Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Biol Macromol ; 198: 101-110, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1587672

ABSTRACT

Respiratory infected by COVID-19 represents a major global health problem at moment even after recovery from virus corona. Since, the lung lesions for infected patients are still sufferings from acute respiratory distress syndrome including alveolar septal edema, pneumonia, hyperplasia, and hyaline membranes Therefore, there is an urgent need to identify additional candidates having ability to overcome inflammatory process and can enhance efficacy in the treatment of COVID-19. The polypenolic extracts were integrated into moeties of bovine serum albumin (BSA) and then were coated by chitosan as a mucoadhesion polymer. The results of interleukin-6, and c-reactive protein showed significant reduction in group treated by Encap. SIL + CUR (64 ± 0.8 Pg/µL & 6 ± 0.5 µg/µL) compared to group treated by Cham. + CUR (102 ± 0.8 Pg/µL & 7 ± 0.5 µg/µL) respectively and free capsules (with no any drug inside) (148 ± 0.6 Pg/µL & 10 ± 0.6 µg/µL) respectively. Histopathology profile was improved completely. Additionally, encapsulating silymarin showed anti-viral activity in vitro COVID-19 experiment. It can be summarized that muco-inhalable delivery system (MIDS) loaded by silymarin can be used to overcome inflammation induced by oleic acid and to overcome COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Curcumin/pharmacology , Lung Injury/drug therapy , Nanoparticles/chemistry , Silymarin/pharmacology , Administration, Inhalation , Animals , Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , C-Reactive Protein/metabolism , Chamomile/chemistry , Chitosan/chemistry , Chlorocebus aethiops , Curcumin/administration & dosage , Drug Delivery Systems/methods , Flavonoids/analysis , Flavonoids/chemistry , Interleukin-6/metabolism , Lung Injury/blood , Lung Injury/chemically induced , Lung Injury/pathology , Male , Mice , Milk Thistle/chemistry , Nanoparticles/administration & dosage , Oleic Acid/toxicity , Silymarin/administration & dosage , Vero Cells , Viral Plaque Assay
2.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1580689

ABSTRACT

Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple/drug effects , Glucans/biosynthesis , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Antifungal Agents , COVID-19 , Chitin/pharmacology , Chitosan/chemistry , Drug Resistance, Multiple/physiology , Food Packaging , Glucans/metabolism , Glucans/pharmacology , Humans , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nisin/pharmacology , Polymers/chemistry , SARS-CoV-2
3.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1572494

ABSTRACT

Low density polyethylene (LDPE) films covered with active coatings containing mixtures of rosemary, raspberry, and pomegranate CO2 extracts were found to be active against selected bacterial strains that may extend the shelf life of food products. The coatings also offer antiviral activity, due to their influence on the activity of Φ6 bacteriophage, selected as a surrogate for SARS-CoV-2 particles. The mixture of these extracts could be incorporated into a polymer matrix to obtain a foil with antibacterial and antiviral properties. The initial goal of this work was to obtain active LDPE films containing a mixture of CO2 extracts of the aforementioned plants, incorporated into an LDPE matrix via an extrusion process. The second aim of this study was to demonstrate the antibacterial properties of the active films against Gram-positive and Gram-negative bacteria, and to determine the antiviral effect of the modified material on Φ6 bacteriophage. In addition, an analysis was made on the influence of the active mixture on the polymer physicochemical features, e.g., mechanical and thermal properties, as well as its color and transparency. The results of this research indicated that the LDPE film containing a mixture of raspberry, rosemary, and pomegranate CO2 extracts incorporated into an LDPE matrix inhibited the growth of Staphylococcus aureus. This film was also found to be active against Bacillus subtilis. This modified film did not inhibit the growth of Escherichia coli and Pseudomonas syringae cells; however, their number decreased significantly. The LDPE active film was also found to be active against Φ6 particles, meaning that the film had antiviral properties. The incorporation of the mixture of CO2 extracts into the polymer matrix affected its mechanical properties. It was observed that parameters describing mechanical properties decreased, although did not affect the transition of LDPE significantly. Additionally, the modified film exhibited barrier properties towards UV radiation. Modified PE/CO2 extracts films could be applied as a functional food packaging material with antibacterial and antiviral properties.


Subject(s)
Food Packaging/methods , Plant Extracts/pharmacology , Polyethylene/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bacteriophage phi 6/drug effects , Biofilms , Chitosan/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Plant Extracts/chemistry , Polyethylene/pharmacology , Polymers/chemistry , Pomegranate , Rosmarinus/chemistry , Rubus , SARS-CoV-2/drug effects
4.
Carbohydr Polym ; 273: 118605, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1370153

ABSTRACT

Advanced biomaterials provide an interesting and versatile platform to implement new and more effective strategies to fight bacterial infections. Chitosan is one of these biopolymers and possesses relevant features for biomedical applications. Here we synthesized nanoparticles of chitosan derivatized with diethylaminoethyl groups (ChiDENPs) to emulate the choline residues in the pneumococcal cell wall and act as ligands for choline-binding proteins (CBPs). Firstly, we assessed the ability of diethylaminoethyl (DEAE) to sequester the CBPs present in the bacterial surface, thus promoting chain formation. Secondly, the CBP-binding ability of ChiDENPs was purposed to encapsulate a bio-active molecule, the antimicrobial enzyme Cpl-711 (ChiDENPs-711), with improved stability over non-derivatized chitosan. The enzyme-loaded system released more than 90% of the active enzybiotic in ≈ 2 h, above the usual in vivo half-life of this kind of enzymes. Therefore, ChiDENPs provide a promising platform for the controlled release of CBP-enzybiotics in biological contexts.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biomimetic Materials/chemistry , Chitosan/analogs & derivatives , Drug Carriers/chemistry , Endopeptidases/pharmacology , Nanoparticles/chemistry , A549 Cells , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Biomimetic Materials/metabolism , Chitosan/chemistry , Chitosan/metabolism , Drug Carriers/metabolism , Drug Liberation , Endopeptidases/chemistry , Humans , Nanoparticles/metabolism , Streptococcus pneumoniae/drug effects
5.
J Aerosol Med Pulm Drug Deliv ; 34(5): 293-302, 2021 09.
Article in English | MEDLINE | ID: covidwho-1440594

ABSTRACT

Background: The precaution of airborne transmission of viruses, such as influenza, SARS, MERS, and COVID-19, is essential for reducing infection. In this study, we applied a zero-valent nanosilver/titania-chitosan (nano-Ag0/TiO2-CS) filter bed, whose broad-spectrum antimicrobial efficacy has been proven previously, for the removal of viral aerosols to minimize the risk of airborne transmission. Methods: The photochemical deposition method was used to synthesize the nano-Ag0/TiO2-CS antiviral material. The surface morphology, elemental composition, and microstructure of the nano-Ag0/TiO2-CS were analyzed by a scanning electron microscopy/energy dispersive X-ray spectroscopy and a transmission electron microscopy, respectively. The MS2 bacteriophages were used as surrogate viral aerosols. The antiviral efficacy of nano-Ag0/TiO2-CS was evaluated by the MS2 plaque reduction assay (PRA) and filtration experiments. In the filtration experiments, the MS2 aerosols passed through the nano-Ag0/TiO2-CS filter, and the MS2 aerosol removal efficiency was evaluated by an optical particle counter and culture method. Results and Conclusions: In the MS2 PRA, 3 g of nano-Ag0/TiO2-CS inactivated 97% of MS2 bacteriophages in 20 mL liquid culture (2 ± 0.5 × 1016 PFU/mL) within 2 hours. The removal efficiency of nano-Ag0/TiO2-CS filter (thickness: 6 cm) for MS2 aerosols reached up to 93%. Over 95% of MS2 bacteriophages on the surface of the nano-Ag0/TiO2-CS filter were inactivated within 20 minutes. The Wells-Riley model predicted that when the nano-Ag0/TiO2-CS filter was used in the ventilation system, airborne infection probability would reduce from 99% to 34.6%. The nano-Ag0/TiO2-CS filter could remain at 50% of its original antiviral efficiency after continuous operation for 1 week, indicating its feasibility for the control of the airborne transmission.


Subject(s)
Air Filters , Air Microbiology , Chitosan/chemistry , Filtration/instrumentation , Inhalation Exposure/prevention & control , Levivirus/isolation & purification , Metal Nanoparticles , Silver/chemistry , Titanium/chemistry , Aerosols , COVID-19/prevention & control , COVID-19/transmission , Equipment Design , Humans , Inhalation Exposure/adverse effects , Levivirus/pathogenicity , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
7.
Int J Biol Macromol ; 187: 492-512, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1330854

ABSTRACT

With increasing global cases and mortality rates due to COVID-19 infection, finding effective therapeutic interventions has become a top priority. Marine resources are not explored much and to be taken into consideration for exploring antiviral potential. Chitosan (carbohydrate polymer) is one such bioactive glycan found ubiquitously in marine organisms. The presence of reactive amine/hydroxyl groups, with low toxicity/allergenicity, compels us to explore it against SARS-CoV-2. We have screened a library of chitosan derivatives by site-specific docking at not only spike protein Receptor Binding Domain (RBD) of wild type SARS-CoV-2 but also on RBD of B.1.1.7 (UK) and P.1 (Brazil) SARS-CoV-2 variants. The obtained result was very interesting and ranks N-benzyl-O-acetyl-chitosan, Imino-chitosan, Sulfated-chitosan oligosaccharides derivatives as a potent antiviral candidate due to its high binding affinity of the ligands (-6.0 to -6.6 kcal/mol) with SARS-CoV-2 spike protein RBD and they critically interacting with amino acid residues Tyr 449, Asn 501, Tyr 501, Gln 493, Gln 498 and some other site-specific residues associated with higher transmissibility and severe infection. Further ADMET analysis was done and found significant for exploration of the future therapeutic potential of these three ligands. The obtained results are highly encouraging in support for consideration and exploration in further clinical studies of these chitosan derivatives as anti-SARS-CoV-2 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Chitosan/pharmacology , Genetic Variation , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/chemistry , Binding Sites , Brazil , Chitosan/chemistry , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Conformation/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , United Kingdom , Virus Internalization/drug effects
8.
Carbohydr Polym ; 269: 118345, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1271581

ABSTRACT

This work reports novel chitosan functionalized graphene oxide (GO) nanocomposites combined fluorescence imaging and therapeutic functions in one agent, which can serve as a promising alternative to alleviate related diseases caused hyperinflammation. Briefly, GO was designed to be conjugated with chitosan, fluorescein-labeled peptide, toll-like receptor 4 antibody and hydroxycamptothecin/aloe emodin. We have demonstrated that such nanocomposites could effectively achieve active targeted delivery of pro-apoptotic and anti-inflammatory drugs into inflammatory cells and cause cells apoptosis by acid-responsive drug release. Moreover, confocal fluorescence imaging confirms that the drug-induced inflammatory cells apoptosis could be visualized the light-up fluorescence of fluorescein activated by caspase-3. Meanwhile, inflammatory-related biomarkers have down-regulated after the nanocomposites' treatment in both vitro and vivo experiments consistent with the results in histological sections. In summary, the bifunctional nanocomposites that possess anti-inflammation and fluorescence imaging could serve as a promising therapeutic agent for reducing hyperinflammation caused by numerous diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Apoptosis/physiology , Drug Carriers/chemistry , Inflammation/drug therapy , Nanocomposites/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antibodies/immunology , Camptothecin/analogs & derivatives , Camptothecin/chemistry , Camptothecin/therapeutic use , Cattle , Cell Line , Chitosan/chemistry , Drug Liberation , Emodin/chemistry , Emodin/therapeutic use , Fluorescent Dyes/chemistry , Graphite/chemistry , Humans , Lipopolysaccharides , Mammary Glands, Human/drug effects , Mammary Glands, Human/pathology , Mastitis/chemically induced , Mastitis/drug therapy , Mastitis/pathology , Mice , Toll-Like Receptor 4/immunology
9.
Expert Rev Vaccines ; 20(7): 797-810, 2021 07.
Article in English | MEDLINE | ID: covidwho-1260998

ABSTRACT

Introduction: Adjuvants are essential to vaccines for immunopotentiation in the elicitation of protective immunity. However, classical and widely used aluminum-based adjuvants have limited capacity to induce cellular response. There are increasing needs for appropriate adjuvants with improved profiles for vaccine development toward emerging pathogens. Carbohydrate-containing nanoparticles (NPs) with immunomodulatory activity and particulate nanocarriers for effective antigen presentation are capable of eliciting a more balanced humoral and cellular immune response.Areas covered: We reviewed several carbohydrates with immunomodulatory properties. They include chitosan, ß-glucan, mannan, and saponins, which have been used in vaccine formulations. The mode of action, the preparation methods, characterization of these carbohydrate-containing NPs and the corresponding vaccines are presented.Expert opinion: Several carbohydrate-containing NPs have entered the clinical stage or have been used in licensed vaccines for human use. Saponin-containing NPs are being evaluated in a vaccine against SARS-CoV-2, the pathogen causing the on-going worldwide pandemic. Vaccines with carbohydrate-containing NPs are in different stages of development, from preclinical studies to late-stage clinical trials. A better understanding of the mode of action for carbohydrate-containing NPs as vaccine carriers and as immunostimulators will likely contribute to the design and development of new generation vaccines against cancer and infectious diseases.


Subject(s)
Adjuvants, Immunologic/chemistry , COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Carbohydrates/chemistry , Nanoparticles/chemistry , Adjuvants, Immunologic/administration & dosage , Animals , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Carbohydrates/administration & dosage , Carbohydrates/immunology , Chitosan/administration & dosage , Chitosan/chemistry , Chitosan/immunology , Humans , Mannans/administration & dosage , Mannans/chemistry , Mannans/immunology , Nanoparticles/administration & dosage , beta-Glucans/administration & dosage , beta-Glucans/chemistry , beta-Glucans/immunology
10.
Molecules ; 26(9)2021 May 03.
Article in English | MEDLINE | ID: covidwho-1238921

ABSTRACT

Chitosan has many useful intrinsic properties (e.g., non-toxicity, antibacterial properties, and biodegradability) and can be processed into high-surface-area nanofiber constructs for a broad range of sustainable research and commercial applications. These nanofibers can be further functionalized with bioactive agents. In the food industry, for example, edible films can be formed from chitosan-based composite fibers filled with nanoparticles, exhibiting excellent antioxidant and antimicrobial properties for a variety of products. Processing 'pure' chitosan into nanofibers can be challenging due to its cationic nature and high crystallinity; therefore, chitosan is often modified or blended with other materials to improve its processability and tailor its performance to specific needs. Chitosan can be blended with a variety of natural and synthetic polymers and processed into fibers while maintaining many of its intrinsic properties that are important for textile, cosmeceutical, and biomedical applications. The abundance of amine groups in the chemical structure of chitosan allows for facile modification (e.g., into soluble derivatives) and the binding of negatively charged domains. In particular, high-surface-area chitosan nanofibers are effective in binding negatively charged biomolecules. Recent developments of chitosan-based nanofibers with biological activities for various applications in biomedical, food packaging, and textiles are discussed herein.


Subject(s)
Chitosan/chemistry , Cosmeceuticals/chemistry , Food Packaging , Textiles , Amines/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Crystallization , Edible Films , Humans , Nanofibers/chemistry , Nanoparticles/chemistry , Polymers , Regeneration , Skin/pathology , Skin, Artificial , Solubility , Tissue Engineering , Wound Healing
11.
J Inorg Biochem ; 219: 111454, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157503

ABSTRACT

In recent years, some viruses have caused a grave crisis to global public health, especially the human coronavirus. A truly effective vaccine is therefore urgently needed. Vaccines should generally have two features: delivering antigens and modulating immunity. Adjuvants have an unshakable position in the battle against the virus. In addition to the perennial use of aluminium adjuvant, nanoparticles have become the developing adjuvant candidates due to their unique properties. Here we introduce several typical nanoparticles and their antivirus vaccine adjuvant applications. Finally, for the combating of the coronavirus, we propose several design points, hoping to provide ideas for the development of personalized vaccines and adjuvants and accelerate the clinical application of adjuvants.


Subject(s)
Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Nanoparticles/chemistry , Viral Vaccines/immunology , Aluminum/chemistry , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Calcium Phosphates/chemistry , Chitosan/chemistry , Gold/chemistry , Humans , Nanoparticles/administration & dosage , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Viral Vaccines/chemistry
12.
J Aerosol Med Pulm Drug Deliv ; 34(5): 293-302, 2021 09.
Article in English | MEDLINE | ID: covidwho-1149900

ABSTRACT

Background: The precaution of airborne transmission of viruses, such as influenza, SARS, MERS, and COVID-19, is essential for reducing infection. In this study, we applied a zero-valent nanosilver/titania-chitosan (nano-Ag0/TiO2-CS) filter bed, whose broad-spectrum antimicrobial efficacy has been proven previously, for the removal of viral aerosols to minimize the risk of airborne transmission. Methods: The photochemical deposition method was used to synthesize the nano-Ag0/TiO2-CS antiviral material. The surface morphology, elemental composition, and microstructure of the nano-Ag0/TiO2-CS were analyzed by a scanning electron microscopy/energy dispersive X-ray spectroscopy and a transmission electron microscopy, respectively. The MS2 bacteriophages were used as surrogate viral aerosols. The antiviral efficacy of nano-Ag0/TiO2-CS was evaluated by the MS2 plaque reduction assay (PRA) and filtration experiments. In the filtration experiments, the MS2 aerosols passed through the nano-Ag0/TiO2-CS filter, and the MS2 aerosol removal efficiency was evaluated by an optical particle counter and culture method. Results and Conclusions: In the MS2 PRA, 3 g of nano-Ag0/TiO2-CS inactivated 97% of MS2 bacteriophages in 20 mL liquid culture (2 ± 0.5 × 1016 PFU/mL) within 2 hours. The removal efficiency of nano-Ag0/TiO2-CS filter (thickness: 6 cm) for MS2 aerosols reached up to 93%. Over 95% of MS2 bacteriophages on the surface of the nano-Ag0/TiO2-CS filter were inactivated within 20 minutes. The Wells-Riley model predicted that when the nano-Ag0/TiO2-CS filter was used in the ventilation system, airborne infection probability would reduce from 99% to 34.6%. The nano-Ag0/TiO2-CS filter could remain at 50% of its original antiviral efficiency after continuous operation for 1 week, indicating its feasibility for the control of the airborne transmission.


Subject(s)
Air Filters , Air Microbiology , Chitosan/chemistry , Filtration/instrumentation , Inhalation Exposure/prevention & control , Levivirus/isolation & purification , Metal Nanoparticles , Silver/chemistry , Titanium/chemistry , Aerosols , COVID-19/prevention & control , COVID-19/transmission , Equipment Design , Humans , Inhalation Exposure/adverse effects , Levivirus/pathogenicity , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
13.
Int J Biol Macromol ; 179: 33-44, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1085549

ABSTRACT

Chitosan is a deacetylated polycationic polysaccharide derived from chitin. It is structurally constituted of N-acetyl-D-glucosamine and ß-(1-4)-linked D-glucosamine where acetyl groups are randomly distributed across the polymer. The parameters of deacetylation and depolymerization process greatly influence various physico-chemical properties of chitosan and thus, offer a great degree of manipulation to synthesize chitosan of interest for various industrial and biomedical applications. Chitosan and its various derivatives have been a potential molecule of investigation in the area of anti-microbials especially anti-fungal, anti-bacterial and antiviral. The current review predominantly highlights and discusses about the antiviral activities of chitosan and its various substituted derivatives against a wide spectrum of human, animal, plants and bacteriophage viruses. The extrinsic and intrinsic factors that affect antiviral efficacy of chitosan have also been talked about. With the rapid unfolding of COVID-19 pandemic across the globe, we look for chitosan as a plausible potent antiviral molecule for fighting this disease. Through this review, we present enough literature data supporting role of chitosan against different strains of SARS viruses and also chitosan targeting CD147 receptors, a novel route for invasion of SARS-CoV-2 into host cells. We speculate the possibility of using chitosan as potential molecule against SARS-CoV-2 virus.


Subject(s)
COVID-19/drug therapy , Chitosan/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/virology , Chitin/chemistry , Chitin/pharmacology , Chitosan/chemistry , Humans , Pandemics/prevention & control
14.
Microb Pathog ; 149: 104560, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-857004

ABSTRACT

Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.


Subject(s)
Chitosan/immunology , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Poultry Diseases/immunology , Saponins/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Bronchitis/immunology , Bronchitis/prevention & control , Bronchitis/veterinary , CD8-Positive T-Lymphocytes/immunology , Chickens , Chitosan/chemistry , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection , Immunity, Cellular , Immunization, Secondary/veterinary , Immunogenicity, Vaccine , Nanoparticles/chemistry , Poultry Diseases/prevention & control , Saponins/chemistry , Vaccination/veterinary , Vaccines, DNA/chemistry , Vaccines, DNA/genetics , Viral Vaccines/chemistry , Viral Vaccines/genetics
15.
Med Hypotheses ; 144: 110288, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-811910

ABSTRACT

The angiotensin-converting enzyme 2(ACE-2) receptors with approx. 0.8% congestion in conjunctival surface, leads to increase susceptibility of Covid-19 transmission through ocular surface. It has been observed that prophylactic measures such as goggle or face shield are unable to offer complete protection against ocular transmission of SRS-CoV-2. Hence, it is hypothesized that topical ocular prophylaxis using biocompatible polymers with reported in-vitro and in-vivo evidence of ACE inhibition and antiviral activity appears to be a promising strategy for preventing ocular transmission of Covid-19 to healthcare workers. They are capable of binding to ACE-2 receptors which may provide highly potential trails to block virus entry to host cells. Further biopolymers imparting antiviral activities greatly improve their protective performance. They not only provide prolong protection but also are safe for long-term use. This article discusses the description of structural and functional attributes of ACE-2 to identify appropriate polymer with better binding affinity. Furthermore, potential polymers with appropriate concentration are suggested for evaluation through a hypothesis to consider them for Covid-19 implication.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Eye/virology , Ophthalmic Solutions , Polymers/chemistry , Administration, Topical , Angiotensin-Converting Enzyme 2/chemistry , Biopolymers , Chitosan/chemistry , Dendrimers , Dextrans/chemistry , Heparin/chemistry , Humans , Hyaluronic Acid/chemistry , Personal Protective Equipment , Polysaccharides/chemistry , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL