chickens. However, considering that TCoV can infect chickens, it is important to distinguish TCoV from IBV in chickens. This is particularly true for chickens that are housed near turkeys and thus might be infected with TCoV and serve as a silent source of TCoV for turkeys. We developed and validated a real-time PCR assay to detect the spike gene of TCoV and sequenced a portion of this gene to evaluate the molecular epidemiology of TCoV infections associated with a commercial turkey premises in the United States in 2020-2021. We identified natural infections of TCoV in chickens, and based on the molecular epidemiology of the viruses detected, these chickens may have served as a source of infection for the commercial turkey premises located nearby.


Subject(s)
Coronavirus, Turkey , Enteritis, Transmissible, of Turkeys , Infectious bronchitis virus , Poultry Diseases , Animals , Coronavirus, Turkey/genetics , Turkeys/genetics , Enteritis, Transmissible, of Turkeys/epidemiology , Chickens , Molecular Epidemiology , Infectious bronchitis virus/genetics , Poultry Diseases/epidemiology
11.
Transbound Emerg Dis ; 69(5): e2111-e2121, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053006

ABSTRACT

Viral respiratory diseases, such as avian influenza, Newcastle disease, infectious bronchitis and infectious laryngotracheitis, have considerable negative economic implications for poultry. Ensuring the virus-free status of premises by environmental sampling after cleaning and disinfection is essential for lifting a quarantine and/or safely restocking the premises following an outbreak. The objectives of this study were to identify optimal sample collection devices and to determine the locations in poultry housing which are best for poultry respiratory virus sample collection. Chickens exposed to infectious bronchitis virus, which was used as a representative virus for enveloped poultry respiratory viruses, were housed in floor-pens in either a curtain-sided wood framed house or a cement block house. Foam swabs, cellulose sponges, polyester swabs, dry cotton gauze and pre-moistened cotton gauze were evaluated for comparative efficiency in recovering viral RNA. Cotton gauze pre-moistened with the viral transport media had the highest sensitivity among the devices (wood-framed house: 78% positive, geometric mean titre [GMT] of 2.6 log10 50% egg infectious doses [EID50 ] equivalents/ml; cement block houses: 55% positive, GMT of 1.7 log10 EID50 equivalents/ml). Targeting virus deposition sites is also crucial for efficient virus elimination procedures and subsequent testing; therefore, 10 locations within the houses were compared for virus detection. In both housing types, the highest viral RNA loads were recovered from the tops of drinker lines within the pen. Places the chickens could contact directly (e.g., feeder rim) or were contacted by caretaker feet (hallway floor) also yielded higher levels of viral RNA more consistently. These results will facilitate the establishment of efficient environmental sampling procedures for respiratory viruses of poultry.


Subject(s)
Influenza in Birds , Poultry Diseases , Animals , Cellulose , Chickens , Housing , Newcastle disease virus/genetics , Poultry , RNA, Viral
12.
Transbound Emerg Dis ; 69(5): e1445-e1459, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2052989

ABSTRACT

The Mexican lineage H5N2 low pathogenic avian influenza viruses (LPAIVs) were first detected in 1994 and mutated to highly pathogenic avian influenza viruses (HPAIVs) in 1994-1995 causing widespread outbreaks in poultry. By using vaccination and other control measures, the HPAIVs were eradicated but the LPAIVs continued circulating in Mexico and spread to several other countries. To get better resolution of the phylogenetics of this virus, the full genome sequences of 44 H5N2 LPAIVs isolated from 1994 to 2011, and 6 detected in 2017 and 2019, were analysed. Phylogenetic incongruence demonstrated genetic reassortment between two separate groups of the Mexican lineage H5N2 viruses between 2005 and 2010. Moreover, the recent H5N2 viruses reassorted with previously unidentified avian influenza viruses. Bayesian phylogeographic results suggested that mechanical transmission involving human activity is the most probable cause of the virus spillover to Central American, Caribbean, and East Asian countries. Increased infectivity and transmission of a 2011 H5N2 LPAIV in chickens compared to a 1994 virus demonstrates improved adaptation to chickens, while low virus shedding, and limited contact transmission was observed in mallards with the same 2011 virus. The sporadic increase in basic amino acids in the HA cleavage site, changes in potential N-glycosylation sites in the HA, and truncations of PB1-F2 should be further examined in relation to the increased infectivity and transmission in poultry. The genetic changes that occur as this lineage of H5N2 LPAIVs continues circulating in poultry is concerning not only because of the effect of these changes on vaccination efficacy, but also because of the potential of the viruses to mutate to the highly pathogenic form. Continued vigilance and surveillance efforts, and the pathogenic and genetic characterization of circulating viruses, are required for the effective control of this virus.


Subject(s)
Influenza A Virus, H5N2 Subtype , Influenza A virus , Influenza in Birds , Amino Acids, Basic/genetics , Animals , Bayes Theorem , Chickens , Humans , Influenza A Virus, H5N2 Subtype/genetics , Influenza A virus/genetics , Mexico/epidemiology , Phylogeny , Poultry
13.
Viruses ; 14(10)2022 09 26.
Article in English | MEDLINE | ID: covidwho-2043989

ABSTRACT

Background: Some viruses cause outbreaks, which require immediate attention. Neutralizing antibodies could be developed for viral outbreak management. However, the development of monoclonal antibodies is often long, laborious, and unprofitable. Here, we report the development of chicken polyclonal neutralizing antibodies against SARS-CoV-2 infection. Methods: Layers were immunized twice with 14-day intervals using the purified receptor-binding domain (RBD) of the S protein of SARS-CoV-2/Wuhan or SARS-CoV-2/Omicron. Eggs were harvested 14 days after the second immunization. Polyclonal IgY antibodies were extracted. Binding of anti-RBD IgYs was analyzed by immunoblot and indirect ELISA. Furthermore, the neutralization capacity of anti-RBD IgYs was measured in Vero-E6 cells infected with SARS-CoV-2-mCherry/Wuhan and SARS-CoV-2/Omicron using fluorescence and/or cell viability assays. In addition, the effect of IgYs on the expression of SARS-CoV-2 and host cytokine genes in the lungs of Syrian Golden hamsters was examined using qRT-PCR. Results: Anti-RBD IgYs efficiently bound viral RBDs in situ, neutralized the virus variants in vitro, and lowered viral RNA amplification, with minimal alteration of virus-mediated immune gene expression in vivo. Conclusions: Altogether, our results indicate that chicken polyclonal IgYs can be attractive targets for further pre-clinical and clinical development for the rapid management of outbreaks of emerging and re-emerging viruses.


Subject(s)
COVID-19 , Animals , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Chickens , SARS-CoV-2 , Egg Yolk , RNA, Viral , Antibodies, Viral , Antibodies, Neutralizing , Antibodies, Monoclonal , Antiviral Agents , Cytokines
14.
PLoS Pathog ; 18(9): e1010782, 2022 09.
Article in English | MEDLINE | ID: covidwho-2039444

ABSTRACT

Safe, passive immunization methods are required against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants. Immunization of chickens with antigen is known to induce specific IgY antibodies concentrated in the egg yolk and has a good safety profile, high yield of IgY per egg, can be topically applied, not requiring parenteral delivery. Our data provide the first evidence of the prophylactic efficacy of Immunoglobulin Y antibodies against SARS-CoV-2 in mice. Lohmann hens were injected with recombinant SARS-CoV-2 RBD protein; IgY-Abs were extracted from the eggs and characterized using SDS-PAGE. Antiviral activity was evaluated using plaque reduction neutralization tests. In additional experiments, IgY-RBD efficacy was examined in mice sensitized to SARS-CoV-2 infection by transduction with Ad5-hACE2 (mild disease) or by using mouse-adapted virus (severe disease). In both cases, prophylactic intranasal administration of IgY-Abs reduced SARS-CoV-2 replication, and reduced morbidity, inflammatory cell infiltration, hemorrhage, and edema in the lungs and increased survival compared to control groups that received non-specific IgY-Abs. These results indicate that further evaluation of IgY-RBD antibodies in humans is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Antiviral Agents , COVID-19/prevention & control , Chickens , Female , Humans , Immunoglobulins , Mice
15.
PLoS Pathog ; 18(8): e1010745, 2022 08.
Article in English | MEDLINE | ID: covidwho-2039442

ABSTRACT

In vivo bioluminescence imaging facilitates the non-invasive visualization of biological processes in living animals. This system has been used to track virus infections mostly in mice and ferrets; however, until now this approach has not been applied to pathogens in avian species. To visualize the infection of an important avian pathogen, we generated Marek's disease virus (MDV) recombinants expressing firefly luciferase during lytic replication. Upon characterization of the recombinant viruses in vitro, chickens were infected and the infection visualized in live animals over the course of 14 days. The luminescence signal was consistent with the known spatiotemporal kinetics of infection and the life cycle of MDV, and correlated well with the viral load measured by qPCR. Intriguingly, this in vivo bioimaging approach revealed two novel sites of MDV replication, the beak and the skin of the feet covered in scales. Feet skin infection was confirmed using a complementary fluorescence bioimaging approach with MDV recombinants expressing mRFP or GFP. Infection was detected in the intermediate epidermal layers of the feet skin that was also shown to produce infectious virus, regardless of the animals' age at and the route of infection. Taken together, this study highlights the value of in vivo whole body bioimaging in avian species by identifying previously overlooked sites of replication and shedding of MDV in the chicken host.


Subject(s)
Herpesviridae , Herpesvirus 2, Gallid , Marek Disease , Animals , Chickens , Ferrets , Mice
16.
Infect Genet Evol ; 104: 105356, 2022 10.
Article in English | MEDLINE | ID: covidwho-2036365

ABSTRACT

An H3N1 avian influenza virus was detected in a laying hens farm in May 2019 which had experienced 25% mortality in Northern France. The complete sequencing of this virus showed that all segment sequences belonged to the Eurasian lineage and were phylogenetically very close to many of the Belgian H3N1 viruses detected in 2019. The French virus presented two genetic particularities with NA and NS deletions that could be related to virus adaptation from wild to domestic birds and could increase virulence, respectively. Molecular data of H3N1 viruses suggest that these two deletions occurred at two different times.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Chickens , Female , Influenza A virus/genetics , Phylogeny
17.
Viruses ; 14(9)2022 09 14.
Article in English | MEDLINE | ID: covidwho-2033148

ABSTRACT

The current pandemic caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has encouraged the evaluation of novel instruments for disinfection and lowering infectious pressure. Ultraviolet subtype C (UVC) excimer lamps with 222 nm wavelength have been tested on airborne pathogens on surfaces and the exposure to this wavelength has been considered safer than conventional UVC. To test the efficacy of UVC excimer lamps on coronaviruses, an animal model mimicking the infection dynamics was implemented. An attenuated vaccine based on infectious bronchitis virus (IBV) was nebulized and irradiated by 222 nm UVC rays before the exposure of a group of day-old chicks to evaluate the virus inactivation. A control group of chicks was exposed to the nebulized vaccine produced in the same conditions but not irradiated by the lamps. The animals of both groups were sampled daily and individually by choanal cleft swabs and tested usign a strain specific real time RT-PCR to evaluate the vaccine replication. Only the birds in the control group were positive, showing an active replication of the vaccine, revealing the efficacy of the lamps in inactivating the vaccine below the infectious dose in the other group.


Subject(s)
COVID-19 , Ultraviolet Rays , Animals , Chickens , Disease Models, Animal , Disinfection , SARS-CoV-2 , Vaccines, Attenuated
18.
Lancet Microbe ; 3(11): e824-e834, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2031776

ABSTRACT

BACKGROUND: The H3N8 avian influenza virus (AIV) has been circulating in wild birds, with occasional interspecies transmission to mammals. The first human infection of H3N8 subtype occurred in Henan Province, China, in April, 2022. We aimed to investigate clinical, epidemiological, and virological data related to a second case identified soon afterwards in Hunan Province, China. METHODS: We analysed clinical, epidemiological, and virological data for a 5-year-old boy diagnosed with H3N8 AIV infection in May, 2022, during influenza-like illness surveillance in Changsha City, Hunan Province, China. H3N8 virus strains from chicken flocks from January, 2021, to April, 2022, were retrospectively investigated in China. The genomes of the viruses were sequenced for phylogenetic analysis of all the eight gene segments. We evaluated the receptor-binding properties of the H3N8 viruses by using a solid-phase binding assay. We used sequence alignment and homology-modelling methods to study the effect of specific mutations on the human receptor-binding properties. We also conducted serological surveillance to detect the H3N8 infections among poultry workers in the two provinces with H3N8 cases. FINDINGS: The clinical symptoms of the patient were mild, including fever, sore throat, chills, and a runny nose. The patient's fever subsided on the same day of hospitalisation, and these symptoms disappeared 7 days later, presenting mild influenza symptoms, with no pneumonia. An H3N8 virus was isolated from the patient's throat swab specimen. The novel H3N8 virus causing human infection was first detected in a chicken farm in Guangdong Province in December, 2021, and subsequently emerged in several provinces. Sequence analyses revealed the novel H3N8 AIVs originated from multiple reassortment events. The haemagglutinin gene could have originated from H3Ny AIVs of duck origin. The neuraminidase gene belongs to North American lineage, and might have originated in Alaska (USA) and been transferred by migratory birds along the east Asian flyway. The six internal genes had originated from G57 genotype H9N2 AIVs that were endemic in chicken flocks. Reassortment events might have occurred in domestic ducks or chickens in the Pearl River Delta area in southern China. The novel H3N8 viruses possess the ability to bind to both avian-type and human-type sialic acid receptors, which pose a threat to human health. No poultry worker in our study was positive for antibodies against the H3N8 virus. INTERPRETATION: The novel H3N8 virus that caused human infection had originated from chickens, a typical spillover. The virus is a triple reassortment strain with the Eurasian avian H3 gene, North American avian N8 gene, and dynamic internal genes of the H9N2 viruses. The virus already possesses binding ability to human-type receptors, though the risk of the H3N8 virus infection in humans was low, and the cases are rare and sporadic at present. Considering the pandemic potential, comprehensive surveillance of the H3N8 virus in poultry flocks and the environment is imperative, and poultry-to-human transmission should be closely monitored. FUNDING: National Natural Science Foundation of China, National Key Research and Development Program of China, Strategic Priority Research Program of the Chinese Academy of Sciences, Hunan Provincial Innovative Construction Special Fund: Emergency response to COVID-19 outbreak, Scientific Research Fund of Hunan Provincial Health Department, and the Hunan Provincial Health Commission Foundation.


Subject(s)
COVID-19 , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Humans , Animals , Child, Preschool , Influenza in Birds/epidemiology , Influenza A Virus, H3N8 Subtype/genetics , Influenza, Human/epidemiology , Phylogeny , Retrospective Studies , Chickens , Poultry , Ducks , Mammals
19.
Viruses ; 14(8)2022 08 10.
Article in English | MEDLINE | ID: covidwho-2024287

ABSTRACT

Receptor interacting protein kinase 3 (RIPK3) is a vital serine/threonine kinase in regulating the programmed destruction of infected cells to defend against RNA viruses. Although the role of RIPK3 in viruses in mice is well characterized, it remains unclear where in nephropathogenic infectious bronchitis virus (NIBV) in chickens. Here, we use a self-prepared polyclonal antibody to clarify the abundance of RIPK3 in tissues and define the contributions of RIPK3 in tissue damage caused by NIBV infection in chickens. Western blot analyses showed that RIPK3 polyclonal antibody can specifically recognize RIPK3 in the vital tissues of Hy-Line brown chicks and RIPK3 protein is abundantly expressed in the liver and kidney. Moreover, NIBV significantly upregulated the expression levels of RIPK3 in the trachea and kidney of chicks in a time-dependent manner. In addition, the activation of necroptosis in response to NIBV infection was demonstrated by the coimmunoprecipitation (CoIP) experiments through RIPK3 in the necrosome, which phosphorylates its downstream mixed-spectrum kinase structural domain-like protein (MLKL). Our findings offered preliminary insights into the key role of RIPK3 protein in studying the underlying mechanism of organ failure caused by NIBV infection.


Subject(s)
Infectious bronchitis virus , Viruses , Animals , Chickens , Immunoassay , Infectious bronchitis virus/metabolism , Mice , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Viruses/metabolism
20.
J Vet Med Sci ; 84(9): 1157-1163, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2021433

ABSTRACT

Infectious bronchitis virus (IBV) is the causative agent of infectious bronchitis (IB) in chickens. There is a correlation between cross-protection and percentage of similarity between nucleotide sequences encoding the S1 subunit, which is responsible for generating neutralizing and serotype-specific antibodies. Therefore, RT-PCR is commonly used to amplify the IBV-S1 gene following DNA sequencing in order to predict the efficacy of vaccines against IBV strains. We successfully enhanced the sensitivity for detection of the IBV-S1 gene by second PCR after purification of the 1st RT-PCR product. Using that method, we obtained detailed information on the prevalence of IBV on poultry farms in Gifu Prefecture, Japan. The IBV-S1 gene detection method used in the current study will enable accurate information on the prevalence of IBV in Japan to be obtained.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chickens , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Farms , Japan/epidemiology , Poultry , Poultry Diseases/diagnosis , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL