Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int J Mol Sci ; 23(7)2022 Apr 02.
Article in English | MEDLINE | ID: covidwho-1776249

ABSTRACT

The quantity of high-density lipoproteins (HDL) is represented as the serum HDL-C concentration (mg/dL), while the HDL quality manifests as the diverse features of protein and lipid content, extent of oxidation, and extent of glycation. The HDL functionality represents several performance metrics of HDL, such as antioxidant, anti-inflammatory, and cholesterol efflux activities. The quantity and quality of HDL can change during one's lifetime, depending on infection, disease, and lifestyle, such as dietary habits, exercise, and smoking. The quantity of HDL can change according to age and gender, such as puberty, middle-aged symptoms, climacteric, and the menopause. HDL-C can decrease during disease states, such as acute infection, chronic inflammation, and autoimmune disease, while it can be increased by regular aerobic exercise and healthy food consumption. Generally, high HDL-C at the normal level is associated with good HDL quality and functionality. Nevertheless, high HDL quantity is not always accompanied by good HDL quality or functionality. The HDL quality concerns the morphology of the HDL, such as particle size, shape, and number. The HDL quality also depends on the composition of the HDL, such as apolipoproteins (apoA-I, apoA-II, apoC-III, serum amyloid A, and α-synuclein), cholesterol, and triglyceride. The HDL quality is also associated with the extent of HDL modification, such as glycation and oxidation, resulting in the multimerization of apoA-I, and the aggregation leads to amyloidogenesis. The HDL quality frequently determines the HDL functionality, which depends on the attached antioxidant enzyme activity, such as the paraoxonase and cholesterol efflux activity. Conventional HDL functionality is regression, the removal of cholesterol from atherosclerotic lesions, and the removal of oxidized species in low-density lipoproteins (LDL). Recently, HDL functionality was reported to expand the removal of ß-amyloid plaque and inhibit α-synuclein aggregation in the brain to attenuate Alzheimer's disease and Parkinson's disease, respectively. More recently, HDL functionality has been associated with the susceptibility and recovery ability of coronavirus disease 2019 (COVID-19) by inhibiting the activity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The appearance of dysfunctional HDL is frequently associated with many acute infectious diseases and chronic aging-related diseases. An HDL can be a suitable biomarker to diagnose many diseases and their progression by monitoring the changes in its quantity and quality in terms of the antioxidant and anti-inflammatory abilities. An HDL can be a protein drug used for the removal of plaque and as a delivery vehicle for non-soluble drugs and genes. A dysfunctional HDL has poor HDL quality, such as a lower apoA-I content, lower antioxidant ability, smaller size, and ambiguous shape. The current review analyzes the recent advances in HDL quantity, quality, and functionality, depending on the health and disease state during one's lifetime.


Subject(s)
COVID-19 , Lipoproteins, HDL , Anti-Inflammatory Agents , Antioxidants/metabolism , Apolipoprotein A-I/metabolism , Cholesterol/metabolism , Cholesterol, HDL , Female , Humans , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Middle Aged , SARS-CoV-2 , alpha-Synuclein
2.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1765732

ABSTRACT

Formation of neutrophil extracellular traps (NETs) is a two-faced innate host defense mechanism, which, on the one hand, can counteract microbial infections, but on the other hand, can contribute to massive detrimental effects on the host. Cholesterol depletion from the cellular membrane by Methyl-ß-cyclodextrin (MßCD) is known as one of the processes initiating NET formation. Since neutrophils mainly act in an inflammatory environment with decreased, so-called hypoxic, oxygen conditions, we aimed to study the effect of oxygen and the oxygen stress regulator hypoxia-inducible factor (HIF)-1α on cholesterol-dependent NET formation. Thus, murine bone marrow-derived neutrophils from wild-type and HIF-knockout mice or human neutrophils were stimulated with MßCD under normoxic (21% O2) compared to hypoxic (1% O2) conditions, and the formation of NETs were studied by immunofluorescence microscopy. We found significantly induced NET formation after treatment with MßCD in murine neutrophils derived from wild-type as well as HIF-1α KO mice at both hypoxic (1% O2) as well as normoxic (21% O2) conditions. Similar observations were made in freshly isolated human neutrophils after stimulation with MßCD or statins, which block the HMG-CoA reductase as the key enzyme in the cholesterol metabolism. HPLC was used to confirm the reduction of cholesterol in treated neutrophils. In summary, we were able to show that NET formation via MßCD or statin-treatment is oxygen and HIF-1α independent.


Subject(s)
Extracellular Traps , Animals , Cholesterol/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Neutrophils/metabolism , Oxygen/metabolism
3.
Cell Mol Immunol ; 19(2): 210-221, 2022 02.
Article in English | MEDLINE | ID: covidwho-1608557

ABSTRACT

Exploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.


Subject(s)
Angiotensin-Converting Enzyme 2/administration & dosage , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , Cell-Derived Microparticles/metabolism , Cholesterol/metabolism , Endosomes/chemistry , Macrophages, Alveolar/metabolism , SARS-CoV-2/metabolism , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Hydrogen-Ion Concentration , Lysosomes/chemistry , Mice , Mice, Inbred ICR , Mice, Transgenic , Oxidation-Reduction , RAW 264.7 Cells , Treatment Outcome , Vero Cells
4.
Front Immunol ; 12: 796855, 2021.
Article in English | MEDLINE | ID: covidwho-1607033

ABSTRACT

Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-ß-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.


Subject(s)
COVID-19/metabolism , Cholesterol/metabolism , Membrane Microdomains/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/prevention & control , COVID-19/virology , Humans , Hydroxychloroquine/pharmacology , Protein Binding/drug effects , SARS-CoV-2/physiology , Virus Internalization/drug effects , beta-Cyclodextrins/pharmacology
5.
Cell Metab ; 33(10): 1911-1925, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1588059

ABSTRACT

High levels of cholesterol are generally considered to be associated with atherosclerosis. In the past two decades, however, a number of studies have shown that excess cholesterol accumulation in various tissues and organs plays a critical role in the pathogenesis of multiple diseases. Here, we summarize the effects of excess cholesterol on disease pathogenesis, including liver diseases, diabetes, chronic kidney disease, Alzheimer's disease, osteoporosis, osteoarthritis, pituitary-thyroid axis dysfunction, immune disorders, and COVID-19, while proposing that excess cholesterol-induced toxicity is ubiquitous. We believe this concept will help broaden the appreciation of the toxic effect of excess cholesterol, and thus potentially expand the therapeutic use of cholesterol-lowering medications.


Subject(s)
Atherosclerosis/metabolism , COVID-19/metabolism , Cholesterol/metabolism , Hypercholesterolemia/metabolism , Animals , Anticholesteremic Agents/therapeutic use , Atherosclerosis/diagnosis , Atherosclerosis/drug therapy , Atherosclerosis/epidemiology , Biomarkers/metabolism , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/epidemiology , Humans , Hypercholesterolemia/diagnosis , Hypercholesterolemia/drug therapy , Hypercholesterolemia/epidemiology , Prognosis , Risk Factors
6.
Lipids Health Dis ; 20(1): 179, 2021 Dec 13.
Article in English | MEDLINE | ID: covidwho-1571759

ABSTRACT

Lipids have a wide variety and vital functions. Lipids play roles in energy metabolism, intracellular and extracellular signal traffic, and transport of fat-soluble vitamins. Also, they form the structure of the cell membrane. SARS-CoV-2 interacts with lipids since its genetic material contains lipid-enveloped ribonucleic acid (RNA). Previous studies have shown that total cholesterol, high-density lipoprotein, and low-density lipoprotein (LDL) levels are lower in patients with severe novel coronavirus disease 2019 (COVID-19) compared to patients with non-severe COVID-19.Na+/H+ Exchanger (NHE) is an important antiport that keeps the intracellular pH value within physiological limits. When the intracellular pH falls, NHE is activated and pumps H+ ions outward. However, prolonged NHE activation causes cell damage and atherosclerosis. Prolonged NHE activation may increase susceptibility to SARS-CoV-2 infection and severity of COVID-19.In COVID-19, increased angiotensin II (Ang II) due to angiotensin-converting enzyme-2 (ACE2) dysfunction stimulates NHE. Lipids are in close association with the NHE pump. Prolonged NHE activity increases the influx of H+ ions and free fatty acid (FFA) inward. Ang II also causes increased low-density lipoprotein receptor (LDLR) levels by inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9). Thus, intracellular atheroma plaque formation is accelerated.Besides, SARS-CoV-2 may replicate more rapidly as intracellular cholesterol increases. SARS-CoV-2 swiftly infects the cell whose intracellular pH decreases with NHE activation and FFA movement. Novel treatment regimens based on NHE and lipids should be explored for the treatment of COVID-19.


Subject(s)
COVID-19/pathology , Cholesterol/metabolism , Receptors, LDL/metabolism , SARS-CoV-2 , Sodium-Hydrogen Exchangers/metabolism , COVID-19/metabolism , COVID-19/mortality , Cause of Death , Humans , Lipid Metabolism , Patient Acuity , SARS-CoV-2/metabolism
7.
Biochim Biophys Acta Proteins Proteom ; 1870(2): 140736, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1509583

ABSTRACT

We present an integrated analysis of urine and serum proteomics and clinical measurements in asymptomatic, mild/moderate, severe and convalescent cases of COVID-19. We identify the pattern of immune response during COVID-19 infection. The immune response is activated in asymptomatic infection, but is dysregulated in mild and severe COVID-19 patients. Our data suggest that the turning point depends on the function of myeloid cells and neutrophils. In addition, immune defects persist into the recovery stage, until 12 months after diagnosis. Moreover, disorders of cholesterol metabolism span the entire progression of the disease, starting from asymptomatic infection and lasting to recovery. Our data suggest that prolonged dysregulation of the immune response and cholesterol metabolism might be the pivotal causative agent of other potential sequelae. Our study provides a comprehensive understanding of COVID-19 immunopathogenesis, which is instructive for the development of early intervention strategies to ameliorate complex disease sequelae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , Cholesterol/metabolism , Convalescence , Proteomics , COVID-19/blood , COVID-19/urine , Case-Control Studies , Cholesterol/blood , Enzyme-Linked Immunosorbent Assay , Humans , Immunity , Myeloid Cells/immunology , Neutrophils/immunology , SARS-CoV-2/isolation & purification
8.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1480800

ABSTRACT

Plenty of research has revealed virus induced alternations in metabolic pathways, which is known as metabolic reprogramming. Studies focusing on COVID-19 have uncovered significant changes in metabolism, resulting in the perspective that COVID-19 is a metabolic disease. Reprogramming of amino acid, glucose, cholesterol and fatty acid is distinctive characteristic of COVID-19 infection. These metabolic changes in COVID-19 have a critical role not only in producing energy and virus constituent elements, but also in regulating immune response, offering new insights into COVID-19 pathophysiology. Remarkably, metabolic reprogramming provides great opportunities for developing novel biomarkers and therapeutic agents for COVID-19 infection. Such novel agents are expected to be effective adjuvant therapies. In this review, we integrate present studies about major metabolic reprogramming in COVID-19, as well as the possibility of targeting reprogrammed metabolism to combat virus infection.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Metabolic Networks and Pathways , Amino Acids/metabolism , Cholesterol/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Humans , Hypoxia-Inducible Factor 1/metabolism
9.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1463705

ABSTRACT

(1) Background: Sepsis is one of the most common critical care illnesses with increasing survivorship. The quality of life in sepsis survivors is adversely affected by several co-morbidities, including increased incidence of dementia, stroke, cardiac disease and at least temporary deterioration in cognitive dysfunction. One of the potential explanations for their progression is the persistence of lipid profile abnormalities induced during acute sepsis into recovery, resulting in acceleration of atherosclerosis. (2) Methods: This is a targeted review of the abnormalities in the long-term lipid profile abnormalities after sepsis; (3) Results: There is a well-established body of evidence demonstrating acute alteration in lipid profile (HDL-c ↓↓, LDL-C -c ↓↓). In contrast, a limited number of studies demonstrated depression of HDL-c levels with a concomitant increase in LDL-C -c in the wake of sepsis. VLDL-C -c and Lp(a) remained unaltered in few studies as well. Apolipoprotein A1 was altered in survivors suggesting abnormalities in lipoprotein metabolism concomitant to overall lipoprotein abnormalities. However, most of the studies were limited to a four-month follow-up and patient groups were relatively small. Only one study looked at the atherosclerosis progression in sepsis survivors using clinical correlates, demonstrating an acceleration of plaque formation in the aorta, and a large metanalysis suggested an increase in the risk of stroke or acute coronary event between 3% to 9% in sepsis survivors. (4) Conclusions: The limited evidence suggests an emergence and persistence of the proatherogenic lipid profile in sepsis survivors that potentially contributes, along with other factors, to the clinical sequel of atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/metabolism , Lipoproteins/metabolism , Sepsis/metabolism , Apolipoproteins/metabolism , Atherosclerosis/complications , Cholesterol, HDL/metabolism , Cholesterol, LDL/metabolism , Disease Progression , Humans , Sepsis/complications , Triglycerides/metabolism
10.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1438626

ABSTRACT

The transmissible respiratory disease COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide since its first reported outbreak in December of 2019 in Wuhan, China. Since then, multiple studies have shown an inverse correlation between the levels of high-density lipoprotein (HDL) particles and the severity of COVID-19, with low HDL levels being associated with an increased risk of severe outcomes. Some studies revealed that HDL binds to SARS-CoV-2 particles via the virus's spike protein and, under certain conditions, such as low HDL particle concentrations, it facilitates SARS-CoV-2 binding to angiotensin-converting enzyme 2 (ACE2) and infection of host cells. Other studies, however, reported that HDL suppressed SARS-CoV-2 infection. In both cases, the ability of HDL to enhance or suppress virus infection appears to be dependent on the expression of the HDL receptor, namely, the Scavenger Receptor Class B type 1 (SR-B1), in the target cells. SR-B1 and HDL represent crucial mediators of cholesterol metabolism. Herein, we review the complex role of HDL and SR-B1 in SARS-CoV-2-induced disease. We also review recent advances in our understanding of HDL structure, properties, and function during SARS-CoV-2 infection and the resulting COVID-19 disease.


Subject(s)
COVID-19/metabolism , Cholesterol/metabolism , Lipoproteins, HDL/metabolism , SARS-CoV-2/physiology , Animals , COVID-19/blood , COVID-19/diagnosis , Cholesterol/blood , Host-Pathogen Interactions , Humans , Lipoproteins, HDL/blood , Receptors, Lipoprotein/metabolism , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism
11.
Brief Bioinform ; 22(2): 1466-1475, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343667

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, causing significant mortality. There is a mechanistic relationship between intracellular coronavirus replication and deregulated autophagosome-lysosome system. We performed transcriptome analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and identified the aberrant upregulation of genes in the lysosome pathway. We further determined the capability of two circulating markers, namely microtubule-associated proteins 1A/1B light chain 3B (LC3B) and (p62/SQSTM1) p62, both of which depend on lysosome for degradation, in predicting the emergence of moderate-to-severe disease in COVID-19 patients requiring hospitalization for supplemental oxygen therapy. Logistic regression analyses showed that LC3B was associated with moderate-to-severe COVID-19, independent of age, sex and clinical risk score. A decrease in LC3B concentration <5.5 ng/ml increased the risk of oxygen and ventilatory requirement (adjusted odds ratio: 4.6; 95% CI: 1.1-22.0; P = 0.04). Serum concentrations of p62 in the moderate-to-severe group were significantly lower in patients aged 50 or below. In conclusion, lysosome function is deregulated in PBMCs isolated from COVID-19 patients, and the related biomarker LC3B may serve as a novel tool for stratifying patients with moderate-to-severe COVID-19 from those with asymptomatic or mild disease. COVID-19 patients with a decrease in LC3B concentration <5.5 ng/ml will require early hospital admission for supplemental oxygen therapy and other respiratory support.


Subject(s)
COVID-19/virology , Leukocytes, Mononuclear/metabolism , Lysosomes/metabolism , Microtubule-Associated Proteins/blood , SARS-CoV-2/metabolism , Adult , Autophagy , Biomarkers/blood , COVID-19/blood , Cell Cycle , Cholesterol/metabolism , Female , Humans , Male , Middle Aged , RNA-Binding Proteins/blood , Real-Time Polymerase Chain Reaction , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction
12.
Biochimie ; 179: 247-256, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1326923

ABSTRACT

Viruses, including the novel coronavirus SARS-CoV-2, redirect infected cell metabolism to their own purposes. After binding to its receptor angiotensin-converting enzyme 2 (ACE2) on the cell surface, the SARS-CoV-2 is taken up by receptor-mediated endocytosis ending in the acidic endolysosomal compartment. The virus hijacks the endosomal machinery leading to fusion of viral and endosomal membranes and release of the viral RNA into the cytosol. This mini-review specifically highlights the membrane lipid organization of the endosomal system focusing on the unconventional and late endosome/lysosome-specific phospholipid, bis(monoacylglycero)phosphate (BMP). BMP is enriched in alveolar macrophages of lung, one of the target tissue of SARS-CoV-2. This review details the BMP structure, its unsaturated fatty acid composition and fusogenic properties that are essential for the highly dynamic formation of the intraluminal vesicles inside the endosomes. Interestingly, BMP is necessary for infection and replication of enveloped RNA virus such as SARS-CoV-1 and Dengue virus. We also emphasize the role of BMP in lipid sorting and degradation, especially cholesterol transport in cooperation with Niemann Pick type C proteins (NPC 1 and 2) and with some oxysterol-binding protein (OSBP)-related proteins (ORPs) as well as in sphingolipid degradation. Interestingly, numerous virus infection required NPC1 as well as ORPs along the endocytic pathway. Furthermore, BMP content is increased during pathological endosomal lipid accumulation in various lysosomal storage disorders. This is particularly important knowing the high percentage of patients with metabolic disorders among the SARS-CoV-2 infected patients presenting severe forms of COVID-19.


Subject(s)
Endocytosis , Host Microbial Interactions , Lysophospholipids/metabolism , Monoglycerides/metabolism , SARS-CoV-2/physiology , Cholesterol/metabolism , Homeostasis , Humans
13.
Biochimie ; 189: 51-64, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1275154

ABSTRACT

The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.


Subject(s)
Antiviral Agents/therapeutic use , Atorvastatin/therapeutic use , COVID-19 , Cholesterol/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Membrane Microdomains/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/drug therapy , COVID-19/metabolism , Humans
14.
Int J Mol Sci ; 22(11)2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1256567

ABSTRACT

High-density lipoproteins (HDLs) are a class of blood particles, principally involved in mediating reverse cholesterol transport from peripheral tissue to liver. Omics approaches have identified crucial mediators in the HDL proteomic and lipidomic profile, which are involved in distinct pleiotropic functions. Besides their role as cholesterol transporter, HDLs display anti-inflammatory, anti-apoptotic, anti-thrombotic, and anti-infection properties. Experimental and clinical studies have unveiled significant changes in both HDL serum amount and composition that lead to dysregulated host immune response and endothelial dysfunction in the course of sepsis. Most SARS-Coronavirus-2-infected patients admitted to the intensive care unit showed common features of sepsis disease, such as the overwhelmed systemic inflammatory response and the alterations in serum lipid profile. Despite relevant advances, episodes of mild to moderate acute kidney injury (AKI), occurring during systemic inflammatory diseases, are associated with long-term complications, and high risk of mortality. The multi-faceted relationship of kidney dysfunction with dyslipidemia and inflammation encourages to deepen the clarification of the mechanisms connecting these elements. This review analyzes the multifaced roles of HDL in inflammatory diseases, the renal involvement in lipid metabolism, and the novel potential HDL-based therapies.


Subject(s)
COVID-19/pathology , Lipoproteins, HDL/metabolism , Sepsis/pathology , Acute Kidney Injury/etiology , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Cholesterol/metabolism , Complement System Proteins/metabolism , Humans , Lipid Metabolism , Lipoproteins, HDL/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sepsis/complications , Sepsis/metabolism , Virus Internalization
15.
Int J Mol Sci ; 22(6)2021 Mar 11.
Article in English | MEDLINE | ID: covidwho-1143517

ABSTRACT

The interactions at the atomic level between small molecules and the main components of cellular plasma membranes are crucial for elucidating the mechanisms allowing for the entrance of such small species inside the cell. We have performed molecular dynamics and metadynamics simulations of tryptophan, serotonin, and melatonin at the interface of zwitterionic phospholipid bilayers. In this work, we will review recent computer simulation developments and report microscopic properties, such as the area per lipid and thickness of the membranes, atomic radial distribution functions, angular orientations, and free energy landscapes of small molecule binding to the membrane. Cholesterol affects the behaviour of the small molecules, which are mainly buried in the interfacial regions. We have observed a competition between the binding of small molecules to phospholipids and cholesterol through lipidic hydrogen-bonds. Free energy barriers that are associated to translational and orientational changes of melatonin have been found to be between 10-20 kJ/mol for distances of 1 nm between melatonin and the center of the membrane. Corresponding barriers for tryptophan and serotonin that are obtained from reversible work methods are of the order of 10 kJ/mol and reveal strong hydrogen bonding between such species and specific phospholipid sites. The diffusion of tryptophan and melatonin is of the order of 10-7 cm2/s for the cholesterol-free and cholesterol-rich setups.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Cholesterol/chemistry , Dimyristoylphosphatidylcholine/chemistry , Melatonin/chemistry , Serotonin/chemistry , Tryptophan/chemistry , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Cholesterol/metabolism , Dimyristoylphosphatidylcholine/metabolism , Hydrogen Bonding , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Melatonin/metabolism , Molecular Dynamics Simulation , Serotonin/metabolism , Solutions , Static Electricity , Thermodynamics , Tryptophan/metabolism , Water/chemistry
16.
Brief Bioinform ; 22(2): 1466-1475, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1096499

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, causing significant mortality. There is a mechanistic relationship between intracellular coronavirus replication and deregulated autophagosome-lysosome system. We performed transcriptome analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and identified the aberrant upregulation of genes in the lysosome pathway. We further determined the capability of two circulating markers, namely microtubule-associated proteins 1A/1B light chain 3B (LC3B) and (p62/SQSTM1) p62, both of which depend on lysosome for degradation, in predicting the emergence of moderate-to-severe disease in COVID-19 patients requiring hospitalization for supplemental oxygen therapy. Logistic regression analyses showed that LC3B was associated with moderate-to-severe COVID-19, independent of age, sex and clinical risk score. A decrease in LC3B concentration <5.5 ng/ml increased the risk of oxygen and ventilatory requirement (adjusted odds ratio: 4.6; 95% CI: 1.1-22.0; P = 0.04). Serum concentrations of p62 in the moderate-to-severe group were significantly lower in patients aged 50 or below. In conclusion, lysosome function is deregulated in PBMCs isolated from COVID-19 patients, and the related biomarker LC3B may serve as a novel tool for stratifying patients with moderate-to-severe COVID-19 from those with asymptomatic or mild disease. COVID-19 patients with a decrease in LC3B concentration <5.5 ng/ml will require early hospital admission for supplemental oxygen therapy and other respiratory support.


Subject(s)
COVID-19/virology , Leukocytes, Mononuclear/metabolism , Lysosomes/metabolism , Microtubule-Associated Proteins/blood , SARS-CoV-2/metabolism , Adult , Autophagy , Biomarkers/blood , COVID-19/blood , Cell Cycle , Cholesterol/metabolism , Female , Humans , Male , Middle Aged , RNA-Binding Proteins/blood , Real-Time Polymerase Chain Reaction , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction
17.
Biochemistry ; 60(8): 559-562, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1078275

ABSTRACT

Membrane fusion is an important step for the entry of the lipid-sheathed viruses into the host cells. The fusion process is being carried out by fusion proteins present in the viral envelope. The class I virus contains a 20-25 amino acid sequence at its N-terminal of the fusion domain, which is instrumental in fusion and is called as a "fusion peptide". However, severe acute respiratory syndrome (SARS) coronaviruses contain more than one fusion peptide sequences. We have shown that the internal fusion peptide 1 (IFP1) of SARS-CoV-2 is far more efficient than its N-terminal counterpart (FP) to induce hemifusion between small unilamellar vesicles. Moreover, the ability of IFP1 to induce hemifusion formation increases dramatically with growing cholesterol content in the membrane. Interestingly, IFP1 is capable of inducing hemifusion but fails to open the pore.


Subject(s)
Cholesterol/metabolism , Membrane Fusion/physiology , Peptide Fragments/metabolism , SARS-CoV-2/metabolism , Amino Acid Sequence , COVID-19/genetics , COVID-19/metabolism , Cholesterol/genetics , Humans , Peptide Fragments/genetics , Phosphatidylcholines/genetics , Phosphatidylcholines/metabolism , SARS-CoV-2/genetics , Virus Internalization
18.
Biochim Biophys Acta Biomembr ; 1863(6): 183584, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1071093

ABSTRACT

This work investigates how docosahexaenoic acid (DHA) modifies the effect of Cholesterol (Chol) on the structural and dynamical properties of dipalmitoylphosphatidylcholine (DPPC) membrane. We employ low-cost and non-invasive methods: zeta potential (ZP), conductivity, density, and ultrasound velocity, complemented by molecular dynamics simulations. Our studies reveal that 30% of DHA added to the DPPC-Chol system tends to revert Chol action on a model lipid bilayer. Results obtained in this work shed light on the effect of polyunsaturated fatty acids - particularly DHA - on lipid membranes, with potential preventive applications in many diseases, e.g. neuronal as, Alzheimer's disease, and viral, as Covid-19.


Subject(s)
Cholesterol/metabolism , Docosahexaenoic Acids/metabolism , Lipid Bilayers/metabolism , Phosphatidylcholines/metabolism , Liposomes , Molecular Structure , Temperature , Ultrasonic Waves
19.
Cell ; 184(1): 106-119.e14, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064913

ABSTRACT

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.


Subject(s)
COVID-19/genetics , Coronavirus Infections/genetics , Coronavirus/physiology , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , A549 Cells , Animals , Biosynthetic Pathways/drug effects , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cholesterol/biosynthesis , Cholesterol/metabolism , Cluster Analysis , Clustered Regularly Interspaced Short Palindromic Repeats , Common Cold/genetics , Common Cold/virology , Coronavirus/classification , Coronavirus Infections/virology , Gene Knockout Techniques , Host-Pathogen Interactions/drug effects , Humans , Mice , Phosphatidylinositols/biosynthesis , Vero Cells , Virus Internalization/drug effects , Virus Replication
20.
Antiviral Res ; 186: 104990, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064808

ABSTRACT

The endocytic pathway is a common strategy that several highly pathogenic viruses use to enter into the cell. To demonstrate the usefulness of this pathway as a common target for the development of broad-spectrum antivirals, the inhibitory effect of drug compounds targeting endosomal membrane proteins were investigated. This study entailed direct comparison of drug effectiveness against animal and human pathogenic viruses, namely Ebola (EBOV), African swine fever virus (ASFV), and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A panel of experimental and FDA-approved compounds targeting calcium channels and PIKfyve at the endosomal membrane caused potent reductions of entry up to 90% in SARS-CoV-2 S-protein pseudotyped retrovirus. Similar inhibition was observed against transduced EBOV glycoprotein pseudovirus and ASFV. SARS-CoV-2 infection was potently inhibited by selective estrogen receptor modulators in cells transduced with pseudovirus, among them Raloxifen inhibited ASFV with very low 50% inhibitory concentration. Finally, the mechanism of the inhibition caused by the latter in ASFV infection was analyzed. Overall, this work shows that cellular proteins related to the endocytic pathway can constitute suitable cellular targets for broad range antiviral compounds.


Subject(s)
African Swine Fever Virus/drug effects , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Endosomes/drug effects , SARS-CoV-2/drug effects , Virus Internalization/drug effects , African Swine Fever Virus/physiology , Animals , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Cholesterol/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Ebolavirus/physiology , Endocytosis/drug effects , Endosomes/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Raloxifene Hydrochloride/pharmacology , Receptors, Estrogen/metabolism , SARS-CoV-2/physiology , Selective Estrogen Receptor Modulators/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL