Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 546
Filter
1.
Cell ; 186(10): 2144-2159.e22, 2023 May 11.
Article in English | MEDLINE | ID: covidwho-2312256

ABSTRACT

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Subject(s)
Apoptosis Regulatory Proteins , Chiroptera , Inflammasomes , Ribonucleoproteins , Virus Diseases , Animals , Humans , Mice , Apoptosis Regulatory Proteins/metabolism , Chiroptera/immunology , COVID-19 , Inflammasomes/immunology , Ribonucleoproteins/metabolism , SARS-CoV-2 , Virus Diseases/immunology , Virus Physiological Phenomena
2.
Emerg Infect Dis ; 28(12): 2500-2503, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2310054

ABSTRACT

Surveillance of bat betacoronaviruses is crucial for understanding their spillover potential. We isolated bat sarbecoviruses from Rhinolophus cornutus bats in multiple locations in Japan. These viruses grew efficiently in cells expressing R. cornutus angiotensin converting enzyme-2, but not in cells expressing human angiotensin converting enzyme-2, suggesting a narrow host range.


Subject(s)
Chiroptera , Animals , Humans , Peptidyl-Dipeptidase A , Japan/epidemiology , Betacoronavirus , Host Specificity
3.
Viruses ; 15(4)2023 03 29.
Article in English | MEDLINE | ID: covidwho-2305906

ABSTRACT

Bats have received increasing attention because of some unique biological features they possess. TRIM is a large family of proteins that participate in diverse cellular functions, such as antiviral immunity, DNA damage repair, tumor suppression, and aging. These functional areas appear to be highly consistent with the special characteristics of bats, such as tolerance to viruses and DNA damage generated in flight, low cancer incidence, and longevity. However, there is still a lack of systematic study of the TRIM family in bats. Here, we explored the TRIM family of bats using the genomes of 16 representative species. The results showed that the bat TRIM family contains 70 members, with 24 under positive selection and 7 duplicated. Additional transcriptomic analysis revealed the tissue-specific expressions of TRIM9, 46, 54, 55, 63, and 72. Additionally, following interferon or viral stimulation, TRIM orthologs associated with antiviral immunity reported in humans were also upregulated in bat cells. The present study systematically analyzed the composition, evolution, and expression of bat TRIM genes. It may provide a theoretical basis for studies of bat TRIM in the fields of antiviral immunity, longevity, and tolerance to DNA damage.


Subject(s)
Chiroptera , Viruses , Animals , Humans , Tripartite Motif Proteins/genetics , Viruses/genetics , Antiviral Agents/metabolism , Genome , Phylogeny
4.
Viruses ; 15(4)2023 04 21.
Article in English | MEDLINE | ID: covidwho-2301256

ABSTRACT

Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species.


Subject(s)
Chiroptera , Coinfection , Virus Diseases , Viruses , Animals , Satellite Viruses/genetics , Metagenomics , Phylogeny , Viruses/genetics , Retroviridae/genetics , Hepatitis Viruses/genetics , Insecta/genetics , High-Throughput Nucleotide Sequencing
5.
Nat Commun ; 14(1): 2488, 2023 04 29.
Article in English | MEDLINE | ID: covidwho-2293756

ABSTRACT

Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.


Subject(s)
COVID-19 , Chiroptera , Viruses , Animals , Animals, Domestic/virology , Animals, Wild/virology , Animals, Zoo/virology , Chiroptera/virology , Mammals/virology , Pangolins/virology , Phylogeny , Zoonoses/virology
6.
Braz J Biol ; 83: e247237, 2021.
Article in English | MEDLINE | ID: covidwho-2266085

ABSTRACT

Novel coronavirus (nCoV) namely "SARS-CoV-2" is being found responsible for current PANDEMIC commenced from Wuhan (China) since December 2019 and has been described with epidemiological linkage to China in about 221 countries and territories until now. In this study we have characterized the genetic lineage of SARS-CoV-2 and report the recombination within the genus and subgenus of coronaviruses. Phylogenetic relationship of thirty nine coronaviruses belonging to its four genera and five subgenera was analyzed by using the Neighbor-joining method using MEGA 6.0. Phylogenetic trees of full length genome, various proteins (spike, envelope, membrane and nucleocapsid) nucleotide sequences were constructed separately. Putative recombination was probed via RDP4. Our analysis describes that the "SARS-CoV-2" although shows great similarity to Bat-SARS-CoVs sequences through whole genome (giving sequence similarity 89%), exhibits conflicting grouping with the Bat-SARS-like coronavirus sequences (MG772933 and MG772934). Furthermore, seven recombination events were observed in SARS-CoV-2 (NC_045512) by RDP4. But not a single recombination event fulfills the high level of certainty. Recombination mostly housed in spike protein genes than rest of the genome indicating breakpoint cluster arises beyond the 95% and 99% breakpoint density intervals. Genetic similarity levels observed among "SARS-CoV-2" and Bat-SARS-CoVs advocated that the latter did not exhibit the specific variant that cause outbreak in humans, proposing a suggestion that "SARS-CoV-2" has originated possibly from bats. These genomic features and their probable association with virus characteristics along with virulence in humans require further consideration.


Subject(s)
COVID-19 , Chiroptera , Animals , Computer Simulation , Genome, Viral/genetics , Humans , Phylogeny , SARS-CoV-2
7.
Virol J ; 20(1): 39, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2264179

ABSTRACT

BACKGROUND: Viruses use various host factors for their growth, and efficient growth requires efficient use of these factors. Our previous study revealed that the occurrence frequency of oligonucleotides in the influenza virus genome is distinctly different among derived hosts, and the frequency tends to adapt to the host cells in which they grow. We aimed to study the adaptation mechanisms of a zoonotic virus to host cells. METHODS: Herein, we compared the frequency of oligonucleotides in the genome of alpha- and betacoronavirus with those in the genomes of humans and bats, which are typical hosts of the viruses. RESULTS: By comparing the oligonucleotide frequency in coronaviruses and their host genomes, we found a statistically tested positive correlation between the frequency of coronaviruses and that of the exon regions of the host from which the virus is derived. To examine the characteristics of early-stage changes in the viral genome, which are assumed to accompany the host change from non-humans to humans, we compared the oligonucleotide frequency between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the beginning of the pandemic and the prevalent variants thereafter, and found changes towards the frequency of the host exon regions. CONCLUSIONS: In alpha- and betacoronaviruses, the genome oligonucleotide frequency is thought to change in response to the cellular environment in which the virus is replicating, and actually the frequency has approached the frequency in exon regions in the host.


Subject(s)
COVID-19 , Chiroptera , Animals , SARS-CoV-2 , Exons , Genome, Viral , Oligonucleotides
8.
Epidemiol Infect ; 151: e47, 2023 02 08.
Article in English | MEDLINE | ID: covidwho-2262983

ABSTRACT

Infection dynamics in vertebrates are driven by biological and ecological processes. For bats, population structure and reproductive cycles have major effects on RNA virus transmission. On Reunion Island, previous studies have shown that parturition of pregnant females and aggregation of juvenile Reunion free-tailed bats (Mormopterus francoismoutoui) are associated with major increase in the prevalence of bats shedding RNA viruses. The synchronicity of such shedding pulses, however, is yet to be assessed between viruses but also maternity colonies. Based on 3422 fresh faeces collected every 2-5 weeks during four consecutive birthing seasons, we report the prevalence of bats shedding astroviruses (AstVs), coronaviruses (CoVs) and paramyxoviruses (PMVs) in two maternity colonies on Reunion Island. We found that the proportion of bats shedding viruses is highly influenced by sampling collection periods, and therefore by the evolution of the population age structure. We highlight that virus shedding patterns are consistent among years and colonies for CoVs and to a lesser extent for PMVs, but not for AstVs. We also report that 1% of bats harbour co-infections, with two but not three of the viruses, and most co-infections were due to CoVs and PMVs.


Subject(s)
Chiroptera , Coinfection , Coronavirus Infections , Coronavirus , Humans , Pregnancy , Animals , Female , Virus Shedding , Phylogeny , Coronavirus Infections/epidemiology
9.
Rev Clin Esp (Barc) ; 223(4): 240-243, 2023 04.
Article in English | MEDLINE | ID: covidwho-2288311

ABSTRACT

More than three years have passed since the first case of a new coronavirus infection (SARS-CoV-2) in the city of Wuhan (Hubei, China). The Wuhan Institute of Virology was founded in that city in 1956 and the country's first biosafety level 4 laboratory opened within that center in 2015. The coincidence that the first cases of infection emerged in the city where the virology institute's headquarters is located, the failure to 100% identify the virus' RNA in any of the coronaviruses isolated in bats, and the lack of evidence on a possible intermediate animal host in the contagion's transmission make it so that at present, there are doubts about the real origin of SARS-CoV-2. This article will review two theories: SARS-CoV-2 as a virus of zoonotic origin or as a leak from the high-level biosafety laboratory in Wuhan.


Subject(s)
COVID-19 , Chiroptera , Animals , China/epidemiology , RNA, Viral , SARS-CoV-2
10.
J Med Virol ; 95(3): e28672, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2288079

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered alphacoronavirus with zoonotic potential that causes diarrhea and vomiting mainly in piglets. Having emerged suddenly in 2017, the prevailing opinion is that the virus originated from HKU2, an alphacoronavirus whose primary host is bats, and at some unknown point achieved interspecies transmission via some intermediate. Here, we further explore the evolutionary history and possible cross-species transmission event for SADS-CoV. Coevolutionary analysis demonstrated that HKU2 may have achieved host switch via SADS-related (SADSr)-CoV, which was isolated from the genus Rhinolophus in 2017. SADS-CoV, HKU2, and SADSr-CoV share similar codon usage patterns and showed a lower tendency to use CpG, which may reflect a method of immune escape. The analyses of virus-host coevolution and recombination support SADSr-CoV is the direct source of SADS-CoV that may have undergone recombination events during its formation. Structure-based spike glycoprotein variance analysis revealed a more nuanced evolutionary pathway to receptor recognition for host switch. We did not find a possible positive selection site, and the dN/dS of the S gene was only 0.29, which indicates that the current SADS-CoV is slowly evolving. These results provide new insights that may help predict future cross-species transmission, and possibly surveil future zoonotic outbreaks and associated public health emergencies.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Swine Diseases , Animals , Swine , Alphacoronavirus/genetics , Coronavirus Infections/epidemiology , Diarrhea/veterinary , Swine Diseases/epidemiology
11.
Sci Rep ; 13(1): 5571, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2287527

ABSTRACT

A consensus species tree is reconstructed from 11 gene trees for human, bat, and pangolin beta coronaviruses from samples taken early in the pandemic (prior to April 1, 2020). Using coalescent theory, the shallow (short branches relative to the hosts) consensus species tree provides evidence of recent gene flow events between bat and pangolin beta coronaviruses predating the zoonotic transfer to humans. The consensus species tree was also used to reconstruct the ancestral sequence of human SARS-CoV-2, which was 2 nucleotides different from the Wuhan sequence. The time to most recent common ancestor was estimated to be Dec 8, 2019 with a bat origin. Some human, bat, and pangolin coronavirus lineages found in China are phylogenetically distinct, a rare example of a class II phylogeography pattern (Avise et al. in Ann Rev Eco Syst 18:489-422, 1987). The consensus species tree is a product of evolutionary factors, providing evidence of repeated zoonotic transfers between bat and pangolin as a reservoir for future zoonotic transfers to humans.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , SARS-CoV-2/genetics , Pangolins , Pandemics , Phylogeny
12.
J Virol ; 97(3): e0009923, 2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2272661

ABSTRACT

The emergence of several bat coronavirus-related disease outbreaks in human and domestic animals has fueled surveillance of coronaviruses in bats worldwide. However, little is known about how these viruses interact with their natural hosts. We demonstrate a Betacoronavirus (subgenus Merbecovirus), PN-ßCoV, in the intestine of its natural host, Nathusius's Pipistrelle Bat (Pipistrellus nathusii), by combining molecular and microscopy techniques. Eighty-eight P. nathusii bat carcasses were tested for PN-ßCoV RNA by RT-qPCR, of which 25 bats (28%) tested positive. PN-ßCoV RNA was more often detected in samples of the intestinal tract than in other sample types. In addition, viral RNA loads were higher in intestinal samples compared to other sample types, both on average and in each individual bat. In one bat, we demonstrated Merbecovirus antigen and PN-ßCoV RNA expression in intestinal epithelium and the underlying connective tissue using immunohistochemistry and in situ hybridization, respectively. These results indicate that PN-ßCoV has a tropism for the intestinal epithelium of its natural host, Nathusius's Pipistrelle Bat, and imply that the fecal-oral route is a possible route of transmission. IMPORTANCE Virtually all mammal species circulate coronaviruses. Most of these viruses will infect one host species; however, coronaviruses are known to include species that can infect multiple hosts, for example the well-known virus that caused a pandemic, SARS-CoV-2. Chiroptera (bats) include over 1,400 different species, which are expected to harbor a great variety of coronaviruses. However, we know very little about how any of these coronaviruses interact with their bat hosts; for example, we do not know their modes of transmissions, or which cells they infect. Thus, we have a limited understanding of coronavirus infections in this important host group. The significance of our study is that we learned that a bat coronavirus that occurs in a common bat species in Europe has a tropism for the intestines. This implies the fecal-oral route is a likely transmission route.


Subject(s)
COVID-19 , Chiroptera , Coronaviridae , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Phylogeny , SARS-CoV-2 , Intestines , Tropism , RNA
14.
Sci Adv ; 9(13): eadd0688, 2023 03 31.
Article in English | MEDLINE | ID: covidwho-2286334

ABSTRACT

Human land modification is a known driver of animal-to-human transmission of infectious agents (zoonotic spillover). Infection prevalence in the reservoir is a key predictor of spillover, but landscape-level associations between the intensity of land modification and infection rates in wildlife remain largely untested. Bat-borne coronaviruses have caused three major disease outbreaks in humans: severe acute respiratory syndrome (SARS), Middle East respiratory syndrome, and coronavirus disease 2019 (COVID-19). We statistically link high-resolution land modification data with bat coronavirus surveillance records and show that coronavirus prevalence significantly increases with the intensity of human impact across all climates and levels of background biodiversity. The most significant contributors to the overall human impact are agriculture, deforestation, and mining. Regions of high predicted bat coronavirus prevalence coincide with global disease hotspots, suggesting that infection prevalence in wildlife may be an important factor underlying links between human land modification and zoonotic disease emergence.


Subject(s)
COVID-19 , Chiroptera , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , COVID-19/epidemiology , Prevalence , Animals, Wild , Phylogeny
15.
Int J Infect Dis ; 131: 57-64, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2258519

ABSTRACT

BACKGROUND: Sarbecoviruses are a subgenus of Coronaviridae that mostly infect bats with known potential to infect humans (SARS-CoV and SARS-CoV-2). Populations in Southeast Asia, where these viruses are most likely to emerge, have been undersurveyed to date. METHODS: We surveyed communities engaged in extractive industries and bat guano harvesting from rural areas in Myanmar. Participants were screened for exposure to sarbecoviruses, and their interactions with wildlife were evaluated to determine the factors associated with exposure to sarbecoviruses. RESULTS: Of 693 people screened between July 2017 and February 2020, 12.1% were seropositive for sarbecoviruses. Individuals were significantly more likely to have been exposed to sarbecoviruses if their main livelihood involved working in extractive industries (logging, hunting, or harvesting of forest products; odds ratio [OR] = 2.71, P = 0.019) or had been hunting/slaughtering bats (OR = 6.09, P = 0.020). Exposure to a range of bat and pangolin sarbecoviruses was identified. CONCLUSION: Exposure to diverse sarbecoviruses among high-risk human communities provides epidemiologic and immunologic evidence that zoonotic spillover is occurring. These findings inform risk mitigation efforts needed to decrease disease transmission at the bat-human interface, as well as future surveillance efforts warranted to monitor isolated populations for viruses with pandemic potential.


Subject(s)
COVID-19 , Chiroptera , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Animals, Wild , SARS-CoV-2 , COVID-19/epidemiology , Zoonoses , Phylogeny
16.
Infect Dis Poverty ; 12(1): 10, 2023 Feb 13.
Article in English | MEDLINE | ID: covidwho-2258389

ABSTRACT

BACKGROUND: The term virus 'spillover' embodies a highly complex phenomenon and is often used to refer to viral transmission from a primary reservoir host to a new, naïve yet susceptible and permissive host species. Spillover transmission can result in a virus becoming pathogenic, causing disease and death to the new host if successful infection and transmission takes place. MAIN TEXT: The scientific literature across diverse disciplines has used the terms virus spillover, spillover transmission, cross-species transmission, and host shift almost indistinctly to imply the complex process of establishment of a virus from an original host (source/donor) to a naïve host (recipient), which have close or distant taxonomic or evolutionary ties. Spillover transmission may result in unsuccessful onward transmission, if the virus dies off before propagation. Alternatively, successful viral establishment in the new host can occur if subsequent secondary transmission among individuals of the same novel species and among other sympatric susceptible species occurred. As such, virus spillover transmission is a common yet highly complex phenomenon that encompasses multiple subtle stages that can be deconstructed to be studied separately to better understand the drivers of disease emergence. Rabies virus (RABV) is a well-documented viral pathogen which still inflicts heavy impact on humans, companion animals, wildlife, and livestock throughout Latin America due substantial spatial temporal and ecological-natural and expansional-overlap with several virus reservoir hosts. Thereby, the rabies disease system represents a robust avenue through which the drivers and uncertainties surrounding spillover transmission can be unravel at its different subtle stages to better understand how they may be affected by coarse, medium, and fine scale variables. CONCLUSIONS: The continued study of viral spillover transmission necessitates the elucidation of its complexities to better assess the cross-scale impacts of ecological forces linked to the propensity of spillover success. Improving capacities to reconstruct and predict spillover transmission would prevent public health impacts on those most at risk populations across the globe.


Subject(s)
Chiroptera , Rabies virus , Rabies , Animals , Humans , Rabies/epidemiology , Rabies/veterinary , Rabies/prevention & control , Livestock , Phylogeny
17.
J Virol ; 97(3): e0019023, 2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2257677

ABSTRACT

Bats are reservoirs for diverse coronaviruses, including swine acute diarrhea syndrome coronavirus (SADS-CoV). SADS-CoV has been reported to have broad cell tropism and inherent potential to cross host species barriers for dissemination. We rescued synthetic wild-type SADS-CoV using one-step assembly of a viral cDNA clone by homologous recombination in yeast. Furthermore, we characterized SADS-CoV replication in vitro and in neonatal mice. We found that SADS-CoV caused severe watery diarrhea, weight loss, and a 100% fatality rate in 7- and 14-day-old mice after intracerebral infection. We also detected SADS-CoV-specific N protein in the brain, lungs, spleen, and intestines of infected mice. Furthermore, SADS-CoV infection triggers excessive cytokine expression that encompasses a broad array of proinflammatory mediators, including interleukin 1ß (IL-1ß), IL-6, IL-8, tumor necrosis factor alpha (TNF-α), C-X-C motif chemokine ligand 10 (CXCL10), interferon beta (IFN-ß), IFN-γ, and IFN-λ3. This study highlights the importance of identifying neonatal mice as a model for developing vaccines or antiviral drugs against SADS-CoV infection. IMPORTANCE SADS-CoV is the documented spillover of a bat coronavirus that causes severe disease in pigs. Pigs are in frequent contact with both humans and other animals and theoretically possess a greater chance, compared to many other species, of promoting cross-species viral transmission. SADS-CoV has been reported to have broad cell tropism and inherent potential to cross host species barriers for dissemination. Animal models are an essential feature of the vaccine design toolkit. Compared with neonatal piglets, the mouse is small, making it an economical choice for animal models for SADS-CoV vaccine design. This study showed the pathology of neonatal mice infected with SADS-CoV, which should be very useful for vaccine and antiviral studies.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Coronavirus , Swine Diseases , Humans , Mice , Animals , Swine , Animals, Newborn , Alphacoronavirus/genetics , Diarrhea
18.
J Virol ; 97(4): e0021023, 2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2254654

ABSTRACT

Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus , Chlorocebus aethiops , Animals , Swine , Humans , rab GTP-Binding Proteins/metabolism , Caveolae/metabolism , Vero Cells , Clathrin/metabolism , Endocytosis , Alphacoronavirus/metabolism , Coronavirus/metabolism , Virus Internalization , Endosomes/metabolism
19.
J Virol ; 97(4): e0036523, 2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2249386

ABSTRACT

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Laboratories/standards , Research/standards , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Scientific Experimental Error , Viral Zoonoses/transmission , Viral Zoonoses/virology , Chiroptera/virology , Animals, Wild/virology
20.
ISME J ; 17(4): 549-560, 2023 04.
Article in English | MEDLINE | ID: covidwho-2268756

ABSTRACT

Exploring wild reservoirs of pathogenic viruses is critical for their long-term control and for predicting future pandemic scenarios. Here, a comparative in vitro infection analysis was first performed on 83 cell cultures derived from 55 mammalian species using pseudotyped viruses bearing S proteins from SARS-CoV-2, SARS-CoV, and MERS-CoV. Cell cultures from Thomas's horseshoe bats, king horseshoe bats, green monkeys, and ferrets were found to be highly susceptible to SARS-CoV-2, SARS-CoV, and MERS-CoV pseudotyped viruses. Moreover, five variants (del69-70, D80Y, S98F, T572I, and Q675H), that beside spike receptor-binding domain can significantly alter the host tropism of SARS-CoV-2. An examination of phylogenetic signals of transduction rates revealed that closely related taxa generally have similar susceptibility to MERS-CoV but not to SARS-CoV and SARS-CoV-2 pseudotyped viruses. Additionally, we discovered that the expression of 95 genes, e.g., PZDK1 and APOBEC3, were commonly associated with the transduction rates of SARS-CoV, MERS-CoV, and SARS-CoV-2 pseudotyped viruses. This study provides basic documentation of the susceptibility, variants, and molecules that underlie the cross-species transmission of these coronaviruses.


Subject(s)
COVID-19 , Chiroptera , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , Animals , Chlorocebus aethiops , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/genetics , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics , Ferrets
SELECTION OF CITATIONS
SEARCH DETAIL