Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 540
Filter
1.
Eur J Clin Pharmacol ; 77(10): 1513-1521, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1813653

ABSTRACT

PURPOSE: To analyze the cases of torsade de pointes (TdP) and related symptoms reported in association with chloroquine (CQ), hydroxychloroquine (HCQ), and azithromycin (AZT) to the World Health Organization (WHO) global database of individual case safety reports (ICSRs) for drug monitoring (VigiBase) using qualitative and quantitative pharmacovigilance approaches. METHODS: The main characteristics of the ICSRs reporting TdP with CQ, HCQ, and AZT have been summarized. Co-reported drugs with risk to cause QT prolongation have been described. Reporting odds ratios (RORs) as a measure of disproportionality for reported TdP and individual drugs have been calculated. RESULTS: One hundred seventy ICSRs reporting TdP in association with the drugs of interest were identified (CQ: 11, HCQ: 31, CQ + HCQ: 1, HCQ + AZT: 27, AZT: 100). From these, 41 (24.3%) were received during the pandemic period (December 2019 to February 2021). The median age of the patients was 63, 53, and 63 years old for CQ, HCQ, and AZT, respectively. Reports included concomitant use of other QT-prolonging drugs (CQ 25.0%, HCQ 71.2%, AZT 64.6%). A proportion of the cases were fatal (CQ 25.0%, HCQ 8.6%, AZT 16.1%). Increased disproportionality has been found for the individual drugs and TdP: CQ (ROR: 7.41, 95% confidence interval (CI): 3.82, 12.96), HCQ (ROR: 8.49, 95% CI: 6.57, 10.98), azithromycin (ROR: 8.06, 95% CI: 6.76, 9.61). Disproportionality was also found for other related symptoms, Standardized MedDRA Query for torsade de pointes/QT prolongation (narrow): CQ (ROR: 11.95, 95% CI: 10.04-14.22); HCQ (ROR: 20.43, 95% CI: 19.13, 21.83), AZT (ROR: 7.78, 95% CI: 7.26, 8.34). CONCLUSIONS: The prescription of CQ, HCQ, and AZT should be restricted to therapeutic indications with established positive benefit/risk profile. Doctors and patients should be aware of this potential adverse reaction especially when several risk factors are present.


Subject(s)
Azithromycin/adverse effects , Chloroquine/adverse effects , Hydroxychloroquine/adverse effects , Torsades de Pointes/chemically induced , Adult , Aged , Azithromycin/administration & dosage , Chloroquine/administration & dosage , Drug Therapy, Combination , Female , Humans , Hydroxychloroquine/administration & dosage , Male , Middle Aged , Pharmacovigilance , Retrospective Studies
2.
Lupus ; 31(2): 238-245, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1794137

ABSTRACT

OBJECTIVE: To estimate the risk ratio (RR) of thromboembolic events in chloroquine and hydroxychloroquine users compared to non-users. METHODS: We systematically reviewed randomized controlled trials (RCTs), using MEDLINE and EMBASE databases from inception to the present, reporting thromboembolic events in chloroquine and hydroxychloroquine users compared to non-users. Four authors independently screened all the records obtained through our search strategy and later revised the selected full-text articles for eligibility, according to our inclusion criteria. The same four authors independently extracted relevant data through a customized data collection form while two other authors assessed the quality of the included RCTs using the Cochrane risk-of-bias tool (Version 2.0). All the disagreements were resolved through discussions among the authors. We calculated the risk ratio (RR) and its respective standard error of developing thromboembolic events in hydroxychloroquine users and non-users for each individual study and pooled the results using a random effects model meta-analysis. We assessed Heterogeneity using the Tau2 and I2, and publication bias using funnel plotting and Egger's regression. The protocol for this systematic review is registered at the PROSPERO database (CRD42021247902). RESULTS: Thirteen RCTs met our eligibility criteria and were included in our analysis (2663 patients). We found that hydroxychloroquine-no study on chloroquine was found-reduced the risk of thromboembolic events by 49% (RR 0.51[IC 95% 0.31-0.84]) with a medium heterogeneity (I2 = 67% and T2 = 0.4948). We did find some asymmetry in the inspection of the funnel plot, which was ruled out through an Egger's regression (p-value = 0.1025). CONCLUSION: Our data reinforce the idea that hydroxychloroquine reduces the risk of thromboembolic events.


Subject(s)
Hydroxychloroquine , Lupus Erythematosus, Systemic , Chloroquine/adverse effects , Humans , Hydroxychloroquine/adverse effects
3.
PLoS One ; 17(4): e0266337, 2022.
Article in English | MEDLINE | ID: covidwho-1779766

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has resulted in an urgent need for identifying potential therapeutic drugs. In the first half of 2020 tropic antimalarial drugs, such as chloroquine (CQ) or hydroxochloroquine (HCQ) were the focus of tremendous public attention. In the initial periods of the pandemic, many scientific results pointed out that CQ/HCQ could be very effective for patients with severe COVID. While CQ and HCQ have successfully been used against several diseases (such as malaria, autoimmune disease and rheumatic illnesses); long term use of these agents are associated with serious adverse effects (i.e. inducing acute kidney injury, among many others) due to their role in blocking autophagy-dependent self-degradation. Recent experimental and clinical trial data also confirmed that there is no sufficient evidence about the efficient usage of CQ/HCQ against COVID-19. By using systems biology techniques, here we show that the cellular effect of CQ/HCQ on autophagy during endoplasmic reticulum (ER) stress or following SARS-CoV-2 infection results in upregulation of ER stress. By presenting a simple mathematical model, we claim that although CQ/HCQ might be able to ameliorate virus infection, the permanent inhibition of autophagy by CQ/HCQ has serious negative effects on the cell. Since CQ/HCQ promotes apoptotic cell death, here we confirm that addition of CQ/HCQ cannot be really effective even in severe cases. Only a transient treatment seemed to be able to avoid apoptotic cell death, but this type of therapy could not limit virus replication in the infected host. The presented theoretical analysis clearly points out the utility and applicability of systems biology modelling to test the cellular effect of a drug targeting key major processes, such as autophagy and apoptosis. Applying these approaches could decrease the cost of pre-clinical studies and facilitate the selection of promising clinical trials in a timely fashion.


Subject(s)
COVID-19 , Autophagy , COVID-19/drug therapy , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Hydroxychloroquine/adverse effects , Pandemics , SARS-CoV-2 , Systems Biology
4.
Front Public Health ; 10: 804404, 2022.
Article in English | MEDLINE | ID: covidwho-1731867

ABSTRACT

Introduction: In early 2020, the coronavirus disease 2019 (COVID-19) pandemic spread worldwide, overwhelming hospitals with severely ill patients and posing the urgent need for clinical evidence to guide patient care. First treatment options available were repurposed drugs to fight inflammation, coagulopathy, and viral replication. A vast number of clinical studies were launched globally to test their efficacy and safety. Our analysis describes the development of global evidence on repurposed drugs, in particular corticosteroids, anticoagulants, and (hydroxy)chloroquine in hospitalized COVID-19 patients based on different study types. We track the incorporation of clinical data in international and national treatment guidelines and identify factors that characterize studies and analyses with the greatest impact on treatment recommendations. Methods: A literature search in MEDLINE was conducted to assess the clinical evidence on treatment with corticosteroids, anticoagulants, and (hydroxy)chloroquine in hospitalized COVID-19 patients during the first year of the pandemic. Adoption of the evidence from this clinical data in treatment guidelines of the World Health Organization (WHO), Germany, and United States (US) was evaluated over time. Results: We identified 106 studies on corticosteroids, 141 studies on anticoagulants, and 115 studies on (hydroxy)chloroquine. Most studies were retrospective cohort studies; some were randomized clinical trials (RCTs), and a few were platform trials. These studies were compared to studies directly and indirectly referred to in WHO (7 versions), German (5 versions), and US (21 versions) guidelines. We found that initially large, well-adjusted, mainly retrospective cohort studies and ultimately large platform trials or coordinated meta-analyses of RCTs provided best available clinical evidence supporting treatment recommendations. Discussion: Particularly early in the pandemic, evidence for the efficacy and safety of repurposed drugs was of low quality, since time and scientific rigor seemed to be competing factors. Pandemic preparedness, coordinated efforts, and combined analyses were crucial to generating timely and robust clinical evidence that informed national and international treatment guidelines on corticosteroids, anticoagulants, and (hydroxy)chloroquine. Multi-arm platform trials with master protocols and coordinated meta-analyses proved particularly successful, with researchers joining forces to answer the most pressing questions as quickly as possible.


Subject(s)
COVID-19 , Adrenal Cortex Hormones/therapeutic use , Anticoagulants/therapeutic use , COVID-19/drug therapy , Chloroquine , Clinical Trials as Topic , Humans , Meta-Analysis as Topic , Pandemics , SARS-CoV-2
5.
Brain Behav Immun ; 87: 59-73, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719339

ABSTRACT

As of April 15, 2020, the ongoing coronavirus disease 2019 (COVID-2019) pandemic has swept through 213 countries and infected more than 1,870,000 individuals, posing an unprecedented threat to international health and the economy. There is currently no specific treatment available for patients with COVID-19 infection. The lessons learned from past management of respiratory viral infections have provided insights into treating COVID-19. Numerous potential therapies, including supportive intervention, immunomodulatory agents, antiviral therapy, and convalescent plasma transfusion, have been tentatively applied in clinical settings. A number of these therapies have provided substantially curative benefits in treating patients with COVID-19 infection. Furthermore, intensive research and clinical trials are underway to assess the efficacy of existing drugs and identify potential therapeutic targets to develop new drugs for treating COVID-19. Herein, we summarize the current potential therapeutic approaches for diseases related to COVID-19 infection and introduce their mechanisms of action, safety, and effectiveness.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adrenal Cortex Hormones/therapeutic use , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Antimalarials/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , Bevacizumab/therapeutic use , COVID-19 , COVID-19 Vaccines , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Interferons/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Killer Cells, Natural , Medicine, Chinese Traditional , Mesenchymal Stem Cell Transplantation , Nitric Oxide/therapeutic use , Pandemics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Trace Elements/therapeutic use , Viral Vaccines/therapeutic use , Vitamins/therapeutic use , Zinc/therapeutic use
6.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1705083

ABSTRACT

We theoretically investigated the adsorption of two common anti-COVID drugs, favipiravir and chloroquine, on fluorinated C60 fullerene, decorated with metal ions Cr3+, Fe2+, Fe3+, Ni2+. We focused on the effect of fluoridation on the interaction of fullerene with metal ions and drugs in an aqueous solution. We considered three model systems, C60, C60F2 and C60F48, and represented pristine, low-fluorinated and high-fluorinated fullerenes, respectively. Adsorption energies, deformation of fullerene and drug molecules, frontier molecular orbitals and vibrational spectra were investigated in detail. We found that different drugs and different ions interacted differently with fluorinated fullerenes. Cr3+ and Fe2+ ions lead to the defluorination of low-fluorinated fullerenes. Favipiravir also leads to their defluorination with the formation of HF molecules. Therefore, fluorinated fullerenes are not suitable for the delivery of favipiravir and similar drugs molecules. In contrast, we found that fluorine enhances the adsorption of Ni2+ and Fe3+ ions on fullerene and their activity to chloroquine. Ni2+-decorated fluorinated fullerenes were found to be stable and suitable carriers for the loading of chloroquine. Clear shifts of infrared, ultraviolet and visible spectra can provide control over the loading of chloroquine on Ni2+-doped fluorinated fullerenes.


Subject(s)
Amides/chemistry , Antiviral Agents/chemistry , Chloroquine/chemistry , Fullerenes/chemistry , Metals/chemistry , Pyrazines/chemistry , COVID-19 , Density Functional Theory , Drug Carriers/chemistry , Drug Delivery Systems , Halogenation , Models, Molecular , Nickel/chemistry
7.
Viruses ; 14(2)2022 02 11.
Article in English | MEDLINE | ID: covidwho-1687050

ABSTRACT

Despite the development of specific therapies against severe acute respiratory coronavirus 2 (SARS-CoV-2), the continuous investigation of the mechanism of action of clinically approved drugs could provide new information on the druggable steps of virus-host interaction. For example, chloroquine (CQ)/hydroxychloroquine (HCQ) lacks in vitro activity against SARS-CoV-2 in TMPRSS2-expressing cells, such as human pneumocyte cell line Calu-3, and likewise, failed to show clinical benefit in the Solidarity and Recovery clinical trials. Another antimalarial drug, mefloquine, which is not a 4-aminoquinoline like CQ/HCQ, has emerged as a potential anti-SARS-CoV-2 antiviral in vitro and has also been previously repurposed for respiratory diseases. Here, we investigated the anti-SARS-CoV-2 mechanism of action of mefloquine in cells relevant for the physiopathology of COVID-19, such as Calu-3 cells (that recapitulate type II pneumocytes) and monocytes. Molecular pathways modulated by mefloquine were assessed by differential expression analysis, and confirmed by biological assays. A PBPK model was developed to assess mefloquine's optimal doses for achieving therapeutic concentrations. Mefloquine inhibited SARS-CoV-2 replication in Calu-3, with an EC50 of 1.2 µM and EC90 of 5.3 µM. It reduced SARS-CoV-2 RNA levels in monocytes and prevented virus-induced enhancement of IL-6 and TNF-α. Mefloquine reduced SARS-CoV-2 entry and synergized with Remdesivir. Mefloquine's pharmacological parameters are consistent with its plasma exposure in humans and its tissue-to-plasma predicted coefficient points suggesting that mefloquine may accumulate in the lungs. Altogether, our data indicate that mefloquine's chemical structure could represent an orally available host-acting agent to inhibit virus entry.


Subject(s)
Alveolar Epithelial Cells/drug effects , Antiviral Agents/pharmacology , Chloroquine/pharmacology , Mefloquine/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/virology , COVID-19/drug therapy , Cell Line , Drug Repositioning/methods , Humans , Serine Endopeptidases/genetics , Virus Internalization/drug effects
9.
Arch. med ; 21(1): 279-284, 2021/01/03.
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-1677834

ABSTRACT

COVID-19 (Coronavirus Disease-2019) is now considered a public health emergency of that concerns the whole globe. Despite it is still not approved, the use of aminoquinoline drugs such as chloroquine and hydroxychloroquine are now in increasing, especially with the pandemic of coronavirus disease 2019 (COVID-19). This mini review highlights the main information's gathered of using the therapeutic purpose of both these medications in the extraordinary situation of coronavirus disease -19..Au


COVID-19 (Enfermedad por coronavirus-2019) ahora se considera una emergencia de salud pública que afecta a todo el mundo. A pesar de que todavía no está aprobado, el uso de medicamentos de aminoquinolina como la cloroquina y la hidroxicloroquina ahora está aumentando, especialmente con la pandemia de la enfermedad por coronavirus 2019 (COVID-19). Esta mini revisión destaca la principal información recopilada sobre el uso del propósito terapéutico de estos dos medicamentos en la extraordinaria situación de la enfermedad por coronavirus -19..Au


Subject(s)
Humans , Therapeutics , Chloroquine , Coronavirus Infections
10.
AAPS J ; 24(1): 33, 2022 02 07.
Article in English | MEDLINE | ID: covidwho-1673958

ABSTRACT

In vitro screening for pharmacological activity of existing drugs showed chloroquine and hydroxychloroquine to be effective against severe acute respiratory syndrome coronavirus 2. Oral administration of these compounds to obtain desired pulmonary exposures resulted in dose-limiting systemic toxicity in humans. However, pulmonary drug delivery enables direct and rapid administration to obtain higher local tissue concentrations in target tissue. In this work, inhalable formulations for thermal aerosolization of chloroquine and hydroxychloroquine were developed, and their physicochemical properties were characterized. Thermal aerosolization of 40 mg/mL chloroquine and 100 mg/mL hydroxychloroquine formulations delivered respirable aerosol particle sizes with 0.15 and 0.33 mg per 55 mL puff, respectively. In vitro toxicity was evaluated by exposing primary human bronchial epithelial cells to aerosol generated from Vitrocell. An in vitro exposure to 7.24 µg of chloroquine or 7.99 µg hydroxychloroquine showed no significant changes in cilia beating, transepithelial electrical resistance, and cell viability. The pharmacokinetics of inhaled aerosols was predicted by developing a physiologically based pharmacokinetic model that included a detailed species-specific respiratory tract physiology and lysosomal trapping. Based on the model predictions, inhaling emitted doses comprising 1.5 mg of chloroquine or 3.3 mg hydroxychloroquine three times a day may yield therapeutically effective concentrations in the lung. Inhalation of higher doses further increased effective concentrations in the lung while maintaining lower systemic concentrations. Given the theoretically favorable risk/benefit ratio, the clinical significance for pulmonary delivery of aerosolized chloroquine and hydroxychloroquine to treat COVID-19 needs to be established in rigorous safety and efficacy studies. Graphical abstract.


Subject(s)
Antimalarials/administration & dosage , COVID-19/drug therapy , Chloroquine/administration & dosage , Hydroxychloroquine/administration & dosage , Models, Chemical , Administration, Inhalation , Animals , Antimalarials/pharmacokinetics , Antimalarials/toxicity , Cells, Cultured , Drug Evaluation, Preclinical , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/toxicity , Male , Mice , Middle Aged , Rats
11.
Eur J Clin Pharmacol ; 78(5): 733-753, 2022 May.
Article in English | MEDLINE | ID: covidwho-1653434

ABSTRACT

PURPOSE: The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has affected millions all over the world and has been declared pandemic, as of 11 March 2020. In addition to the ongoing research and development of vaccines, there is still a dire need for safe and effective drugs for the control and treatment against the SARS-CoV-2 virus infection. Numerous repurposed drugs are under clinical investigations whose reported adverse events can raise worries about their safety. The aim of this review is to illuminate the associated adverse events related to the drugs used in a real COVID-19 setting along with their relevant mechanism(s). METHOD: Through a literature search conducted on PubMed and Google Scholar database, various adverse events suspected to be induced by eight drugs, including dexamethasone, hydroxychloroquine, chloroquine, remdesivir, favipiravir, lopinavir/ritonavir, ivermectin, and tocilizumab, administered in COVID-19 patients in clinical practice and studies were identified in 30 case reports, 3 case series, and 10 randomized clinical trials. RESULTS: Mild, moderate, or severe adverse events of numerous repurposed and investigational drugs caused by various factors and mechanisms were observed. Gastrointestinal side effects such as nausea, abdominal cramps, diarrhea, and vomiting were the most frequently followed by cardiovascular, cutaneous, and hepatic adverse events. Few other rare adverse drug reactions were also observed. CONCLUSION: In light of their ineffectiveness against COVID-19 as evident in large clinical studies, drugs including hydroxychloroquine, lopinavir/ritonavir, and ivermectin should neither be used routinely nor in clinical studies. While lack of sufficient data, it creates doubt regarding the reliability of chloroquine and favipiravir use in COVID-19 patients. Hence, these two drugs can only be used in clinical studies. In contrast, ample well-conducted studies have approved the use of remdesivir, tocilizumab, and dexamethasone under certain conditions in COVID-19 patients. Consequently, it is significant to establish a strong surveillance system in order to monitor the proper safety and toxicity profile of the potential anti-COVID-19 drugs with good clinical outcomes.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Antiviral Agents/adverse effects , COVID-19/drug therapy , Chloroquine/adverse effects , Dexamethasone/adverse effects , Humans , Hydroxychloroquine/adverse effects , Ivermectin/therapeutic use , Lopinavir/adverse effects , Reproducibility of Results , Ritonavir/pharmacology , SARS-CoV-2
12.
Crit Rev Anal Chem ; 52(1): 19-34, 2022.
Article in English | MEDLINE | ID: covidwho-1637199

ABSTRACT

With the outbreak caused by the severe acute respiratory syndrome coronavirus (COVID-19), people's health and existing economies on a global scale are seriously threatened. Currently, most of the countries all over the world are studying extensively to better understand the antimalarial chloroquine (CQ) and hydroxychloroquine (HCQ) for therapeutic purposes due to the COVID-19 outbreak. However, CQ and HCQ can have serious side effects, from psychiatric effects to sudden death. Therefore, a faster and more effective detection method is needed to monitor drug concentrations. In this review, a large study was conducted on the detection techniques and quantitative determination methods of CQ and its related metabolites. In this review, chromatography, electrophoresis, electroanalytical, spectroscopic, and immunological methods for CQ and related metabolites are discussed extensively. It is hoped that a better understanding of the CQ used for therapeutic purposes in the COVID-19 outbreak will be provided.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Antiviral Agents , COVID-19/drug therapy , Chloroquine , Humans , SARS-CoV-2
13.
Pharm Res ; 39(1): 57-73, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1615473

ABSTRACT

PURPOSE: Chloroquine and hydroxychloroquine are effective against respiratory viruses in vitro. However, they lack antiviral efficacy upon oral administration. Translation of in vitro to in vivo exposure is necessary for understanding the disconnect between the two to develop effective therapeutic strategies. METHODS: We employed an in vitro ion-trapping kinetic model to predict the changes in the cytosolic and lysosomal concentrations of chloroquine and hydroxychloroquine in cell lines and primary human airway cultures. A physiologically based pharmacokinetic model with detailed respiratory physiology was used to predict regional airway exposure and optimize dosing regimens. RESULTS: At their reported in vitro effective concentrations in cell lines, chloroquine and hydroxychloroquine cause a significant increase in their cytosolic and lysosomal concentrations by altering the lysosomal pH. Higher concentrations of the compounds are required to achieve similar levels of cytosolic and lysosomal changes in primary human airway cells in vitro. The predicted cellular and lysosomal concentrations in the respiratory tract for in vivo oral doses are lower than the in vitro effective levels. Pulmonary administration of aerosolized chloroquine or hydroxychloroquine is predicted to achieve high bound in vitro-effective concentrations in the respiratory tract, with low systemic exposure. Achieving effective cytosolic concentrations for activating immunomodulatory effects and adequate lysosomal levels for inhibiting viral replication could be key drivers for treating viral respiratory infections. CONCLUSION: Our analysis provides a framework for extrapolating in vitro effective concentrations of chloroquine and hydroxychloroquine to in vivo dosing regimens for treating viral respiratory infections.


Subject(s)
Chloroquine/administration & dosage , Chloroquine/pharmacokinetics , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/pharmacokinetics , Respiratory Tract Infections/drug therapy , Virus Diseases/drug therapy , Administration, Inhalation , Aerosols , Algorithms , COVID-19 , Cell Line , Cytosol/metabolism , Humans , Hydrogen-Ion Concentration , Lysosomes/metabolism , Primary Cell Culture
14.
Clin Med Res ; 19(4): 179-182, 2021 12.
Article in English | MEDLINE | ID: covidwho-1581437

ABSTRACT

Objective: To assess the effect of chloroquine and hydroxychloroquine on cytokine release syndrome (CRS) in adult patients with coronavirus disease 2019 (COVID-19) having mild to moderate symptoms.Methods: This blinded, placebo-controlled, randomized study was conducted in the Department of Medicine, Pak Emirates Military Hospital Rawalpindi, from June 1-15, 2020. A total of 150 hospitalized patients were enrolled after diagnoses with COVID-19 through reverse transcription polymerase chain reaction (RT-PCR). They were divided into three groups: hydroxychloroquine plus general care (HGC, n=50), chloroquine plus general care (CGC, n=50); and only general care (OGC, n=50). The HGC group received treatment with hydroxychloroquine 400 mg every 12 hours for day one and 200 mg for the next 4 days. The CGC group received treatment with chloroquine 250 mg every 12 hours for 7 days. The OGC group was kept as a control with only general care. After 12 days, the patients were screened for development of CRS through detection of interleukin 6 (IL-6) in serum samples by using Roche cobas e411 electrochemiluminescence immunoassay analyzer.Results: The mean duration from onset of symptoms to randomization was 7.65 days (SD = 3.287 days; range, 2-15 days). The mean age of patients was 37.57 (range 19-63) years. Results showed that out of a total 150 patients, only 10 patients (6%, mean=1.93; CI=1.89-1.97, P=0.651) developed CRS in all study groups. Four patients (8%) developed CRS in the HGC group, 2 patients (4%) in the CGC group, and 4 patients (8%) in the OGC group. There was no significant difference in the mean level of CRS among study groups.Conclusion: Administration of hydroxychloroquine and chloroquine has no effect in reducing the development of CRS in patients with COVID-19 having mild to moderate symptoms.


Subject(s)
COVID-19 , Hydroxychloroquine , Adult , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Chloroquine/therapeutic use , Cytokine Release Syndrome , Humans , Hydroxychloroquine/therapeutic use , Middle Aged , SARS-CoV-2 , Treatment Outcome , Young Adult
16.
Emerg Microbes Infect ; 11(1): 277-283, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1585239

ABSTRACT

The novel SARS-CoV-2 Omicron variant (B.1.1.529), first found in early November 2021, has sparked considerable global concern and it has >50 mutations, many of which are known to affect transmissibility or cause immune escape. In this study, we sought to investigate the virological characteristics of the Omicron variant and compared it with the Delta variant which has dominated the world since mid-2021. Omicron variant replicated more slowly than the Delta variant in transmembrane serine protease 2 (TMPRSS2)-overexpressing VeroE6 (VeroE6/TMPRSS2) cells. Notably, the Delta variant replicated well in Calu3 cell line which has robust TMPRSS2 expression, while the Omicron variant replicated poorly in this cell line. Competition assay showed that Delta variant outcompeted Omicron variant in VeroE6/TMPRSS2 and Calu3 cells. To confirm the difference in entry pathway between the Omicron and Delta variants, we assessed the antiviral effect of bafilomycin A1, chloroquine (inhibiting endocytic pathway), and camostat (inhibiting TMPRSS2 pathway). Camostat potently inhibited the Delta variant but not the Omicron variant, while bafilomycin A1 and chloroquine could inhibit both Omicron and Delta variants. Moreover, the Omicron variant also showed weaker cell-cell fusion activity when compared with Delta variant in VeroE6/TMPRSS2 cells. Collectively, our results suggest that Omicron variant infection is not enhanced by TMPRSS2 but is largely mediated via the endocytic pathway. The difference in entry pathway between Omicron and Delta variants may have an implication on the clinical manifestations or disease severity.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Virus Replication , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Chlorocebus aethiops , Chloroquine/pharmacology , Endocytosis/drug effects , Esters/pharmacology , Guanidines/pharmacology , Humans , Immune Evasion , Lung Neoplasms/pathology , Macrolides/pharmacology , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , Vero Cells , Virus Cultivation , Virus Internalization/drug effects , Whole Genome Sequencing
17.
Trials ; 22(1): 869, 2021 Dec 04.
Article in English | MEDLINE | ID: covidwho-1551220

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that was first identified in Wuhan, Hubei, China, in December 2019. It was recognized as a pandemic by the World Health Organization on 11 March 2020. Outbreak forecasting and mathematical modelling suggest that these numbers will continue to rise. Early identification of effective remedies that can shorten the duration and severity of illness is critical for Lagos State, which is the epi-centre of the disease in Nigeria. METHODS: This is a multi-centre, randomized, double-blind placebo-controlled superiority trial. The study investigates the efficacy of chloroquine phosphate, hydroxychloroquine sulphate and lopinavir/ritonavir added on to standard of care compared to standard of care only in patients with COVID-19 disease. The primary outcome is the clinical status of patients measured using a 7-point ordinal scale at day 15. Research participants and clinicians will be blinded to the allocated intervention. Outcome measures will be directly assessed by clinicians. Statistical analysis will be done by a team blinded to the identity and allocation of research participants. Data analysis will follow intention-to-treat methods, using R software. DISCUSSION: The current study is of strategic importance for Lagos State in potentially curbing the health, social and economic burden of COVID-19 disease. Should the current study demonstrate that either of the three intervention drugs is more efficacious than standard therapy alone, the State Ministry of Health will develop an evidence-based guideline for the management of COVID-19 in Lagos State. The findings will also be shared nationally and with other states which may lead to a standardized national guideline for the treatment of COVID-19 in Nigeria. TRIAL REGISTRATION: Pan African Clinical Trials Register PACTR202004801273802 . Registered prospectively on April 2, 2020.


Subject(s)
COVID-19 , Hydroxychloroquine , COVID-19/drug therapy , Chloroquine/analogs & derivatives , Humans , Hydroxychloroquine/adverse effects , Lopinavir/adverse effects , Multicenter Studies as Topic , Nigeria , Randomized Controlled Trials as Topic , Ritonavir/adverse effects , SARS-CoV-2
18.
J Med Virol ; 93(12): 6737-6749, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544327

ABSTRACT

Chloroquine or its derivative hydroxychloroquine (HCQ) combined with or without azithromycin (AZ) have been widely investigated in observational studies as a treatment option for coronavirus 2019 (COVID-19) infection. The network meta-analysis aims to summarize evidence from randomized controlled trials (RCTs) to determine if AZ or HCQ is associated with improved clinical outcomes. PubMed and Embase were searched from inception to March 7, 2021. We included published RCTs that investigated the efficacy of AZ, HCQ, or its combination among hospitalized patients with COVID-19 infection. The outcomes of interest were all-cause mortality and the use of mechanical ventilation. The pooled odds ratio was calculated using a random-effect model. A total of 10 RCTs were analyzed. Participant's mean age ranged from 40.4 to 66.5 years. There was no significant effect on mortality associated with AZ plus HCQ (odds ratio [OR] = 0.562 [95% confidence interval {CI}: 0.168-1.887]), AZ alone (OR = 0.965 [95% CI: 0.865-1.077]), or HCQ alone (OR = 1.122 [95% CI: 0.995-1.266]; p = 0.06). Similarly, based on pooled effect sizes derived from direct and indirect evidence, none of the treatments had a significant benefit in decreasing the use of mechanical ventilation. No heterogeneity was identified (Cochran's Q = 1.68; p = 0.95; τ2 = 0; I2 = 0% [95% CI: 0%-0%]). Evidence from RCTs suggests that AZ with or without HCQ was not associated with a significant effect on the mortality or mechanical ventilation rates in hospitalized patients with COVID-19. More research is needed to explore therapeutics agents that can effectively reduce the mortality or severity of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/drug therapy , Hydroxychloroquine/therapeutic use , Adult , Aged , Chloroquine/therapeutic use , Female , Humans , Male , Middle Aged , Network Meta-Analysis , Randomized Controlled Trials as Topic , Respiration, Artificial/methods
19.
Pharmacogenomics J ; 21(6): 649-656, 2021 12.
Article in English | MEDLINE | ID: covidwho-1526064

ABSTRACT

Chloroquine/hydroxychloroquine have been proposed as potential treatments for COVID-19. These drugs have warning labels for use in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Analysis of whole genome sequence data of 458 individuals from sub-Saharan Africa showed significant G6PD variation across the continent. We identified nine variants, of which four are potentially deleterious to G6PD function, and one (rs1050828) that is known to cause G6PD deficiency. We supplemented data for the rs1050828 variant with genotype array data from over 11,000 Africans. Although this variant is common in Africans overall, large allele frequency differences exist between sub-populations. African sub-populations in the same country can show significant differences in allele frequency (e.g. 16.0% in Tsonga vs 0.8% in Xhosa, both in South Africa, p = 2.4 × 10-3). The high prevalence of variants in the G6PD gene found in this analysis suggests that it may be a significant interaction factor in clinical trials of chloroquine and hydroxychloroquine for treatment of COVID-19 in Africans.


Subject(s)
COVID-19/drug therapy , Chloroquine/adverse effects , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/genetics , Hydroxychloroquine/adverse effects , Africa South of the Sahara/epidemiology , COVID-19/epidemiology , COVID-19/genetics , Databases, Genetic , Genetic Variation/genetics , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Humans , Mutation, Missense/genetics , Risk Factors
20.
Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med ; 29(Special Issue): 1247-1250, 2021 Aug.
Article in Russian | MEDLINE | ID: covidwho-1524922

ABSTRACT

Interest in chloroquine, and its analog with a more favorable safety profile - hydroxychloroquine, in 2020 is certainly associated with the outbreak of a new coronavirus infection, SARS-CoV-2. The high pathogenicity and lack of specific immunity in the population caused the rapid spread of infection with an extraordinary increase in the burden on the health systems of many countries. In such conditions, it was necessary to quickly find and implement effective methods of treatment and prevention. One of the most promising candidates for this role was hydroxychloroquine, as a multi-purpose drug with a well-studied safety profile and a rich history of use. The article describes some historical stages of the study of chloroquine and its derivatives starting from the 19th century and ending in 2020. The experience of its use for the treatment of diseases such as malaria, rheumatoid arthritis, diabetes, bronchial asthma, photosensitivity and skin porphyria was reviewed. Separately, some historical aspects of its use for the treatment of viral and oncological diseases were considered. The bibliometric method used in this scientific work clearly demonstrates the dynamics of the changing interest of the scientific community in chloroquine and its derivatives. Chloroquine and its derivatives can definitely be attributed to «pharmaceutical centenarians¼ with an intense life that continues.


Subject(s)
COVID-19 , Clinical Medicine , Aged, 80 and over , Antiviral Agents/therapeutic use , Bibliometrics , COVID-19/drug therapy , Chloroquine/pharmacology , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL