Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Molecules ; 27(6)2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1742556

ABSTRACT

Nafamostat, a synthetic serine protease inhibitor, has been used for the treatment of inflammatory diseases such as pancreatitis. Recently, an increasing number of studies have shown the promising antiviral effects of nafamostat for the treatment of coronavirus disease-19 (COVID-19). This study aimed to develop a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and to characterize the pharmacokinetics of nafamostat in rats. Nafamostat in the rat plasma was extracted by solid phase extraction, and 13C6-nafamostat was used as an internal standard. The quantification limit of nafamostat in the rat plasma was 0.5 ng/mL. The LC-MS/MS method was fully validated and applied to characterize the pharmacokinetics of nafamostat in rats. Following intravenous injection (2 mg/kg), nafamostat in the plasma showed a multiexponential decline with an average elimination half-life (t1/2) of 1.39 h. Following oral administration of nafamostat solutions (20 mg/kg) in 10% dimethyl sulfoxide (DMSO) and in 10% DMSO with 10% Tween 80, nafamostat was rapidly absorbed, and the average oral bioavailability was 0.95% and 1.59%, respectively. The LC-MS/MS method and the pharmacokinetic information of nafamostat could be helpful for the further preclinical and clinical studies of nafamostat.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Animals , Benzamidines , Chromatography, Liquid/methods , Guanidines , Rats , Rats, Sprague-Dawley , Serine Proteinase Inhibitors/pharmacology , Tandem Mass Spectrometry/methods
2.
Viruses ; 14(3)2022 03 07.
Article in English | MEDLINE | ID: covidwho-1732249

ABSTRACT

Glycosylation is the most common form of post-translational modification of proteins, critically affecting their structure and function. Using liquid chromatography and mass spectrometry for high-resolution site-specific quantification of glycopeptides coupled with high-throughput artificial intelligence-powered data processing, we analyzed differential protein glycoisoform distributions of 597 abundant serum glycopeptides and nonglycosylated peptides in 50 individuals who had been seriously ill with COVID-19 and in 22 individuals who had recovered after an asymptomatic course of COVID-19. As additional comparison reference phenotypes, we included 12 individuals with a history of infection with a common cold coronavirus, 16 patients with bacterial sepsis, and 15 healthy subjects without history of coronavirus exposure. We found statistically significant differences, at FDR < 0.05, for normalized abundances of 374 of the 597 peptides and glycopeptides interrogated between symptomatic and asymptomatic COVID-19 patients. Similar statistically significant differences were seen when comparing symptomatic COVID-19 patients to healthy controls (350 differentially abundant peptides and glycopeptides) and common cold coronavirus seropositive subjects (353 differentially abundant peptides and glycopeptides). Among healthy controls and sepsis patients, 326 peptides and glycopeptides were found to be differentially abundant, of which 277 overlapped with biomarkers that showed differential expression between symptomatic COVID-19 cases and healthy controls. Among symptomatic COVID-19 cases and sepsis patients, 101 glycopeptide and peptide biomarkers were found to be statistically significantly abundant. Using both supervised and unsupervised machine learning techniques, we found specific glycoprotein profiles to be strongly predictive of symptomatic COVID-19 infection. LASSO-regularized multivariable logistic regression and K-means clustering yielded accuracies of 100% in an independent test set and of 96% overall, respectively. Our findings are consistent with the interpretation that a majority of glycoprotein modifications observed which are shared among symptomatic COVID-19 and sepsis patients likely represent a generic consequence of a severe systemic immune and inflammatory state. However, there are glycoisoform changes that are specific and particular to severe COVID-19 infection. These may be representative of either COVID-19-specific consequences or susceptibility to or predisposition for a severe course of the disease. Our findings support the potential value of glycoproteomic biomarkers in the biomedical understanding and, potentially, the clinical management of serious acute infectious conditions.


Subject(s)
COVID-19 , Artificial Intelligence , COVID-19/diagnosis , Chromatography, Liquid/methods , Glycopeptides/analysis , Glycopeptides/chemistry , Glycopeptides/metabolism , Glycoproteins , Humans
3.
Int J Mol Sci ; 23(5)2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-1707649

ABSTRACT

Omics-based technologies have been largely adopted during this unprecedented global COVID-19 pandemic, allowing the scientific community to perform research on a large scale to understand the pathobiology of the SARS-CoV-2 infection and its replication into human cells. The application of omics techniques has been addressed to every level of application, from the detection of mutations, methods of diagnosis or monitoring, drug target discovery, and vaccine generation, to the basic definition of the pathophysiological processes and the biochemical mechanisms behind the infection and spread of SARS-CoV-2. Thus, the term COVIDomics wants to include those efforts provided by omics-scale investigations with application to the current COVID-19 research. This review summarizes the diverse pieces of knowledge acquired with the application of COVIDomics techniques, with the main focus on proteomics and metabolomics studies, in order to capture a common signature in terms of proteins, metabolites, and pathways dysregulated in COVID-19 disease. Exploring the multiomics perspective and the concurrent data integration may provide new suitable therapeutic solutions to combat the COVID-19 pandemic.


Subject(s)
COVID-19/metabolism , Metabolomics/methods , Proteome/metabolism , Proteomics/methods , COVID-19/epidemiology , COVID-19/virology , Chromatography, Liquid/methods , Host-Pathogen Interactions , Humans , Pandemics , SARS-CoV-2/physiology , Tandem Mass Spectrometry/methods
4.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1704472

ABSTRACT

Rapid and precise diagnostic methods are required to control emerging infectious diseases effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets because they reflect the clinical statuses of patients and most of them can be obtained with minimally invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography-mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019 [COVID-19]), are summarized and discussed.


Subject(s)
Chromatography, Liquid/methods , Communicable Diseases/diagnosis , Mass Spectrometry/methods , Microbiological Techniques/methods , Proteomics/methods , Body Fluids , COVID-19 Testing/methods , Humans , Tandem Mass Spectrometry
5.
Metabolomics ; 18(1): 6, 2021 12 20.
Article in English | MEDLINE | ID: covidwho-1669925

ABSTRACT

INTRODUCTION: The diagnosis of COVID-19 is normally based on the qualitative detection of viral nucleic acid sequences. Properties of the host response are not measured but are key in determining outcome. Although metabolic profiles are well suited to capture host state, most metabolomics studies are either underpowered, measure only a restricted subset of metabolites, compare infected individuals against uninfected control cohorts that are not suitably matched, or do not provide a compact predictive model. OBJECTIVES: Here we provide a well-powered, untargeted metabolomics assessment of 120 COVID-19 patient samples acquired at hospital admission. The study aims to predict the patient's infection severity (i.e., mild or severe) and potential outcome (i.e., discharged or deceased). METHODS: High resolution untargeted UHPLC-MS/MS analysis was performed on patient serum using both positive and negative ionization modes. A subset of 20 intermediary metabolites predictive of severity or outcome were selected based on univariate statistical significance and a multiple predictor Bayesian logistic regression model was created. RESULTS: The predictors were selected for their relevant biological function and include deoxycytidine and ureidopropionate (indirectly reflecting viral load), kynurenine (reflecting host inflammatory response), and multiple short chain acylcarnitines (energy metabolism) among others. Currently, this approach predicts outcome and severity with a Monte Carlo cross validated area under the ROC curve of 0.792 (SD 0.09) and 0.793 (SD 0.08), respectively. A blind validation study on an additional 90 patients predicted outcome and severity at ROC AUC of 0.83 (CI 0.74-0.91) and 0.76 (CI 0.67-0.86). CONCLUSION: Prognostic tests based on the markers discussed in this paper could allow improvement in the planning of COVID-19 patient treatment.


Subject(s)
COVID-19/blood , Chromatography, Liquid/methods , Metabolomics/methods , Tandem Mass Spectrometry/methods , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Prognosis , SARS-CoV-2 , Severity of Illness Index
6.
Anal Bioanal Chem ; 414(5): 1949-1962, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1607761

ABSTRACT

Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 104 PFU/ml in clinical samples. Here, we present a reliable, specific, and rapid method for the identification of SARS-CoV-2 from nasopharyngeal (NP) specimens, which combines virus capture followed by LC-MS/MS(MRM) analysis of unique peptide markers. The capture of SARS-CoV-2 from the challenging matrix, prior to its tryptic digestion, was accomplished by magnetic beads coated with polyclonal IgG-α-SARS-CoV-2 antibodies, enabling sample concentration while significantly reducing background noise interrupting with LC-MS analysis. A sensitive and specific LC-MS/MS(MRM) analysis method was developed for the identification of selected tryptic peptide markers. The combined assay, which resulted in S/N ratio enhancement, achieved an improved sensitivity of more than 10-fold compared with previously described MS methods. The assay was validated in 29 naive NP specimens, 19 samples were spiked with SARS-CoV-2 and 10 were used as negative controls. Finally, the assay was successfully applied to clinical NP samples (n = 26) pre-determined as either positive or negative by RT-qPCR. This work describes for the first time a combined approach for immuno-magnetic viral isolation coupled with MS analysis. This method is highly reliable, specific, and sensitive; thus, it may potentially serve as a complementary assay to RT-qPCR, the gold standard test. This methodology can be applied to other viruses as well.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Chromatography, Liquid/methods , Immunomagnetic Separation/methods , SARS-CoV-2/genetics , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Antibodies, Viral/chemistry , Biomarkers/chemistry , COVID-19/immunology , COVID-19/virology , COVID-19 Testing/instrumentation , COVID-19 Testing/standards , Chromatography, Liquid/instrumentation , Chromatography, Liquid/standards , Humans , Immunomagnetic Separation/instrumentation , Immunomagnetic Separation/standards , Nasopharynx/virology , Peptides/chemistry , Peptides/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/standards
7.
STAR Protoc ; 3(1): 101045, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1537118

ABSTRACT

In this protocol, we describe global proteome profiling for the respiratory specimen of COVID-19 patients, patients suspected with COVID-19, and H1N1 patients. In this protocol, details for identifying host, viral, or bacterial proteome (Meta-proteome) are provided. Major steps of the protocol include virus inactivation, protein quantification and digestion, desalting of peptides, high-resolution mass spectrometry (HRMS)-based analysis, and downstream bioinformatics analysis. For complete details on the use and execution of this profile, please refer to Maras et al. (2021).


Subject(s)
COVID-19/diagnosis , Genomics/methods , Proteomics/methods , COVID-19/metabolism , Chromatography, Liquid/methods , Computational Biology , Diagnostic Tests, Routine , Gene Expression Profiling , Genetic Techniques , Genome, Viral/genetics , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/pathogenicity , Peptides , Proteome , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Specimen Handling/methods , Tandem Mass Spectrometry/methods , Virome/genetics , Virome/physiology
8.
Life Sci Alliance ; 5(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1515726

ABSTRACT

Understanding pathways that might impact coronavirus disease 2019 (COVID-19) manifestations and disease outcomes is necessary for better disease management and for therapeutic development. Here, we analyzed alterations in sphingolipid (SL) levels upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection induced elevation of SL levels in both cells and sera of infected mice. A significant increase in glycosphingolipid levels was induced early post SARS-CoV-2 infection, which was essential for viral replication. This elevation could be reversed by treatment with glucosylceramide synthase inhibitors. Levels of sphinganine, sphingosine, GA1, and GM3 were significantly increased in both cells and the murine model upon SARS-CoV-2 infection. The potential involvement of SLs in COVID-19 pathology is discussed.


Subject(s)
COVID-19/metabolism , Disease Models, Animal , Sphingolipids/metabolism , Virus Replication/physiology , Animals , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Chromatography, Liquid/methods , Dioxanes/pharmacology , Gangliosides/blood , Gangliosides/metabolism , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Humans , Mass Spectrometry/methods , Mice, Transgenic , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingolipids/blood , Sphingosine/analogs & derivatives , Sphingosine/blood , Sphingosine/metabolism , Vero Cells , Virus Replication/drug effects
9.
Bioanalysis ; 13(24): 1827-1836, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1506143

ABSTRACT

Aim: In response to the COVID-19 pandemic, Regeneron developed the anti-SARS-CoV-2 monoclonal antibody cocktail, REGEN-COV® (RONAPREVE® outside the USA). Drug concentration data was important for determination of dose, so a two-part bioanalytical strategy was implemented to ensure the therapy was rapidly available for use. Results & methodology: Initially, a liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS) assay, was used to analyze early-phase study samples. Subsequently, a validated electrochemiluminescence (ECL) immunoassay was implemented for high throughput sample analysis for all samples. A comparison of drug concentration data from the methods was performed which identified strong linear correlations and for Bland-Altman, small bias. In addition, pharmacokinetic data from both methods produced similar profiles and parameters. Discussion & conclusion: This novel bioanalytical strategy successfully supported swift development of a critical targeted therapy during the COVID-19 public health emergency.


Subject(s)
Antibodies, Monoclonal/analysis , COVID-19/therapy , Chromatography, Liquid/methods , Mass Spectrometry/methods , SARS-CoV-2/immunology , Antibodies, Monoclonal/therapeutic use , COVID-19/virology , Electrochemical Techniques , Humans , Luminescence
10.
Elife ; 102021 11 08.
Article in English | MEDLINE | ID: covidwho-1506094

ABSTRACT

Reliable, robust, large-scale molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for monitoring the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a scalable analytical approach to detect viral proteins based on peptide immuno-affinity enrichment combined with liquid chromatography-mass spectrometry (LC-MS). This is a multiplexed strategy, based on targeted proteomics analysis and read-out by LC-MS, capable of precisely quantifying and confirming the presence of SARS-CoV-2 in phosphate-buffered saline (PBS) swab media from combined throat/nasopharynx/saliva samples. The results reveal that the levels of SARS-CoV-2 measured by LC-MS correlate well with their correspondingreal-time polymerase chain reaction (RT-PCR) read-out (r = 0.79). The analytical workflow shows similar turnaround times as regular RT-PCR instrumentation with a quantitative read-out of viral proteins corresponding to cycle thresholds (Ct) equivalents ranging from 21 to 34. Using RT-PCR as a reference, we demonstrate that the LC-MS-based method has 100% negative percent agreement (estimated specificity) and 95% positive percent agreement (estimated sensitivity) when analyzing clinical samples collected from asymptomatic individuals with a Ct within the limit of detection of the mass spectrometer (Ct ≤ 30). These results suggest that a scalable analytical method based on LC-MS has a place in future pandemic preparedness centers to complement current virus detection technologies.


Subject(s)
COVID-19/diagnosis , Chromatography, Liquid/methods , Mass Spectrometry/methods , Molecular Diagnostic Techniques/methods , Viral Proteins/analysis , COVID-19/virology , Humans , Linear Models , Nasopharynx/virology , Peptide Fragments/analysis , Proteomics , Reproducibility of Results , SARS-CoV-2/chemistry , Sensitivity and Specificity
11.
J Am Soc Mass Spectrom ; 32(4): 1116-1125, 2021 Apr 07.
Article in English | MEDLINE | ID: covidwho-1397839

ABSTRACT

The metabolism of vitamin D3 includes a parallel C-3 epimerization pathway-in addition to the standard metabolic processes for vitamin D3-reversing the stereochemical configuration of the -OH group at carbon-3 (ß→α). While the biological function of the 3α epimer has not been elucidated yet, the additional species cannot be neglected in the analytical determination of vitamin D3, as it has the potential to introduce analytical errors if not properly accounted for. Recently, some inconsistent mass spectral behavior was seen for the 25-hydroxyvitamin D3 (25(OH)D3) epimers during quantification using electrospray LC-MS/MS. The present work extends that of Flynn et al. ( Ann. Clin. Biochem. 2014, 51, 352-559) and van den Ouweland et al. ( J. Chromatogr. B 2014, 967, 195-202), who reported larger electrospray ionization response factors for the 3α epimer of 25(OH)D3 in human serum samples as compared to the regular 3ß variant. The present work was concerned with the mechanistic reasons for these differences. We used a combination of electrospray ionization, atmospheric pressure chemical ionization, and density functional theory calculations to uncover structural dissimilarities between the epimers. A plausible mechanism is described based on intramolecular hydrogen bonding in the gas phase, which creates a small difference of proton affinities between the epimers. More importantly, this mechanism allows the explanation of the different ionization efficiencies of the epimers based on kinetic control of the ionization process, where ionization initially takes place at the hydroxyl group with subsequent proton transfer to a basic carbon atom. The barrier for this transfer differs between the epimers and is in direct competition with H2O elimination from the protonated hydroxyl group. The "hidden" site of high gas phase basicity was revealed through computational calculations and appears to be inaccessible via direct protonation.


Subject(s)
Calcifediol/blood , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Calcifediol/chemistry , Density Functional Theory , Gases , Molecular Structure , Protons , Solvents , Stereoisomerism
12.
Anal Bioanal Chem ; 413(29): 7215-7227, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1375628

ABSTRACT

Glycosylation analysis of viral glycoproteins contributes significantly to vaccine design and development. Among other benefits, glycosylation analysis allows vaccine developers to assess the impact of construct design or producer cell line choices for vaccine production, and it is a key measure by which glycoproteins that are produced for use in vaccination can be compared to their native viral forms. Because many viral glycoproteins are multiply glycosylated, glycopeptide analysis is a preferrable approach for mapping the glycans, yet the analysis of glycopeptide data can be cumbersome and requires the expertise of an experienced analyst. In recent years, a commercial software product, Byonic, has been implemented in several instances to facilitate glycopeptide analysis on viral glycoproteins and other glycoproteomics data sets, and the purpose of the study herein is to determine the strengths and limitations of using this software, particularly in cases relevant to vaccine development. The glycopeptides from a recombinantly expressed trimeric S glycoprotein of the SARS-CoV-2 virus were first analyzed using an expert-based analysis strategy; subsequently, analysis of the same data set was completed using Byonic. Careful assessment of instances where the two methods produced different results revealed that the glycopeptide assignments from Byonic contained more false positives than true positives, even when the data were assessed using a 1% false discovery rate. The work herein provides a roadmap for removing the spurious assignments that Byonic generates, and it provides an assessment of the opportunity cost for relying on automated assignments for glycopeptide data sets from viral glycoproteins.


Subject(s)
Glycopeptides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Algorithms , Amino Acid Sequence , Chromatography, Liquid/methods , Spike Glycoprotein, Coronavirus/chemistry , Tandem Mass Spectrometry/methods
13.
Anal Bioanal Chem ; 413(26): 6503-6511, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1370381

ABSTRACT

We describe a rapid liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the direct detection and quantitation of SARS-CoV-2 nucleoprotein in gargle solutions and saliva. The method is based on a multiple-reaction monitoring (MRM) mass spectrometry approach with a total cycle time of 5 min per analysis and allows the detection and accurate quantitation of SARS-CoV-2 nucleoprotein as low as 500 amol/µL. We improved the sample preparation protocol of our recent piloting SARS-CoV-2 LC-MS study regarding sensitivity, reproducibility, and compatibility with a complementary reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) analysis of the same sample. The aim of this work is to promote diagnostic tools that allow identifying and monitoring SARS-CoV-2 infections by LC-MS/MS methods in a routine clinical environment.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Saliva/virology , Tandem Mass Spectrometry/methods , COVID-19 Testing/economics , Chromatography, Liquid/economics , Chromatography, Liquid/methods , Coronavirus Nucleocapsid Proteins/analysis , Coronavirus Nucleocapsid Proteins/isolation & purification , Humans , Limit of Detection , Phosphoproteins/analysis , Phosphoproteins/isolation & purification , Reproducibility of Results , Specimen Handling , Tandem Mass Spectrometry/economics , Time Factors
14.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1181: 122884, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1364212

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines are the most promising approach to control the COVID-19 pandemic. There are eminent needs to develop robust analytical methods to ensure quality control, as well as to evaluate the long-term efficacy and safety of vaccine. Although in vivo animal tests, such as serum-based ELISA, have been commonly used for quality control of vaccines, these methods have poor precision, are labor intensive, and require the availability of expensive, specific antibodies. Thus, there is growing interest to develop robust bioanalytical assays as alternatives for qualitative and quantitative evaluation of complex vaccine antigens. In this study, a liquid chromatography tandem mass spectrometry method was developed using optimized unique peptides for simultaneous determination of spike (S) and nucleocapsid (N) protein. Method sensitivity, linearity, repeatability, selectivity, and recovery were evaluated. The amount of S and N proteins in 9 batches of inactivated COVID-19 vaccines were quantified, and their compositions relative to total protein content were consistent. We believe this method can be applied for quality evaluation of other S and/or N protein based COVID-19 vaccine, and could be extended to other viral vector, and protein subunit-based vaccines.


Subject(s)
COVID-19 Vaccines/analysis , Chromatography, Liquid/methods , Coronavirus Nucleocapsid Proteins/analysis , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Tandem Mass Spectrometry/methods , COVID-19/virology , Humans , Quality Control , Vaccines, Inactivated/analysis
15.
Ther Drug Monit ; 43(4): 570-576, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1305442

ABSTRACT

ABSTRACT: Therapeutic drug monitoring of hydroxychloroquine (HCQ) has been recommended to optimize the treatment of patients with COVID-19. The authors describe an ultrahigh-performance liquid chromatography tandem spectrometry method developed in a context of emergency, to analyze HCQ in both human plasma and blood samples. After adding the labeled internal standard and simple protein precipitation, plasma samples were analyzed using a C18 column. Blood samples required evaporation before analysis. The total chromatographic run time was 4 minutes (including 1.5 minutes of column equilibration). The assay was linear over the calibration range (r2 > 0.99) and up to 1.50 mcg/mL for the plasma samples (5.00 mcg/mL for the blood matrix). The limit of quantification was 0.0150 mcg/mL for plasma samples (0.05 mcg/mL blood matrix) with accuracy and precision ranging from 91.1% to 112% and from 0.750% to 11.1%, respectively. Intraday and interday precision and accuracy values were within 15.0%. No significant matrix effect was observed in the plasma or blood samples. This method was successfully applied to patients treated for COVID-19 infection. A simple and rapid ultrahigh-performance liquid chromatography tandem spectrometry method adapted to HCQ therapeutic drug monitoring in the context of SARS-CoV-2 infection was successfully developed and validated.


Subject(s)
COVID-19/drug therapy , Drug Monitoring/standards , Emergency Medical Services/standards , Hydroxychloroquine/blood , Tandem Mass Spectrometry/standards , Antirheumatic Agents/blood , Antirheumatic Agents/therapeutic use , COVID-19/blood , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Drug Monitoring/methods , Emergency Medical Services/methods , Humans , Hydroxychloroquine/therapeutic use , Pandemics , Tandem Mass Spectrometry/methods
16.
Nutrients ; 13(7)2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1285399

ABSTRACT

COVID-19 is a pandemic disease that causes severe pulmonary damage and hyperinflammation. Vitamin A is a crucial factor in the development of immune functions and is known to be reduced in cases of acute inflammation. This prospective, multicenter observational cross-sectional study analyzed vitamin A plasma levels in SARS-CoV-2 infected individuals, and 40 hospitalized patients were included. Of these, 22 developed critical disease (Acute Respiratory Distress Syndrome [ARDS]/Extracorporeal membrane oxygenation [ECMO]), 9 developed severe disease (oxygen supplementation), and 9 developed moderate disease (no oxygen supplementation). A total of 47 age-matched convalescent persons that had been earlier infected with SARS-CoV-2 were included as the control group. Vitamin A plasma levels were determined by high-performance liquid chromatography. Reduced vitamin A plasma levels correlated significantly with increased levels of inflammatory markers (CRP, ferritin) and with markers of acute SARS-CoV-2 infection (reduced lymphocyte count, LDH). Vitamin A levels were significantly lower in hospitalized patients than in convalescent persons (p < 0.01). Of the hospitalized patients, those who were critically ill showed significantly lower vitamin A levels than those who were moderately ill (p < 0.05). Vitamin A plasma levels below 0.2 mg/L were significantly associated with the development of ARDS (OR = 5.54 [1.01-30.26]; p = 0.048) and mortality (OR 5.21 [1.06-25.5], p = 0.042). Taken together, we conclude that vitamin A plasma levels in COVID-19 patients are reduced during acute inflammation and that severely reduced plasma levels of vitamin A are significantly associated with ARDS and mortality.


Subject(s)
COVID-19/blood , Vitamin A/blood , Adult , Aged , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/mortality , Chromatography, Liquid/methods , Critical Illness , Cross-Sectional Studies , Extracorporeal Membrane Oxygenation/statistics & numerical data , Female , Ferritins/blood , Hospitalization , Humans , Inflammation/epidemiology , Lymphocyte Count , Male , Middle Aged , Prospective Studies , Respiratory Distress Syndrome/epidemiology , SARS-CoV-2 , Severity of Illness Index
17.
Nutrients ; 13(7)2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1282544

ABSTRACT

(1) Background: Vitamin D, a well-established regulator of calcium and phosphate metabolism, also has immune-modulatory functions. An uncontrolled immune response and cytokine storm are tightly linked to fatal courses of COVID-19. The present retrospective study aimed to inves-tigate vitamin D status markers and vitamin D degradation products in a mixed cohort of 148 hospitalized COVID-19 patients with various clinical courses of COVID-19. (2) Methods: The serum concentrations of 25(OH)D3, 25(OH)D2, 24,25(OH)2D3, and 25,26(OH)2D3 were determined by a validated liquid-chromatography tandem mass-spectrometry method in leftover serum samples from 148 COVID-19 patients that were admitted to the University Hospital of the Medical Uni-versity of Graz between April and November 2020. Anthropometric and clinical data, as well as outcomes were obtained from the laboratory and hospital information systems. (3) Results: From the 148 patients, 34 (23%) died within 30 days after admission. The frequency of fatal outcomes did not differ between males and females. Non-survivors were significantly older than survivors, had higher peak concentrations of IL-6 and CRP, and required mechanical ventilation more frequently. The serum concentrations of all vitamin D metabolites and the vitamin D metabolite ratio (VMR) did not differ significantly between survivors and non-survivors. Additionally, the need for res-piratory support was unrelated to the serum concentrations of 25(OH)D vitamin D and the two vitamin D catabolites, as well as the VMR. (4) Conclusion: The present results do not support a relevant role of vitamin D for the course and outcome of COVID-19.


Subject(s)
COVID-19/blood , COVID-19/mortality , Hospitalization , Vitamin D/blood , Aged , Aged, 80 and over , Biomarkers/blood , Chromatography, Liquid/methods , Ergocalciferols/blood , Female , Humans , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Retrospective Studies , SARS-CoV-2 , Tandem Mass Spectrometry/methods , Vitamin D/analogs & derivatives , Vitamin D Deficiency/blood , Vitamins/blood
18.
Anal Bioanal Chem ; 413(29): 7295-7303, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1274805

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a serious threat to human health all over the world. The development of effective vaccines has been focusing on the spike (S) glycoprotein, which mediates viral invasion to human cells through its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor. In this work, we perform analytical characterization of N- and O-linked glycosylation of the SARS-CoV-2 S glycoprotein. We explore the novel use of dual-functionalized titanium (IV)-immobilized metal affinity chromatography (Ti-IMAC) material for simultaneous enrichment and separation of neutral and sialyl glycopeptides of a recombinant SARS-CoV-2 S glycoprotein from HEK293 cells. This strategy helps eliminate signal suppression from neutral glycopeptides for the detection of sialyl glycopeptides and improves the glycoform coverage of the S protein. We profiled 19 of its 22 potential N-glycosylated sites with 398 unique glycoforms using the dual-functional Ti-IMAC approach, which exhibited improvement of coverage by 1.6-fold compared to the conventional hydrophilic interaction chromatography (HILIC) glycopeptide enrichment method. We also identified O-linked glycosylation site that was not found using the conventional HILIC approach. In addition, we reported on the identification of mannose-6-phosphate (M6P) glycosylation, which substantially expands the current knowledge of the spike protein's glycosylation landscape and enables future investigation into the influence of M6P glycosylation of the spike protein on its cell entry.


Subject(s)
Glycopeptides/isolation & purification , N-Acetylneuraminic Acid/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Chromatography, Liquid/methods , Glycopeptides/chemistry , HEK293 Cells , Humans , Mannosephosphates/chemistry , Static Electricity , Tandem Mass Spectrometry/methods
19.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1176: 122768, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1240421

ABSTRACT

Favipiravir is a broad-spectrum inhibitor of viral RNA polymerase. It is currently used as a possible treatment for coronavirus disease 2019 (COVID-19). Pre-clinical or clinical trials of favipiravir require robust, sensitive, and accurate bioanalytical methods for quantitation of favipiravir levels. Recently, several studies have been reported about developing a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring favipiravir levels. However, these methods were validated predominantly for plasma samples, electrospray ionization was operated only in negative or positive mode, and clinical application of these methods has not been applied for patients with COVID-19. This study aimed was to develop a validated LC-MS/MS method for the measurement of favipiravir levels in positive and negative electrospray ionization mode and to perform a pilot study in patients with COVID-19 receiving favipiravir to demonstrate the applicability of this method in biological samples. Simple protein precipitation was used for the extraction of favipiravir from the desired matrix. Favipiravir levels were quantitated using MS / MS with an electrospray ionization source in positive and negative multiple reaction monitoring (MRM) mode. The chromatographic detection was performed on a reverse-phase Phenomenex C18 column (50 mm × 4.6 mm, 5 µm, 100 Å) with gradient elution using 0.1% formic acid in water and 0.1% formic acid in methanol as mobile phase. The method was linear over the concentration ranges of 0.048-50 µg/mL (in negative ionization mode) and 0.062-50 µg/mL (in positive ionization mode) with a correlation coefficient (r2) better than 0.998. The total run time was 3.5 min. The intra-assay and inter-assay %CV values were less than 7.2% and 8.0%, respectively. A simple, rapid and robust LC-MS / MS method was developed for the measurement of favipiravir and validation studies were performed. The validated method was successfully applied for drug level measurement in COVID-19 patients receiving favipiravir.


Subject(s)
Amides/blood , COVID-19/drug therapy , Chromatography, Liquid/methods , Pyrazines/blood , Tandem Mass Spectrometry/methods , Amides/administration & dosage , Amides/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/blood , Antiviral Agents/therapeutic use , COVID-19/blood , Drug Stability , Humans , Limit of Detection , Pyrazines/administration & dosage , Pyrazines/therapeutic use , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization/methods
20.
J Med Virol ; 93(4): 2340-2349, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217382

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious respiratory disease caused by a new strain of the coronavirus. There is limited data on the pathogenesis and the cellular responses of COVID-19. In this study, we aimed to determine the variation of metabolites between healthy control and COVID-19 via the untargeted metabolomics method. Serum samples were obtained from 44 COVID-19 patients and 41 healthy controls. Untargeted metabolomics analyses were performed by the LC/Q-TOF/MS (liquid chromatography quadrupole time-of-flight mass spectrometry) method. Data acquisition, classification, and identification were achieved by the METLIN database and XCMS. Significant differences were determined between patients and healthy controls in terms of purine, glutamine, leukotriene D4 (LTD4), and glutathione metabolisms. Downregulations were determined in R-S lactoglutathione and glutamine. Upregulations were detected in hypoxanthine, inosine, and LTD4. Identified metabolites indicate roles for purine, glutamine, LTD4, and glutathione metabolisms in the pathogenesis of the COVID-19. The use of selective leukotriene D4 receptor antagonists, targeting purinergic signaling as a therapeutic approach and glutamine supplementation may decrease the severity and mortality of COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/pathology , Adult , Aged , COVID-19/virology , Chromatography, Liquid/methods , Databases, Factual , Female , Humans , Male , Metabolome , Metabolomics/methods , Middle Aged , Prospective Studies , ROC Curve , SARS-CoV-2/isolation & purification , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL