Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 426
Filter
1.
J Enzyme Inhib Med Chem ; 37(1): 1077-1082, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1788416

ABSTRACT

Despite a huge effort by the scientific community to determine the animal reservoir of SARS-CoV-2, which led to the identification of several SARS-CoV-2-related viruses both in bats and in pangolins, the origin of SARS-CoV-2 is still not clear. Recently, Temmam et al. reported the discovery of bat coronaviruses with a high degree of genome similarity with SARS-CoV-2, especially concerning the RBDs of the S protein, which mediates the capability of such viruses to enter and therefore infect human cells through a hACE2-dependent pathway. These viruses, especially the one named BANAL-236, showed a higher affinity for the hACE2 compared to the original strain of SARS-CoV-2. In the present work, we analyse the similarities and differences between the 3CL protease (main protease, Mpro) of these newly reported viruses and SARS-CoV-2, discussing their relevance relative to the efficacy of existing therapeutic approaches against COVID-19, particularly concerning the recently approved orally available Paxlovid, and the development of future ones.


Subject(s)
COVID-19 , Chiroptera , Animals , Peptide Hydrolases , SARS-CoV-2
2.
J Infect Dev Ctries ; 16(3): 402-408, 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1786136

ABSTRACT

Coronaviruses have been responsible for the emergence of pathogenic human diseases in recent decades, especially the coronavirus disease of 2019 (COVID-19). Phylogenetic studies of RNA (ribonucleic acid) viruses suggest that most human coronaviruses originated in bats, which are suitable reservoir hosts for many zoonotic viruses because of their unique biological and physiological features. The generation of human pathogenic coronaviruses is a result of genetic adaptation in bats and/or intermediate hosts, leading to spillover events. Therefore, we propose that specifically reducing or disrupting persistent coronavirus infection in bats may consequently decrease the frequency of human coronavirus diseases. We suggest several strategies to achieve the aforementioned goal in bats, including vaccination and targeted delivery of molecular inhibitors, such as monoclonal antibodies, aptamers, antisense oligonucleotides, and siRNA by use of viral nanoparticles. Advances in global bat research with the aim of controlling coronavirus infection in these mammals are pivotal in enhancing human health worldwide.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Phylogeny
3.
Front Public Health ; 10: 859900, 2022.
Article in English | MEDLINE | ID: covidwho-1776088
4.
Nature ; 604(7904): 21, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1766964
5.
Sci Rep ; 12(1): 4576, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1751755

ABSTRACT

The genetic diversity of the Coronaviruses gives them different biological abilities, such as infect different cells and/or organisms, a wide spectrum of clinical manifestations, their different routes of dispersion, and viral transmission in a specific host. In recent decades, different Coronaviruses have emerged that are highly adapted for humans and causing serious diseases, leaving their host of unknown origin. The viral genome information is particularly important to enable the recognition of patterns linked to their biological characteristics, such as the specificity in the host-parasite relationship. Here, based on a previously computational tool, the Seq2Hosts, we developed a novel approach which uses new variables obtained from the frequency of spike-Coronaviruses codons, the Relative Synonymous Codon Usage (RSCU) to shed new light on the molecular mechanisms involved in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host specificity. By using the RSCU obtained from nucleotide sequences before the SARS-CoV-2 pandemic, we assessed the possibility of know the hosts capable to be infected by these new emerging species, which was first identified infecting humans during 2019 in Wuhan, China. According to the model trained and validated using sequences available before the pandemic, bats are the most likely the natural host to the SARS-CoV-2 infection, as previously suggested in other studies that searched for the host viral origin.


Subject(s)
COVID-19 , Chiroptera , Animals , COVID-19/genetics , DNA Viruses , Genome, Viral , Humans , SARS-CoV-2/genetics
6.
Sci Rep ; 12(1): 4631, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1747175

ABSTRACT

Using next generation sequencing technology, we identified a novel SARS-CoV-2 variant with a truncated ORF8 protein mutation near the end of the viral genome from nucleotides 27,878 to 27,958. This point mutation from C to T at nucleotide 27,956 changed the amino acid codon CAA (glutamine) to a stop codon, TAA, created a novel stop codon in ORF8 gene, resulting in a much smaller ORF8 protein (26 aa) than the wild type ORF8 protein (121 aa). This variant belongs to Pango lineage B.1.1291, which also contains the D614G mutation in the Spike (S) gene. The B.1.1291 lineage is predominantly circulated in the United States of America (97.18%), although it was also found in other counties (Russia, Canada, Latvia, Chile, India, Japan, Colombia, Germany, Greece, Mexico, and UK). A total of 340 closely related variants to this novel variant were identified in GISAID database with collection dates ranged from 3/6/2020 to 10/21/2020. In addition, a search within NCBI Genbank database found that 108,405 of 873,230 (12.4%) SAR-CoV-2 complete genomes contain this truncated ORF8 protein mutation, indicating this mutation may arise spontaneously in other lineages as well. The wide distribution of this mutation indicates that this truncated ORF8 protein mutation may provide the virus a growth advantage and adaptive evolution.


Subject(s)
COVID-19 , Chiroptera , Animals , COVID-19/epidemiology , COVID-19/genetics , High-Throughput Nucleotide Sequencing , Humans , SARS-CoV-2/genetics
7.
Viruses ; 14(3)2022 03 08.
Article in English | MEDLINE | ID: covidwho-1732250

ABSTRACT

The ongoing COVID-19 pandemic has stimulated a search for reservoirs and species potentially involved in back and forth transmission. Studies have postulated bats as one of the key reservoirs of coronaviruses (CoVs), and different CoVs have been detected in bats. So far, CoVs have not been found in bats in Sweden and we therefore tested whether they carry CoVs. In summer 2020, we sampled a total of 77 adult bats comprising 74 Myotis daubentonii, 2 Pipistrellus pygmaeus, and 1 M. mystacinus bats in southern Sweden. Blood, saliva and feces were sampled, processed and subjected to a virus next-generation sequencing target enrichment protocol. An Alphacoronavirus was detected and sequenced from feces of a M. daubentonii adult female bat. Phylogenetic analysis of the almost complete virus genome revealed a close relationship with Finnish and Danish strains. This was the first finding of a CoV in bats in Sweden, and bats may play a role in the transmission cycle of CoVs in Sweden. Focused and targeted surveillance of CoVs in bats is warranted, with consideration of potential conflicts between public health and nature conservation required as many bat species in Europe are threatened and protected.


Subject(s)
Alphacoronavirus , COVID-19 , Chiroptera , Animals , COVID-19/epidemiology , Female , Humans , Pandemics , Phylogeny , Sweden
8.
J Virol ; 94(12)2020 06 01.
Article in English | MEDLINE | ID: covidwho-1723543

ABSTRACT

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that recently emerged in China is thought to have a bat origin, as its closest known relative (BatCoV RaTG13) was described previously in horseshoe bats. We analyzed the selective events that accompanied the divergence of SARS-CoV-2 from BatCoV RaTG13. To this end, we applied a population genetics-phylogenetics approach, which leverages within-population variation and divergence from an outgroup. Results indicated that most sites in the viral open reading frames (ORFs) evolved under conditions of strong to moderate purifying selection. The most highly constrained sequences corresponded to some nonstructural proteins (nsps) and to the M protein. Conversely, nsp1 and accessory ORFs, particularly ORF8, had a nonnegligible proportion of codons evolving under conditions of very weak purifying selection or close to selective neutrality. Overall, limited evidence of positive selection was detected. The 6 bona fide positively selected sites were located in the N protein, in ORF8, and in nsp1. A signal of positive selection was also detected in the receptor-binding motif (RBM) of the spike protein but most likely resulted from a recombination event that involved the BatCoV RaTG13 sequence. In line with previous data, we suggest that the common ancestor of SARS-CoV-2 and BatCoV RaTG13 encoded/encodes an RBM similar to that observed in SARS-CoV-2 itself and in some pangolin viruses. It is presently unknown whether the common ancestor still exists and, if so, which animals it infects. Our data, however, indicate that divergence of SARS-CoV-2 from BatCoV RaTG13 was accompanied by limited episodes of positive selection, suggesting that the common ancestor of the two viruses was poised for human infection.IMPORTANCE Coronaviruses are dangerous zoonotic pathogens; in the last 2 decades, three coronaviruses have crossed the species barrier and caused human epidemics. One of these is the recently emerged SARS-CoV-2. We investigated how, since its divergence from a closely related bat virus, natural selection shaped the genome of SARS-CoV-2. We found that distinct coding regions in the SARS-CoV-2 genome evolved under conditions of different degrees of constraint and are consequently more or less prone to tolerate amino acid substitutions. In practical terms, the level of constraint provides indications about which proteins/protein regions are better suited as possible targets for the development of antivirals or vaccines. We also detected limited signals of positive selection in three viral ORFs. However, we warn that, in the absence of knowledge about the chain of events that determined the human spillover, these signals should not be necessarily interpreted as evidence of an adaptation to our species.


Subject(s)
Betacoronavirus/genetics , Evolution, Molecular , Selection, Genetic , Amino Acid Sequence , Animals , Betacoronavirus/classification , COVID-19 , Chiroptera/virology , Coronavirus Infections/virology , Genome, Viral/genetics , Humans , Models, Molecular , Open Reading Frames/genetics , Pandemics , Phylogeny , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Proteins/chemistry , Viral Proteins/genetics
9.
Front Public Health ; 10: 786060, 2022.
Article in English | MEDLINE | ID: covidwho-1715078

ABSTRACT

Bats are natural reservoirs for both Alpha- and Betacoronaviruses and the hypothesized original hosts of five of seven known zoonotic coronaviruses. To date, the vast majority of bat coronavirus research has been concentrated in Asia, though coronaviruses are globally distributed; indeed, SARS-CoV and SARS-CoV-2-related Betacoronaviruses in the subgenus Sarbecovirus have been identified circulating in Rhinolophid bats in both Africa and Europe, despite the relative dearth of surveillance in these regions. As part of a long-term study examining the dynamics of potentially zoonotic viruses in three species of endemic Madagascar fruit bat (Pteropus rufus, Eidolon dupreanum, Rousettus madagascariensis), we carried out metagenomic Next Generation Sequencing (mNGS) on urine, throat, and fecal samples obtained from wild-caught individuals. We report detection of RNA derived from Betacoronavirus subgenus Nobecovirus in fecal samples from all three species and describe full genome sequences of novel Nobecoviruses in P. rufus and R. madagascariensis. Phylogenetic analysis indicates the existence of five distinct Nobecovirus clades, one of which is defined by the highly divergent ancestral sequence reported here from P. rufus bats. Madagascar Nobecoviruses derived from P. rufus and R. madagascariensis demonstrate, respectively, Asian and African phylogeographic origins, mirroring those of their fruit bat hosts. Bootscan recombination analysis indicates significant selection has taken place in the spike, nucleocapsid, and NS7 accessory protein regions of the genome for viruses derived from both bat hosts. Madagascar offers a unique phylogeographic nexus of bats and viruses with both Asian and African phylogeographic origins, providing opportunities for unprecedented mixing of viral groups and, potentially, recombination. As fruit bats are handled and consumed widely across Madagascar for subsistence, understanding the landscape of potentially zoonotic coronavirus circulation is essential for mitigation of future zoonotic threats.


Subject(s)
COVID-19 , Chiroptera , SARS Virus , Animals , Humans , Phylogeny , SARS-CoV-2
10.
Viruses ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1715771

ABSTRACT

The innate immunological response in mammals involves a diverse and complex network of many proteins. Over the last years, the tripartite motif-containing protein 5 (TRIM5) and 22 (TRIM22) have shown promise as restriction factors of a plethora of viruses that infect primates. Although there have been studies describing the evolution of these proteins in a wide range of mammals, no prior studies of the TRIM6/34/5/22 gene cluster have been performed in the Chiroptera order. Here, we provide a detailed analysis of the evolution of this gene cluster in several bat genomes. Examination of different yangochiroptera and yinpterochiroptera bat species revealed a dynamic history of gene expansion occurring in TRIM5 and TRIM22 genes. Multiple copies of TRIM5 were found in the genomes of several bats, demonstrating a very low degree of conservation in the synteny of this gene among species of the Chiroptera order. Our findings also reveal that TRIM22 is often found duplicated in yangochiroptera bat species, an evolutionary phenomenon not yet observed in any other lineages of mammals. In total, we identified 31 TRIM5 and 19 TRIM22 amino acids to be evolving under positive selection, with most of the residues being placed in the PRYSPRY domain, known to be responsible for binding to the viral capsid during restriction in the primate orthologous TRIM proteins. Altogether, our results help to shed light on the distinctive role of bats in nature as reservoirs of viruses, many of which have become threatening zoonotic diseases through virus spillover in the last decades.


Subject(s)
Chiroptera/genetics , Evolution, Molecular , Gene Duplication , Tripartite Motif Proteins/genetics , Amino Acid Sequence , Animals , Chiroptera/classification , Chiroptera/metabolism , Multigene Family , Phylogeny , Tripartite Motif Proteins/metabolism
11.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1705877

ABSTRACT

Recombination creates mosaic genomes containing regions with mixed ancestry, and the accumulation of such events over time can complicate greatly many aspects of evolutionary inference. Here, we developed a sliding window bootstrap (SWB) method to generate genomic bootstrap (GB) barcodes to highlight the regions supporting phylogenetic relationships. The method was applied to an alignment of 56 sarbecoviruses, including SARS-CoV and SARS-CoV-2, responsible for the SARS epidemic and COVID-19 pandemic, respectively. The SWB analyses were also used to construct a consensus tree showing the most reliable relationships and better interpret hidden phylogenetic signals. Our results revealed that most relationships were supported by just a few genomic regions and confirmed that three divergent lineages could be found in bats from Yunnan: SCoVrC, which groups SARS-CoV related coronaviruses from China; SCoV2rC, which includes SARS-CoV-2 related coronaviruses from Southeast Asia and Yunnan; and YunSar, which contains a few highly divergent viruses recently described in Yunnan. The GB barcodes showed evidence for ancient recombination between SCoV2rC and YunSar genomes, as well as more recent recombination events between SCoVrC and SCoV2rC genomes. The recombination and phylogeographic patterns suggest a strong host-dependent selection of the viral RNA-dependent RNA polymerase. In addition, SARS-CoV-2 appears as a mosaic genome composed of regions sharing recent ancestry with three bat SCoV2rCs from Yunnan (RmYN02, RpYN06, and RaTG13) or related to more ancient ancestors in bats from Yunnan and Southeast Asia. Finally, our results suggest that viral circular RNAs may be key molecules for the mechanism of recombination.


Subject(s)
DNA Barcoding, Taxonomic/methods , Disease Reservoirs/veterinary , Evolution, Molecular , Genomics/methods , Recombination, Genetic , SARS Virus/genetics , SARS-CoV-2/genetics , Animals , China , Chiroptera/virology , Disease Reservoirs/virology , Genome, Viral , Phylogeography
12.
Nature ; 604(7905): 330-336, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1692583

ABSTRACT

The animal reservoir of SARS-CoV-2 is unknown despite reports of SARS-CoV-2-related viruses in Asian Rhinolophus bats1-4, including the closest virus from R. affinis, RaTG13 (refs. 5,6), and pangolins7-9. SARS-CoV-2 has a mosaic genome, to which different progenitors contribute. The spike sequence determines the binding affinity and accessibility of its receptor-binding domain to the cellular angiotensin-converting enzyme 2 (ACE2) receptor and is responsible for host range10-12. SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 (hACE2) pathway have not yet been identified, although they would be key in understanding the origin of the epidemic. Here we show that such viruses circulate in cave bats living in the limestone karstic terrain in northern Laos, in the Indochinese peninsula. We found that the receptor-binding domains of these viruses differ from that of SARS-CoV-2 by only one or two residues at the interface with ACE2, bind more efficiently to the hACE2 protein than that of the SARS-CoV-2 strain isolated in Wuhan from early human cases, and mediate hACE2-dependent entry and replication in human cells, which is inhibited by antibodies that neutralize SARS-CoV-2. None of these bat viruses contains a furin cleavage site in the spike protein. Our findings therefore indicate that bat-borne SARS-CoV-2-like viruses that are potentially infectious for humans circulate in Rhinolophus spp. in the Indochinese peninsula.


Subject(s)
COVID-19 , Chiroptera , Angiotensin-Converting Enzyme 2 , Animals , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
13.
Genome Biol Evol ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: covidwho-1684680

ABSTRACT

The lack of an identifiable intermediate host species for the proximal animal ancestor of SARS-CoV-2, and the large geographical distance between Wuhan and where the closest evolutionary related coronaviruses circulating in horseshoe bats (members of the Sarbecovirus subgenus) have been identified, is fueling speculation on the natural origins of SARS-CoV-2. We performed a comprehensive phylogenetic study on SARS-CoV-2 and all the related bat and pangolin sarbecoviruses sampled so far. Determining the likely recombination events reveals a highly reticulate evolutionary history within this group of coronaviruses. Distribution of the inferred recombination events is nonrandom with evidence that Spike, the main target for humoral immunity, is beside a recombination hotspot likely driving antigenic shift events in the ancestry of bat sarbecoviruses. Coupled with the geographic ranges of their hosts and the sampling locations, across southern China, and into Southeast Asia, we confirm that horseshoe bats, Rhinolophus, are the likely reservoir species for the SARS-CoV-2 progenitor. By tracing the recombinant sequence patterns, we conclude that there has been relatively recent geographic movement and cocirculation of these viruses' ancestors, extending across their bat host ranges in China and Southeast Asia over the last 100 years. We confirm that a direct proximal ancestor to SARS-CoV-2 has not yet been sampled, since the closest known relatives collected in Yunnan shared a common ancestor with SARS-CoV-2 approximately 40 years ago. Our analysis highlights the need for dramatically more wildlife sampling to: 1) pinpoint the exact origins of SARS-CoV-2's animal progenitor, 2) the intermediate species that facilitated transmission from bats to humans (if there is one), and 3) survey the extent of the diversity in the related sarbecoviruses' phylogeny that present high risk for future spillovers.


Subject(s)
Chiroptera/virology , Coronavirus/genetics , Pangolins/virology , Phylogeny , Recombination, Genetic , Animals , Humans , Phylogeography
14.
Cell ; 185(7): 1117-1129.e8, 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1682965

ABSTRACT

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Subject(s)
COVID-19 , Chiroptera , Influenza A Virus, H9N2 Subtype , SARS Virus , Animals , Animals, Wild , China/epidemiology , Disease Reservoirs , Phylogeny , SARS-CoV-2 , Virome , Viverridae
15.
BMC Res Notes ; 14(1): 461, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1629128

ABSTRACT

OBJECTIVE: Coronaviruses (CoVs) are natural commensals of bats. Two subgenera, namely Sarbecoviruses and Merbecoviruses have a high zoonotic potential and have been associated with three separate spillover events in the past 2 decades, making surveillance of bat-CoVs crucial for the prevention of the next epidemic. The study was aimed to elucidate the presence of coronavirus in fresh bat guano sampled from Wind Cave Nature Reserve (WCNR) in Sarawak, Malaysian Borneo. Samples collected were placed into viral transport medium, transported on ice within the collection day, and preserved at - 80 °C. Nucleic acid was extracted using the column method and screened using consensus PCR primers targeting the RNA-dependent RNA polymerase (RdRp) gene. Amplicons were sequenced bidirectionally using the Sanger method. Phylogenetic tree with maximum-likelihood bootstrap and Bayesian posterior probability were constructed. RESULTS: CoV-RNA was detected in ten specimens (47.6%, n = 21). Six alphacoronavirus and four betacoronaviruses were identified. The bat-CoVs can be phylogenetically grouped into four novel clades which are closely related to Decacovirus-1 and Decacovirus-2, Sarbecovirus, and an unclassified CoV. CoVs lineages unique to the Island of Borneo were discovered in Sarawak, Malaysia, with one of them closely related to Sarbecovirus. All of them are distant from currently known human coronaviruses.


Subject(s)
Chiroptera , Coronavirus , Animals , Bayes Theorem , Borneo , Coronavirus/genetics , Humans , Malaysia/epidemiology , Phylogeny
16.
Viruses ; 14(2)2022 01 18.
Article in English | MEDLINE | ID: covidwho-1649476

ABSTRACT

Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates -1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of -1 PRF in SARS-CoV-2 also inhibited -1 PRF in a range of bat CoVs-the most likely source of future zoonoses. Six inhibitors identified in new and previous screens against SARS-CoV-2 were evaluated against the frameshift signals from a panel of representative bat CoVs as well as MERS-CoV. Some drugs had strong activity against subsets of these CoV-derived frameshift signals, while having limited to no effect on -1 PRF caused by frameshift signals from other viruses used as negative controls. Notably, the serine protease inhibitor nafamostat suppressed -1 PRF significantly for multiple CoV-derived frameshift signals. These results suggest it is possible to find small-molecule ligands that inhibit -1 PRF specifically in a broad spectrum of CoVs, establishing frameshift signals as a viable target for developing pan-coronaviral therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/genetics , Frameshift Mutation , Frameshifting, Ribosomal/drug effects , Viral Proteins/antagonists & inhibitors , Animals , Antiviral Agents/therapeutic use , Chiroptera/virology , Coronavirus/classification , Coronavirus Infections/drug therapy , Nucleic Acid Conformation , RNA, Messenger/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Viral Proteins/genetics , Virus Replication/drug effects
17.
Virology ; 569: 1-12, 2022 04.
Article in English | MEDLINE | ID: covidwho-1677204

ABSTRACT

The SARS-CoV-2 (SARS-CoV-2) virus has caused a worldwide pandemic because of the virus's ability to transmit efficiently human-to-human. A key determinant of infection is the attachment of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Because of the presumed zoonotic origin of SARS-CoV-2, there is no practical way to assess the susceptibility of every species to SARS-CoV-2 by direct challenge studies. In an effort to have a better predictive model of animal host susceptibility to SARS-CoV-2, we expressed the ACE2 and/or transmembrane serine protease 2 (TMPRSS2) genes from humans and other animal species in the avian fibroblast cell line, DF1, that is not permissive to infection. We demonstrated that expression of both human ACE2 and TMPRSS2 genes is necessary to support SARS-CoV-2 infection and replication in DF1 and a non-permissive sub-lineage of MDCK cells. Titers of SARS-CoV-2 in these cell lines were comparable to those observed in control Vero cells. To further test the model, we developed seven additional transgenic cell lines expressing the ACE2 and TMPRSS2 derived from Felis catus (cat), Equus caballus (horse), Sus domesticus (pig), Capra hircus (goat), Mesocricetus auratus (Golden hamster), Myotis lucifugus (Little Brown bat) and Hipposideros armiger (Great Roundleaf bat) in DF1 cells. Results demonstrate permissive replication of SARS-CoV-2 in cat, Golden hamster, and goat species, but not pig or horse, which correlated with the results of reported challenge studies. Cells expressing genes from either bat species tested demonstrated temporal replication of SARS-CoV-2 that peaked early and was not sustained. The development of this cell culture model allows for more efficient testing of the potential susceptibility of many different animal species for SARS-CoV-2 and emerging variant viruses.


Subject(s)
COVID-19 , Chiroptera , Angiotensin-Converting Enzyme 2/genetics , Animals , Cats , Chiroptera/metabolism , Chlorocebus aethiops , Horses , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Swine , Vero Cells
18.
Arch Virol ; 167(3): 979-982, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1676342

ABSTRACT

Here, we report a novel bat adenovirus strain isolated from apparently healthy bats of the species Rhinolophus cornutus in Japan. The genome of the isolate was 36,506 bp in length and encoded at least 33 proteins. Phylogenetic analysis of the DNA polymerase amino acid sequence, which provides one demarcation criterion for adenoviral species, indicated that the isolate belongs to the species Bat mastadenovirus C in the genus Mastadenovirus. Most of the encoded proteins shared high sequence similarity with those of known bat adenovirus C strains detected in different species of Rhinolophus, whereas the fiber protein and some E3- and E4-related proteins shared moderate similarity, and only the large E3 protein, which contains several host immune-suppression-related motifs, showed considerably lower similarity.


Subject(s)
Chiroptera , Mastadenovirus , Animals , Genome, Viral , Japan , Mastadenovirus/genetics , Phylogeny
19.
Viruses ; 14(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1674829

ABSTRACT

Coronaviruses (CoV) are divided into the genera α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and ß-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the ß-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and ß-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and ß-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus.


Subject(s)
Alphacoronavirus/genetics , Alphacoronavirus/isolation & purification , Chiroptera/virology , Coronavirus Infections/veterinary , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Genome, Viral , Alphacoronavirus/classification , Animals , Caves/virology , Coronavirus Infections/virology , Evolution, Molecular , Female , Male , Phylogeny , Sequence Analysis, DNA , Sri Lanka
20.
J Leukoc Biol ; 111(2): 497-508, 2022 02.
Article in English | MEDLINE | ID: covidwho-1669515

ABSTRACT

Coronaviruses (CoVs) are RNA viruses that cause human respiratory infections. Zoonotic transmission of the SARS-CoV-2 virus caused the recent COVID-19 pandemic, which led to over 2 million deaths worldwide. Elevated inflammatory responses and cytotoxicity in the lungs are associated with COVID-19 severity in SARS-CoV-2-infected individuals. Bats, which host pathogenic CoVs, operate dampened inflammatory responses and show tolerance to these viruses with mild clinical symptoms. Delineating the mechanisms governing these host-specific inflammatory responses is essential to understand host-virus interactions determining the outcome of pathogenic CoV infections. Here, we describe the essential role of inflammasome activation in determining COVID-19 severity in humans and innate immune tolerance in bats that host several pathogenic CoVs. We further discuss mechanisms leading to inflammasome activation in human SARS-CoV-2 infection and how bats are molecularly adapted to suppress these inflammasome responses. We also report an analysis of functionally important residues of inflammasome components that provide new clues of bat strategies to suppress inflammasome signaling and innate immune responses. As spillover of bat viruses may cause the emergence of new human disease outbreaks, the inflammasome regulation in bats and humans likely provides specific strategies to combat the pathogenic CoV infections.


Subject(s)
COVID-19/pathology , Immune Tolerance , Immunity, Innate , Inflammasomes/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Chiroptera , Humans , Inflammasomes/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL