Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Molecules ; 27(7)2022 Apr 04.
Article in English | MEDLINE | ID: covidwho-1776291

ABSTRACT

Following the spread of the COVID-19 pandemic crisis, a race was initiated to find a successful regimen for postinfections. Among those trials, a recent study declared the efficacy of an antiviral combination of favipiravir (FAV) and molnupiravir (MLP). The combined regimen helped in a successful 60% eradication of the SARS-CoV-2 virus from the lungs of studied hamster models. Moreover, it prevented viral transmission to cohosted sentinels. Because both medications are orally bioavailable, the coformulation of FAV and MLP can be predicted. The developed study is aimed at developing new green and simple methods for the simultaneous determination of FAV and MLP and then at their application in the study of their dissolution behavior if coformulated together. A green micellar HPLC method was validated using an RP-C18 core-shell column (5 µm, 150 × 4.6 mm) and an isocratic mixed micellar mobile phase composed of 0.1 M SDS, 0.01 M Brij-35, and 0.02 M monobasic potassium phosphate mixture and adjusted to pH 3.1 at 1.0 mL min-1 flow rate. The analytes were detected at 230 nm. The run time was less than five minutes under the optimized chromatographic conditions. Four other multivariate chemometric model methods were developed and validated, namely, classical least square (CLS), principal component regression (PCR), partial least squares (PLS-1), and genetic algorithm-partial least squares (GA-PLS-1). The developed models succeeded in resolving the great similarity and overlapping in the FAV and MLP UV spectra unlike the traditional univariate methods. All methods were organic solvent-free, did not require extraction or derivatization steps, and were applied for the construction of the simultaneous dissolution profile for FAV tablets and MLP capsules. The methods revealed that the amount of the simultaneously released cited drugs increases up until reaching a plateau after 15 and 20 min for FAV and MLP, respectively. The greenness was assessed on GAPI and found to be in harmony with green analytical chemistry concepts.


Subject(s)
COVID-19 , Amides , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Chromatography, High Pressure Liquid/methods , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Micelles , Pandemics , Pyrazines , Reproducibility of Results , SARS-CoV-2 , Spectrophotometry, Ultraviolet/methods
2.
Molecules ; 27(5)2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-1732129

ABSTRACT

Quality control of human immunoglobulin formulations produced by caprylic acid precipitation necessitates a simple, rapid, and accurate method for determination of residual caprylic acid. A high-performance liquid chromatography method for that purpose was developed and validated. The method involves depletion of immunoglobulins, the major interfering components that produce high background noise, by precipitation with acetonitrile (1:1, v/v). Chromatographic analysis of caprylic acid, preserved in supernatant with no loss, was performed using a reverse-phase C18 column (2.1 × 150 mm, 3 µm) as a stationary phase and water with 0.05% TFA-acetonitrile (50:50, v/v) as a mobile phase at a flow rate of 0.2 mL/min and run time of 10 min. The developed method was successfully validated according to the ICH guidelines. The validation parameters confirmed that method was linear, accurate, precise, specific, and able to provide excellent separation of peaks corresponding to caprylic acid and the fraction of remaining immunoglobulins. Furthermore, a 24-1 fractional factorial design was applied in order to test the robustness of developed method. As such, the method is highly suitable for the quantification of residual caprylic acid in formulations of human immunoglobulins for therapeutic use, as demonstrated on samples produced by fractionation of convalescent anti-SARS-CoV-2 human plasma at a laboratory scale. The obtained results confirmed that the method is convenient for routine quality control.


Subject(s)
Caprylates/analysis , Chromatography, High Pressure Liquid/methods , Drug Compounding , Immunoglobulins/chemistry , COVID-19/therapy , COVID-19/virology , Caprylates/chemistry , Humans , Immunization, Passive/methods , Immunoglobulins/therapeutic use , Limit of Detection , Reproducibility of Results , SARS-CoV-2/isolation & purification
3.
Molecules ; 27(3)2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1667252

ABSTRACT

Aspirin (also known as acetylsalicylic acid) is a drug intended to treat fever, pain, or inflammation. Treatment of moderate to severe cases of COVID-19 using aspirin along with dexamethasone has gained major attention globally in recent times. Thus, the purpose of this study was to use High-Performance Liquid Chromatography (HPLC) to evaluate the in vitro inhibition of CYP3A2 enzyme activity using aspirin in rat liver microsomes (RLMs). In this study, an efficient and sensitive HPLC method was developed using a reversed phase C18 column (X Bridge 4.6 mm × 150 mm, 3.5 µm) at 243 nm using acetonitrile and water (70:30 v/v). The linearity (r2 > 0.999), precision (<15%), accuracy and recovery (80-120%), limit of detection (5.60 µM and 0.06 µM), limit of quantification (16.98 µM and 0.19 µM), and stability of the newly developed method were validated for dexamethasone and 6ß-hydroxydexamethasone, respectively, following International Conference on Harmonization (ICH) guidelines. This method was applied in vitro to measure CYP3A2 activity. The results showed that aspirin competitively inhibits 6ß-hydroxylation (CYP3A2 activity) with an inhibition constant (Ki) = 95.46 µM and the concentration of the inhibitor causing 50% inhibition of original enzyme activity (IC50) = 190.92 µM. This indicated that there is a minimal risk of toxicity when dexamethasone and aspirin are co-administrated and a very low risk of toxicity and drug interaction with drugs that are a substrate for CYP3A2 in healthcare settings.


Subject(s)
Aspirin/pharmacology , Chromatography, High Pressure Liquid/methods , Cytochrome P-450 CYP3A/metabolism , Animals , Aspirin/chemistry , COVID-19/drug therapy , Cytochrome P-450 CYP3A/drug effects , Cytochrome P-450 Enzyme Inhibitors/metabolism , Cytochrome P-450 Enzyme System/metabolism , Dexamethasone/analogs & derivatives , Dexamethasone/pharmacology , Male , Microsomes, Liver/metabolism , Pharmaceutical Preparations/metabolism , Protein Isoforms/metabolism , Rats , Rats, Sprague-Dawley , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
4.
J Sep Sci ; 45(6): 1162-1169, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1616030

ABSTRACT

Qingfei Paidu Decoction is a Chinese medicine formula that has been proved effective in the treatment of coronavirus disease 2019. However, the comprehensive separation and characterization of Qingfei Paidu Decoction are of a great challenge due to the diversity of chemical components in a wide range of polarity. In this study, a triplex off-line two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry is developed for the analysis of Qingfei Paidu Decoction. One reversed-phase liquid chromatography×hydrophilic interaction liquid chromatography system and two reversed-phase liquid chromatography×reversed phase liquid chromatography systems were constructed to separate polar components and weak-polar components in Qingfei Paidu Decoction, respectively. Benefiting from the good orthogonality of two-dimensional liquid chromatography and high sensitivity of quadrupole time-of-flight MS, chemical components with different polarities and content were discovered. A total of 749 peaks were detected in positive and negative ionization mode and presented as a four-dimensional data plot. Meanwhile, 498 compounds belonging to 14 categories were tentatively identified. These results provide good supplementary to elucidate the material basis of Qingfei Paidu Decoction. The triplex off-line two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry strategy can be a powerful and efficient tool for the separation and characterization of chemical substances in traditional Chinese medicine formulas.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drugs, Chinese Herbal/analysis , Humans , Mass Spectrometry/methods
5.
Carbohydr Polym ; 280: 119006, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1588175

ABSTRACT

Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta) is an edible seaweed attracting great attention for its expansion of farming scale and increasing consumption in these years. In the present study, a sulfated polysaccharide (CLSP-2) was isolated and separated from C. lentillifera, and its chemical structure was elucidated by a series of chemical and spectroscopic methods. Among these methods, mild acid hydrolysis and photocatalytic degradation were applied to release mono- and oligo-saccharide fragments which were further identified by HPLC-MSn analysis, affording the information of the sugar sequences and the sulfate substitution in CLSP-2. Results indicated that the backbone of CLSP-2 was constructed of →6)-ß-Manp-(1→ with sulfated branches at C2, which were comprised of prevalent →3)-ß-Galp4S-(1→, →3)-ß-Galp2,4S-(1→, and minor Xyl. In addition, the virus neutralization assay revealed that CLSP-2 could effectively protect HeLa cells against SARS-CoV-2 infection with an IC50 of 48.48 µg/mL. Hence, the present study suggests CLSP-2 as a promising agent against SARS-CoV-2.


Subject(s)
COVID-19/virology , Caulerpa/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid/methods , HeLa Cells , Humans , Hydrolysis , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Molecular Weight , Polysaccharides/analysis , SARS-CoV-2 , Seaweed/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Sulfates/chemistry
6.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1189: 123087, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1587335

ABSTRACT

Favipiravir is a promising antiviral agent that has been recently approved for treatment of COVID-19 infection. In this study, a menthol-assisted homogenous liquid-liquid microextraction method has been developed for favipiravir determination in human plasma using HPLC/UV. The different factors that could affect the extraction efficiency were studied, including extractant type, extractant volume, menthol amount and vortex time. The optimum extraction efficiency was achieved using 300 µL of tetrahydrofuran, 30 mg of menthol and vortexing for 1 min before centrifuging the sample for 5 min at 3467g. Addition of menthol does not only induce phase separation, but also helps to form reverse micelles to facilitate extraction. The highly polar favipiravir molecules would be incorporated into the hydrophilic core of the formed reverse micelle to be extracted by the non-polar organic extractant. The method was validated according to the FDA bioanalytical method guidelines. The developed method was found linear in the concentration range of 0.1 to 100 µg/mL with a coefficient of determination of 0.9992. The method accuracy and precision were studied by calculating the recovery (%) and the relative standard deviation (%), respectively. The recovery (%) was in the range of 97.1-103.9%, while the RSD (%) values ranged between 2.03 and 8.15 %. The developed method was successfully applied in a bioequivalence study of Flupirava® 200 mg versus Avigan® 200 mg, after a single oral dose of favipiravir administered to healthy adult volunteers. The proposed method was simple, cheap, more eco-friendly and sufficiently sensitive for biomedical application.


Subject(s)
Amides/isolation & purification , Antiviral Agents/isolation & purification , COVID-19/drug therapy , Liquid Phase Microextraction/methods , Pyrazines/isolation & purification , Amides/administration & dosage , Amides/blood , Antiviral Agents/administration & dosage , Antiviral Agents/blood , COVID-19/blood , COVID-19/virology , Chromatography, High Pressure Liquid/methods , Humans , Liquid Phase Microextraction/instrumentation , Menthol/chemistry , Pyrazines/administration & dosage , Pyrazines/blood , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
7.
MAbs ; 14(1): 2005507, 2022.
Article in English | MEDLINE | ID: covidwho-1585297

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a serious public health crisis worldwide, and considering the novelty of the disease, preventative and therapeutic measures alike are urgently needed. To accelerate such efforts, the development of JS016, a neutralizing monoclonal antibody directed against the SARS-CoV-2 spike protein, was expedited from a typical 12- to 18-month period to a 4-month period. During this process, transient Chinese hamster ovary cell lines are used to support preclinical, investigational new drug-enabling toxicology research, and early Chemistry, Manufacturing and Controls development; mini-pool materials to supply Phase 1 clinical trials; and a single-clone working cell bank for late-stage and pivotal clinical trials were successively adopted. Moreover, key process performance and product quality investigations using a series of orthogonal and state-of-the-art techniques were conducted to demonstrate the comparability of products manufactured using these three processes, and the results indicated that, despite observed variations in process performance, the primary and high-order structures, purity and impurity profiles, biological and immunological functions, and degradation behaviors under stress conditions were largely comparable. The study suggests that, in particular situations, this strategy can be adopted to accelerate the development of therapeutic biopharmaceuticals and their access to patients.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antibody Affinity/immunology , Antibody Specificity/immunology , CHO Cells , COVID-19/prevention & control , COVID-19/virology , Chromatography, High Pressure Liquid/methods , Circular Dichroism , Clone Cells , Cricetinae , Cricetulus , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Isoelectric Point , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism
8.
STAR Protoc ; 3(1): 101051, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1575581

ABSTRACT

Here we describe a protocol for identifying metabolites in respiratory specimens of patients that are SARS-CoV-2 positive, SARS-CoV-2 negative, or H1N1 positive. This protocol provides step-by-step instructions on sample collection from patients, followed by metabolite extraction. We use ultra-high-pressure liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS) for data acquisition and describe the steps for data analysis. The protocol was standardized with specific customization for SARS-CoV-2-containing respiratory specimens. For complete details on the use and execution of this protocol, please refer to Maras et al. (2021).


Subject(s)
COVID-19/diagnosis , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , COVID-19/metabolism , Computational Biology , Diagnostic Tests, Routine , Gene Expression Profiling , Genetic Techniques , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/pathogenicity , Mass Spectrometry/methods , Metabolome , Reference Standards , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Specimen Handling/methods
9.
J Sep Sci ; 44(22): 4064-4081, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1525471

ABSTRACT

Coronil is a tri-herbal medicine consisting of immunomodulatory herbs, Withania somnifera, Tinospora cordifolia, and Ocimum sanctum. The formulation has been developed specifically as the supporting measure for COVID-19. Current investigation is aimed to identify the phytoconstituents in Coronil utilizing ultra-performance liquid chromatography-mass spectrometry coupled with quadrapole time of flight and to establish its quality standardization using high-performance liquid chromatography and high performance thin layer chromatography. Out of 52 identified compounds, cordifolioside A, magnoflorine, rosmarinic acid, palmatine, withanoside IV, withanoside V, withanone, betulinic acid, and ursolic acid were quantified in 15 different batches of Coronil on validated high-performance liquid chromatography method. Similarly, withanoside IV, withaferin A, magnoflorine, palmatine, rosmarinic acid, and ursolic acid were analyzed on high performance thin layer chromatography. Methods were validated as per the International Council for Harmonization guidelines. These methods were specific, reproducible, accurate, precise, linear (r2 > 0.99), and percent recoveries were within the prescribed limits. The content uniformity of Coronil was ascertained using Fourier transform infrared spectroscopy. Results indicated that, validated methods were fit for their intended use and the analytical quality of Coronil was consistent across the batches. Taken together, these developed methods could drive the analytical quality control of herbal medicines such as Coronil, and other formulations containing similar chemical profiles.


Subject(s)
COVID-19/drug therapy , Chromatography, High Pressure Liquid/methods , Herbal Medicine , Mass Spectrometry/methods , Phytochemicals/analysis , COVID-19/virology , Chromatography, Thin Layer/methods , Humans , Quality Control , SARS-CoV-2/isolation & purification , Spectroscopy, Fourier Transform Infrared/methods
10.
J Sep Sci ; 45(2): 456-467, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1499288

ABSTRACT

Chloroquine and hydroxychloroquine have been studied since the early clinical treatment of SARS-CoV-2 outbreak. Considering these two chiral drugs are currently in use as the racemate, high-expression angiotensin-converting enzyme 2 cell membrane chromatography was established for investigating the differences of two paired enantiomers binding to angiotensin-converting enzyme 2 receptor. Molecular docking assay and detection of SARS-CoV-2 spike pseudotyped virus entry into angiotensin-converting enzyme 2-HEK293T cells were also conducted for further investigation. Results showed that each single enantiomer could bind well to angiotensin-converting enzyme 2, but there were differences between the paired enantiomers and corresponding racemate in frontal analysis. R-Chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine. Moreover, each single enantiomer was proved effective compared with the control group; compared with S-chloroquine or the racemate, R-chloroquine showed better inhibitory effects at the same concentration. As for hydroxychloroquine, R-hydroxychloroquine showed better inhibitory effects than S-hydroxychloroquine, but it slightly worse than the racemate. In conclusion, R-chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability and inhibitory effects compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine (racemate), while the effect of preventing SARS-CoV-2 pseudovirus from entering cells was weaker than R-hydroxychloroquine/hydroxychloroquine (racemate).


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/drug effects , Chloroquine/chemistry , Chloroquine/pharmacology , Chromatography, High Pressure Liquid/methods , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/virology , HEK293 Cells , Humans , In Vitro Techniques , Molecular Docking Simulation , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/chemistry , Receptors, Virus/drug effects , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Solvents , Stereoisomerism , Virus Internalization
11.
Assay Drug Dev Technol ; 19(8): 475-483, 2021.
Article in English | MEDLINE | ID: covidwho-1475724

ABSTRACT

Corona virus disease 2019 (COVID-19) has posed a mounting threat to public health with worldwide outbreak caused by a novel virus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, remdesivir (RDV) has been approved by Food and Drug Administration (FDA) for treating COVID-19 patients ≥12 years old requiring hospitalization. To the best of our knowledge, a simple method to estimate RDV in the pharmaceutical formulations using high-performance liquid chromatography (HPLC) is still unexplored, highlighting the need for a precise analytical method for its quantification. The prime purpose of the current investigation was to develop and validate a well-grounded HPLC method for quantification of RDV in pharmaceutical formulations. The best chromatogram was obtained by means of an Inertsil ODS-3V column using a mobile phase of milli-Q water modified to pH 3.0 with o-phosphoric acid and acetonitrile (50:50, % v/v) at a flow rate of 1.2 mL/min and wavelength of detector set at 246 nm with retention time being achieved at 6.0 min. The method was validated following International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2 (R1) guidelines for various parameters such as specificity and selectivity, system suitability, linearity, precision, accuracy, limits of detection and quantification, and robustness. The method developed for the quantification of RDV was found to be linear in the concentration range of 25-2,500 ng/mL with limit of detection and limit of quantification of 1.95 and 6.49 ng/mL, respectively. Assay value of 102% ± 1% was achieved for marketed injectable dosage form when estimated by the validated method. Therefore, in this study a simple, rapid, sensitive, selective, accurate, precise, and robust analytical method was developed and validated for the quantification of RDV using HPLC. The established method was successfully employed for quantification of RDV in marketed pharmaceutical formulation.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Administration, Intravenous/standards , Alanine/analogs & derivatives , Antiviral Agents/administration & dosage , Antiviral Agents/analysis , COVID-19/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analysis , Adenosine Monophosphate/chemistry , Administration, Intravenous/methods , Alanine/administration & dosage , Alanine/analysis , Alanine/chemistry , Antiviral Agents/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Dosage Forms/standards , Humans , Reproducibility of Results
12.
Molecules ; 25(21)2020 Nov 02.
Article in English | MEDLINE | ID: covidwho-1389462

ABSTRACT

Zebrafish has been a reliable model system for studying human viral pathologies. SARS-CoV-2 viral infection has become a global chaos, affecting millions of people. There is an urgent need to contain the pandemic and develop reliable therapies. We report the use of a humanized zebrafish model, xeno-transplanted with human lung epithelial cells, A549, for studying the protective effects of a tri-herbal medicine Coronil. At human relevant doses of 12 and 58 µg/kg, Coronil inhibited SARS-CoV-2 spike protein, induced humanized zebrafish mortality, and rescued from behavioral fever. Morphological and cellular abnormalities along with granulocyte and macrophage accumulation in the swim bladder were restored to normal. Skin hemorrhage, renal cell degeneration, and necrosis were also significantly attenuated by Coronil treatment. Ultra-high-performance liquid chromatography (UHPLC) analysis identified ursolic acid, betulinic acid, withanone, withaferine A, withanoside IV-V, cordifolioside A, magnoflorine, rosmarinic acid, and palmatine as phyto-metabolites present in Coronil. In A549 cells, Coronil attenuated the IL-1ß induced IL-6 and TNF-α cytokine secretions, and decreased TNF-α induced NF-κB/AP-1 transcriptional activity. Taken together, we show the disease modifying immunomodulatory properties of Coronil, at human equivalent doses, in rescuing the pathological features induced by the SARS-CoV-2 spike protein, suggesting its potential use in SARS-CoV-2 infectivity.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Plant Extracts/therapeutic use , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Air Sacs/drug effects , Air Sacs/virology , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , COVID-19 , Chromatography, High Pressure Liquid/methods , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Disease Models, Animal , Fever/drug therapy , Fever/etiology , Hemorrhage/prevention & control , Humans , Interleukin-6/metabolism , Kidney/drug effects , Necrosis/pathology , Necrosis/prevention & control , Pandemics , Phytotherapy , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Respiratory Mucosa/transplantation , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/metabolism , Zebrafish
13.
Biomed Chromatogr ; 35(12): e5212, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1349236

ABSTRACT

Remdesivir (RDV) is the first antiviral drug, approved by the Food and Drug Administration, to treat severe acute respiratory syndrome coronavirus 2. RDV is a relatively new chemical entity, 'ester prodrug', with no reported stability profile. Due to the urgency of its use and thus fast production, it is important to develop a stability-indicating method for its assay. Chromatographic separation was carried out on a C18 column (250 × 4.6 mm, 5 µm) with dual detection: diode array at 240 nm and fluorescence at λex/em 245/390 nm. Isocratic elution of acetonitrile and distilled water (acidified with phosphoric acid, pH 4) in the ratio of 55:45 (v/v), respectively, was used. The linearity range using HPLC-diode array detection was 0.1-15 µg/mL, whereas that using fluorimetric detection was 0.05-15 µg/mL. As per the International Conference on Harmonization guidelines, RDV has been degraded by accelerated alkaline, acidic, neutral hydrolysis, oxidative, heat, and photolytic stress conditions. Possible degradation hypothesis of the parent molecule has been suggested and illustrated. The proposed methods have achieved selective determination of the intact drug with no peaks overlapping in all assumptions. Extensive degradation confirms threatened drug stability at thermal and basic hydrolytic stressing. The developed methods were fully validated and proved suitable for quality control routine analysis of RDV in raw material and pharmaceutical dosage forms.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemistry , COVID-19/drug therapy , Prodrugs/chemistry , Acetonitriles/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Drug Stability , Hot Temperature , Humans , Hydrolysis , Limit of Detection , Oxidation-Reduction , Photolysis
14.
Anal Bioanal Chem ; 413(23): 5811-5820, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1321733

ABSTRACT

Remdesivir is a nucleotide analog prodrug that has received much attention since the outbreak of the COVID-19 pandemic in December 2019. GS-441524 (Nuc) is the active metabolite of remdesivir and plays a pivotal role in the clinical treatment of COVID-19. Here, a robust HPLC-MS/MS method was developed to determine Nuc concentrations in rat plasma samples after a one-step protein precipitation process. Chromatographic separation was accomplished on Waters XBrige C18 column (50 × 2.1 mm, 3.5 µm) under gradient elution conditions. Multiple reaction monitoring transitions in electrospray positive ion mode were m/z 292.2 → 163.2 for Nuc and 237.1 → 194.1 for the internal standard (carbamazepine). The quantitative analysis method was fully validated in line with the United States Food and Drug Administration guidelines. The linearity, accuracy and precision, matrix effect, recovery, and stability results met the requirements of the guidelines. Uncertainty of measurement and incurred sample reanalysis were analyzed to further ensure the robustness and reproducibility of the method. This optimized method was successfully applied in a rat pharmacokinetics study of remdesivir (intravenously administration, 5 mg kg-1). The method can act as a basis for further pharmacokinetic and clinical efficacy investigations in patients with COVID-19. Graphical abstract.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Adenosine/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/blood , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Adenosine/blood , Adenosine/pharmacokinetics , Adenosine/standards , Adenosine Monophosphate/blood , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/standards , Alanine/blood , Alanine/pharmacokinetics , Alanine/standards , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/standards , Limit of Detection , Male , Quality Control , Rats , Rats, Sprague-Dawley , Reference Standards , Reproducibility of Results
15.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1179: 122862, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1313204

ABSTRACT

Niclosamide, which is an anti-tapeworm drug, was developed in 1958. However, recent studies have demonstrated the antiviral effects of niclosamide against the SARS-CoV-2 virus, which causes COVID-19. In this study, we developed and validated a quantitative analysis method for the determination of niclosamide in rat and dog plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and used this method for pharmacokinetic studies. Biological samples were prepared using the protein precipitation method with acetonitrile. Ibuprofen was used as an internal standard. The mobile phase used to quantify niclosamide in rat or dog plasma consisted of 10 mM ammonium formate in distilled water-acetonitrile (30:70, v/v) or 5 mM ammonium acetate-methanol (30:70, v/v). An XDB-phenyl column (5 µm, 2.1 × 50 mm) and a Kinetex® C18 column (5 µm, 2.1 × 500 mm) were used as reverse-phase liquid chromatography columns for rat and dog plasma analyses, respectively. Niclosamide and ibuprofen were detected under multiple reaction monitoring conditions using the electrospray ionization interface running in the negative ionization mode. Niclosamide presented linearity in the concentration ranges of 1-3000 ng/mL (r = 0.9967) and 1-1000 ng/mL (r = 0.9941) in rat and dog plasma, respectively. The intra- and inter-day precision values were < 7.40% and < 6.35%, respectively, for rat plasma, and < 3.95% and < 4.01%, respectively, for dog plasma. The intra- and inter-day accuracy values were < 4.59% and < 6.63%, respectively, for rat plasma, and < 12.1% and < 10.9%, respectively, for dog plasma. In addition, the recoveries of niclosamide ranged between 87.8 and 99.6% and 102-104% for rat and dog plasma, respectively. Niclosamide was stable during storage under various conditions (three freeze-thaw cycles, 6 h at room temperature, long-term, and processed samples). A reliable LC-MS/MS method for niclosamide detection was successfully used to perform pharmacokinetic studies in rats and dogs. Niclosamide presented dose-independent pharmacokinetics in the dose range of 0.3-3 mg/kg after intravenous administration, and drug exposure in rats and dogs after oral administration was very low. Additionally, niclosamide presented high plasma protein binding (>99.8%) and low metabolic stability. These results can be helpful for further developing and understanding the pharmacokinetic characteristics of niclosamide to expand its clinical use.


Subject(s)
Chromatography, High Pressure Liquid/methods , Niclosamide/blood , Tandem Mass Spectrometry/methods , Animals , Dogs , Humans , Male , Rats , Rats, Sprague-Dawley
16.
Ther Drug Monit ; 43(4): 570-576, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1305442

ABSTRACT

ABSTRACT: Therapeutic drug monitoring of hydroxychloroquine (HCQ) has been recommended to optimize the treatment of patients with COVID-19. The authors describe an ultrahigh-performance liquid chromatography tandem spectrometry method developed in a context of emergency, to analyze HCQ in both human plasma and blood samples. After adding the labeled internal standard and simple protein precipitation, plasma samples were analyzed using a C18 column. Blood samples required evaporation before analysis. The total chromatographic run time was 4 minutes (including 1.5 minutes of column equilibration). The assay was linear over the calibration range (r2 > 0.99) and up to 1.50 mcg/mL for the plasma samples (5.00 mcg/mL for the blood matrix). The limit of quantification was 0.0150 mcg/mL for plasma samples (0.05 mcg/mL blood matrix) with accuracy and precision ranging from 91.1% to 112% and from 0.750% to 11.1%, respectively. Intraday and interday precision and accuracy values were within 15.0%. No significant matrix effect was observed in the plasma or blood samples. This method was successfully applied to patients treated for COVID-19 infection. A simple and rapid ultrahigh-performance liquid chromatography tandem spectrometry method adapted to HCQ therapeutic drug monitoring in the context of SARS-CoV-2 infection was successfully developed and validated.


Subject(s)
COVID-19/drug therapy , Drug Monitoring/standards , Emergency Medical Services/standards , Hydroxychloroquine/blood , Tandem Mass Spectrometry/standards , Antirheumatic Agents/blood , Antirheumatic Agents/therapeutic use , COVID-19/blood , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Drug Monitoring/methods , Emergency Medical Services/methods , Humans , Hydroxychloroquine/therapeutic use , Pandemics , Tandem Mass Spectrometry/methods
17.
Clin Biochem ; 96: 56-62, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1305215

ABSTRACT

OBJECTIVES: Camostat mesilate is a drug that is being repurposed for new applications such as that against COVID-19 and prostate cancer. This induces a need for the development of an analytical method for the quantification of camostat and its metabolites in plasma samples. Camostat is, however, very unstable in whole blood and plasma due to its two ester bonds. The molecule is readily hydrolysed by esterases to 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA) and further to 4-guanidinobenzoic acid (GBA). For reliable quantification of camostat, a technique is required that can instantly inhibit esterases when blood samples are collected. DESIGN AND METHODS: An ultra-high-performance liquid chromatography-tandem mass spectrometry method (UHPLC-ESI-MS/MS) using stable isotopically labelled analogues as internal standards was developed and validated. Different esterase inhibitors were tested for their ability to stop the hydrolysis of camostat ester bonds. RESULTS: Both diisopropylfluorophosphate (DFP) and paraoxon were discovered as efficient inhibitors of camostat metabolism at 10 mM concentrations. No significant changes in camostat and GBPA concentrations were observed in fluoride-citrate-DFP/paraoxon-preserved plasma after 24 h of storage at room temperature or 4 months of storage at -20 °C and -80 °C. The lower limits of quantification were 0.1 ng/mL for camostat and GBPA and 0.2 ng/mL for GBA. The mean true extraction recoveries were greater than 90%. The relative intra-laboratory reproducibility standard deviations were at a maximum of 8% at concentrations of 1-800 ng/mL. The trueness expressed as the relative bias of the test results was within ±3% at concentrations of 1-800 ng/mL. CONCLUSIONS: A methodology was developed that preserves camostat and GBPA in plasma samples and provides accurate and sensitive quantification of camostat, GBPA and GBA by UHPLC-MS/MS.


Subject(s)
Blood Specimen Collection/methods , Chromatography, High Pressure Liquid/methods , Esters/blood , Guanidines/blood , Tandem Mass Spectrometry/methods , COVID-19/blood , COVID-19/drug therapy , Enzyme Inhibitors/pharmacology , Esterases/antagonists & inhibitors , Esterases/metabolism , Esters/metabolism , Esters/pharmacology , Guanidines/pharmacology , Humans , Hydrolysis/drug effects , Isoflurophate/chemistry , Isoflurophate/pharmacology , Paraoxon/blood , Paraoxon/chemistry , Paraoxon/pharmacology , Reproducibility of Results , SARS-CoV-2/isolation & purification
18.
Molecules ; 26(13)2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1288957

ABSTRACT

In the current work, a simple, economical, accurate, and precise HPLC method with UV detection was developed to quantify Favipiravir (FVIR) in spiked human plasma using acyclovir (ACVR) as an internal standard in the COVID-19 pandemic time. Both FVIR and ACVR were well separated and resolved on the C18 column using the mobile phase blend of methanol:acetonitrile:20 mM phosphate buffer (pH 3.1) in an isocratic mode flow rate of 1 mL/min with a proportion of 30:10:60 %, v/v/v. The detector wavelength was set at 242 nm. Maximum recovery of FVIR and ACVR from plasma was obtained with dichloromethane (DCM) as extracting solvent. The calibration curve was found to be linear in the range of 3.1-60.0 µg/mL with regression coefficient (r2) = 0.9976. However, with acceptable r2, the calibration data's heteroscedasticity was observed, which was further reduced using weighted linear regression with weighting factor 1/x. Finally, the method was validated concerning sensitivity, accuracy (Inter and Intraday's % RE and RSD were 0.28, 0.65 and 1.00, 0.12 respectively), precision, recovery (89.99%, 89.09%, and 90.81% for LQC, MQC, and HQC, respectively), stability (% RSD for 30-day were 3.04 and 1.71 for LQC and HQC, respectively at -20 °C), and carry-over US-FDA guidance for Bioanalytical Method Validation for researchers in the COVID-19 pandemic crisis. Furthermore, there was no significant difference for selectivity when evaluated at LLOQ concentration of 3 µg/mL of FVIR and relative to the blank.


Subject(s)
Amides/analysis , Amides/blood , Antiviral Agents/analysis , Antiviral Agents/blood , Biological Assay/methods , COVID-19/drug therapy , Chromatography, High Pressure Liquid/methods , Liquid-Liquid Extraction/methods , Pyrazines/analysis , Pyrazines/blood , Acyclovir/analysis , Acyclovir/blood , COVID-19/blood , Calibration , Drug Stability , Freezing , Humans , Reference Standards , Reproducibility of Results , Solvents/chemistry
19.
J Sep Sci ; 44(10): 2097-2112, 2021 May.
Article in English | MEDLINE | ID: covidwho-1130643

ABSTRACT

The metabolic profiles of Tanreqing injection, which is a traditional Chinese medicine recommended for complementary administration to treat a novel coronavirus, have remained unclear, which inhibit the understanding of the effective chemical compounds of Tanreqing injection. In this study, a sensitive high-performance liquid chromatography quadrupole time-of-flight mass spectrometry method was used to identify the compounds and metabolites in various biosamples, including plasma, bile, liver, lung, kidney, urine, and feces, following the intravenous administration of Tanreqing injection in rats. A total of 89 compounds were characterized in the biosamples of Tanreqing injection-treated rats including 25 precursor constituents and 64 metabolites. Nine flavonoid compounds, twelve phenolic acids, and four iridoid glycosides were identified in the rats. Their metabolites were mainly produced by glucuronidation, deglucuronidation, glycosylation, deglycosylation, methylation, demethylation, N-heterocyclisation, sulphation, dehydroxylation, decarboxylation, dehydration, hydroxylation, and corresponding recombination reactions. This study was the first to comprehensively investigate the metabolic profile of Tanreqing injection and provides a scientific basis to further elucidate the pharmacodynamic material basis and therapeutic mechanism of Tanreqing injection.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/metabolism , Tandem Mass Spectrometry/methods , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Injections, Intravenous , Medicine, Chinese Traditional , Rats , Rats, Sprague-Dawley , Tissue Distribution
20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1171: 122641, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1126911

ABSTRACT

Remdesivir, formerly GS-5734, has recently become the first antiviral drug approved by the U.S. Food and Drug Administration (FDA) to treat COVID-19, the disease caused by SARS-CoV-2. Therapeutic dosing and pharmacokinetic studies require a simple, sensitive, and selective validated assay to quantify drug concentrations in clinical samples. Therefore, we developed a rapid and sensitive LC-MS/MS assay for the quantification of remdesivir in human plasma with its deuterium-labeled analog, remdesivir-2H5, as the internal standard. Chromatographic separation was achieved on a Phenomenex® Synergi™ HPLC Fusion-RP (100 × 2 mm, 4 µm) column by gradient elution. Excellent accuracy and precision (<5.2% within-run variations and. <9.8% between-run variations) were obtained over the range of 0.5-5000 ng/mL. The assay met the FDA Bioanalytical Guidelines for selectivity and specificity, and low inter-matrix lot variability (<2.7%) was observed for extraction efficiency (77%) and matrix effect (123%) studies. Further, stability tests showed that the analyte does not degrade under working conditions, nor during freezing and thawing processes.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/blood , COVID-19/drug therapy , Drug Monitoring/methods , Tandem Mass Spectrometry/methods , Adenosine Monophosphate/blood , Alanine/blood , Chromatography, High Pressure Liquid/economics , Chromatography, High Pressure Liquid/methods , Drug Monitoring/economics , Female , Humans , Limit of Detection , Male , Tandem Mass Spectrometry/economics
SELECTION OF CITATIONS
SEARCH DETAIL