Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
JAMA ; 327(10): 909, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1763148
2.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1686808

ABSTRACT

After solid-organ transplantation, reactivation of the cytomegalovirus (CMV) is often observed in seronegative patients and associated with a high risk of disease and mortality. CMV-specific T cells can prevent CMV reactivation. In a phase 1 trial, CMV-seronegative patients with end-stage renal disease listed for kidney transplantation were subjected to CMV phosphoprotein 65 (CMVpp65) peptide vaccination and further investigated for T-cell responses. To this end, CMV-specific CD8+ T cells were characterized by bulk T-cell-receptor (TCR) repertoire sequencing and combined single-cell RNA and TCR sequencing. In patients mounting an immune response to the vaccine, a common SYE(N)E TCR motif known to bind CMVpp65 was detected. CMV-peptide-vaccination-responder patients had TCR features distinct from those of non-responders. In a non-responder patient, a monoclonal inflammatory T-cell response was detected upon CMV reactivation. The identification of vaccine-induced CMV-reactive TCRs motifs might facilitate the development of cellular therapies for patients wait-listed for kidney transplantation.


Subject(s)
Cytomegalovirus Infections/prevention & control , Kidney Failure, Chronic/therapy , Receptors, Antigen, T-Cell/genetics , Viral Matrix Proteins/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Clinical Trials, Phase I as Topic , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/administration & dosage , Cytomegalovirus Vaccines/immunology , Humans , Kidney Failure, Chronic/immunology , Kidney Transplantation , Sequence Analysis, RNA , Single Molecule Imaging , Viral Matrix Proteins/immunology
4.
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1666355

ABSTRACT

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.


Subject(s)
COVID-19/drug therapy , Lactams/pharmacology , Lactams/therapeutic use , Leucine/pharmacology , Leucine/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/pharmacology , Proline/therapeutic use , SARS-CoV-2/drug effects , Viral Protease Inhibitors/pharmacology , Viral Protease Inhibitors/therapeutic use , Administration, Oral , Animals , COVID-19/virology , Clinical Trials, Phase I as Topic , Coronavirus/drug effects , Disease Models, Animal , Drug Therapy, Combination , Humans , Lactams/administration & dosage , Lactams/pharmacokinetics , Leucine/administration & dosage , Leucine/pharmacokinetics , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nitriles/administration & dosage , Nitriles/pharmacokinetics , Proline/administration & dosage , Proline/pharmacokinetics , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Viral Protease Inhibitors/administration & dosage , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
5.
PLoS One ; 17(1): e0262114, 2022.
Article in English | MEDLINE | ID: covidwho-1643254

ABSTRACT

BACKGROUND: Early in the SARS-CoV-2 pandemic, commentators warned that some COVID trials were inadequately conceived, designed and reported. Here, we retrospectively assess the prevalence of informative COVID trials launched in the first 6 months of the pandemic. METHODS: Based on prespecified eligibility criteria, we created a cohort of Phase 1/2, Phase 2, Phase 2/3 and Phase 3 SARS-CoV-2 treatment and prevention efficacy trials that were initiated from 2020-01-01 to 2020-06-30 using ClinicalTrials.gov registration records. We excluded trials evaluating behavioural interventions and natural products, which are not regulated by the U.S. Food and Drug Administration (FDA). We evaluated trials on 3 criteria of informativeness: potential redundancy (comparing trial phase, type, patient-participant characteristics, treatment regimen, comparator arms and primary outcome), trials design (according to the recommendations set-out in the May 2020 FDA guidance document on SARS-CoV-2 treatment and prevention trials) and feasibility of patient-participant recruitment (based on timeliness and success of recruitment). RESULTS: We included all 500 eligible trials in our cohort, 58% of which were Phase 2 and 84.8% were directed towards the treatment of SARS-CoV-2. Close to one third of trials met all three criteria and were deemed informative (29.9% (95% Confidence Interval 23.7-36.9)). The proportion of potentially redundant trials in our cohort was 4.1%. Over half of the trials in our cohort (56.2%) did not meet our criteria for high quality trial design. The proportion of trials with infeasible patient-participant recruitment was 22.6%. CONCLUSIONS: Less than one third of COVID-19 trials registered on ClinicalTrials.gov during the first six months met all three criteria for informativeness. Shortcomings in trial design, recruitment feasibility and redundancy reflect longstanding weaknesses in the clinical research enterprise that were likely amplified by the exceptional circumstances of a pandemic.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/epidemiology , Research Design/statistics & numerical data , SARS-CoV-2/drug effects , COVID-19/prevention & control , COVID-19/virology , Clinical Trials, Phase I as Topic/ethics , Clinical Trials, Phase II as Topic/ethics , Clinical Trials, Phase III as Topic/ethics , Humans , Patient Selection/ethics , Practice Guidelines as Topic , SARS-CoV-2/pathogenicity
6.
Medicine (Baltimore) ; 100(51): e28288, 2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1591728

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that spreads rapidly, reaching pandemic status, causing the collapse of numerous health systems, and a strong economic and social impact. The treatment so far has not been well established and there are several clinical trials testing known drugs that have antiviral activity, due to the urgency that the global situation imposes. Drugs with specific mechanisms of action can take years to be discovered, while vaccines may also take a long time to be widely distributed while new virus variants emerge. Thus, drug repositioning has been shown to be a good strategy for defining new therapeutic approaches. Studies of the effect of enriched heparin in the replication of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) in vitro assays justify the advance for clinical tests. METHODS AND ANALYSIS: A phase I/II triple-blind parallel clinical trial will be conducted. Fifty participants with radiological diagnosis of grade IIA pneumonia will be selected, which will be allocated in 2 arms. Participants allocated in Group 1 (placebo) will receive nebulized 0.9% saline. Participants allocated in Group 2 (intervention) will receive nebulized enriched heparin (2.5 mg/mL 0.9% saline). Both groups will receive the respective solutions on a 4/4 hour basis, for 7 days. The main outcomes of interest will be safety (absence of serious adverse events) and efficacy (measured by the viral load).Protocols will be filled on a daily basis, ranging from day 0 (diagnosis) until day 8.


Subject(s)
COVID-19 , Heparin/therapeutic use , COVID-19/drug therapy , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Randomized Controlled Trials as Topic , Saline Solution , Treatment Outcome
7.
BMJ Open ; 11(12): e054442, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1583096

ABSTRACT

INTRODUCTION: COVID-19 is a new viral-induced pneumonia caused by infection with a novel coronavirus, SARS-CoV-2. At present, there are few proven effective treatments. This early-phase experimental medicine protocol describes an overarching and adaptive trial designed to provide safety data in patients with COVID-19, pharmacokinetic (PK)/pharmacodynamic (PD) information and exploratory biological surrogates of efficacy, which may support further development and deployment of candidate therapies in larger scale trials of patients positive for COVID-19. METHODS AND ANALYSIS: Define is an ongoing exploratory multicentre-platform, open-label, randomised study. Patients positive for COVID-19 will be recruited from the following cohorts: (a) community cases; (b) hospitalised patients with evidence of COVID-19 pneumonitis; and (c) hospitalised patients requiring assisted ventilation. The cohort recruited from will be dependent on the experimental therapy, its route of administration and mechanism of action. Randomisation will be computer generated in a 1:1:n ratio. Twenty patients will be recruited per arm for the initial two arms. This is permitted to change as per the experimental therapy. The primary statistical analyses are concerned with the safety of candidate agents as add-on therapy to standard of care in patients with COVID-19. Secondary analysis will assess the following variables during treatment period: (1) the response of key exploratory biomarkers; (2) change in WHO ordinal scale and National Early Warning Score 2 (NEWS2) score; (3) oxygen requirements; (4) viral load; (5) duration of hospital stay; (6) PK/PD; and (7) changes in key coagulation pathways. ETHICS AND DISSEMINATION: The Define trial platform and its initial two treatment and standard of care arms have received a favourable ethical opinion from Scotland A Research Ethics Committee (REC) (20/SS/0066), notice of acceptance from The Medicines and Healthcare Products Regulatory Agency (MHRA) (EudraCT 2020-002230-32) and approval from the relevant National Health Service (NHS) Research and Development (R&D) departments (NHS Lothian and NHS Greater Glasgow and Clyde). Appropriate processes are in place in order to be able to consent adults with and without capacity while following the necessary COVID-19 safe procedures. Patients without capacity could be recruited via a legal representative. Witnessed electronic consent of participants or their legal representatives following consent discussions was established. The results of each study arm will be submitted for publication in a peer-reviewed journal as soon as the treatment arm has finished recruitment, data input is complete and any outstanding patient safety follow-ups have been completed. Depending on the results of these or future arms, data will be shared with larger clinical trial networks, including the Randomised Evaluation of COVID-19 Therapy trial (RECOVERY), and to other partners for rapid roll-out in larger patient cohorts. TRIAL REGISTRATION NUMBER: ISRCTN14212905, NCT04473053.


Subject(s)
Biomedical Research , COVID-19 , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Electronics , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , State Medicine
9.
Biotechnol Bioeng ; 119(2): 663-666, 2022 02.
Article in English | MEDLINE | ID: covidwho-1525413

ABSTRACT

Therapeutic proteins, including monoclonal antibodies, are typically manufactured using clonally derived, stable host cell lines, since consistent and predictable cell culture performance is highly desirable. However, selecting and preparing banks of stable clones takes considerable time, which inevitably extends overall development timelines for new therapeutics by delaying the start of subsequent activities, such as the scale-up of manufacturing processes. In the context of the coronavirus disease 2019 (COVID-19) pandemic, with its intense pressure for accelerated development strategies, we used a novel transposon-based Leap-In Transposase® system to rapidly generate high-titer stable pools and then used them directly for large scale-manufacturing of an anti-severe acute respiratory syndrome coronavirus 2 monoclonal antibody under cGMP. We performed the safety testing of our non-clonal cell bank, then used it to produce material at a 200L-scale for preclinical safety studies and formulation development work, and thereafter at 2000L scale for supply of material for a Phase 1 clinical trial. Testing demonstrated the comparability of critical product qualities between the two scales and, more importantly, that our final clinical trial product met all pre-set product quality specifications. The above expediated approach provided clinical trial material within 4.5 months, in comparison to 12-14 months for production of clinical trial material via the conventional approach.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , CHO Cells , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Clinical Trials, Phase I as Topic/methods , Clinical Trials, Phase I as Topic/standards , Cricetulus , Pandemics , Transposases , Viral Load
10.
Trials ; 22(1): 674, 2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1448257

ABSTRACT

BACKGROUND: Moderate/severe cases of COVID-19 present a dysregulated immune system with T cell lymphopenia and a hyper-inflammatory state. This is a study protocol of an open-label, multi-center, double-arm, randomized, dose-finding phase I/II clinical trial to evaluate the safety, tolerability, alloreactivity, and efficacy of the administration of allogeneic memory T cells and natural killer (NK) cells in COVID-19 patients with lymphopenia and/or pneumonia. The aim of the study is to determine the safety and the efficacy of the recommended phase 2 dose (RP2D) of this treatment for patients with moderate/severe COVID-19. METHODS: In the phase I trial, 18 patients with COVID-19-related pneumonia and/or lymphopenia with no oxygen requirement or with an oxygen need of ≤ 2.5 liters per minute (lpm) in nasal cannula will be assigned to two arms, based on the biology of the donor and the patient. Treatment of arm A consists of the administration of escalating doses of memory T cells, plus standard of care (SoC). Treatment of arm B consists of the administration of escalating doses of NK cells, plus SoC. In the phase II trial, a total of 182 patients with COVID-19-related pneumonia and/or lymphopenia requiring or not oxygen supplementation but without mechanical ventilation will be allocated to arm A or B, considering HLA typing. Within each arm, they will be randomized in a 1:1 ratio. In arm A, patients will receive SoC or RP2D for memory T cells plus the SoC. In arm B, patients will receive SoC or RP2D for NK cells plus the SoC. DISCUSSION: We hypothesized that SARS-CoV-2-specific memory T-lymphocytes obtained from convalescent donors recovered from COVID-19 can be used as a passive cell immunotherapy to treat pneumonia and lymphopenia in moderate/severe patients. The lymphopenia induced by COVID-19 constitutes a therapeutic window that may facilitate donor engraftment and viral protection until recovery. TRIAL REGISTRATION: ClinicalTrials.gov NCT04578210 . First Posted : October 8, 2020.


Subject(s)
COVID-19 , Lymphopenia , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Immunologic Memory , Killer Cells, Natural , Lymphopenia/diagnosis , Lymphopenia/therapy , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , T-Lymphocytes , Treatment Outcome
11.
Antiviral Res ; 195: 105180, 2021 11.
Article in English | MEDLINE | ID: covidwho-1415189

ABSTRACT

Galidesivir (BCX4430) is an adenosine nucleoside analog that is broadly active in cell culture against several RNA viruses of various families. This activity has also been shown in animal models of viral disease associated with Ebola, Marburg, yellow fever, Zika, and Rift Valley fever viruses. In many cases, the compound is more efficacious in animal models than cell culture activity would predict. Based on favorable data from in vivo animal studies, galidesivir has recently undergone evaluation in several phase I clinical trials, including against severe acute respiratory syndrome coronavirus 2, and as a medical countermeasure for the treatment of Marburg virus disease.


Subject(s)
Adenine/analogs & derivatives , Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Pyrrolidines/pharmacology , Adenine/pharmacology , Adenosine/pharmacology , Animals , Clinical Trials, Phase I as Topic , Drug Evaluation, Preclinical , Marburgvirus/drug effects , Nucleosides/analogs & derivatives , SARS-CoV-2/drug effects
12.
Science ; 374(6566): eabj9853, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1406591

ABSTRACT

Vaccine-specific CD4+ T cell, CD8+ T cell, binding antibody, and neutralizing antibody responses to the 25-µg Moderna messenger RNA (mRNA)­1273 vaccine were examined over the course of 7 months after immunization, including in multiple age groups, with a particular interest in assessing whether preexisting cross-reactive T cell memory affects vaccine-generated immunity. Vaccine-generated spike-specific memory CD4+ T cells 6 months after the second dose of the vaccine were comparable in quantity and quality to COVID-19 cases, including the presence of T follicular helper cells and interferon-γ­expressing cells. Spike-specific CD8+ T cells were generated in 88% of subjects, with equivalent memory at 6 months post-boost compared with COVID-19 cases. Lastly, subjects with preexisting cross-reactive CD4+ T cell memory exhibited stronger CD4+ T cell and antibody responses to the vaccine, demonstrating the biological relevance of severe acute respiratory syndrome coronavirus 2­cross-reactive CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Immunologic Memory , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Clinical Trials, Phase I as Topic , Cross Reactions , Humans , Middle Aged , Vaccination , Young Adult
16.
Nature ; 594(7862): 253-258, 2021 06.
Article in English | MEDLINE | ID: covidwho-1192479

ABSTRACT

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Subject(s)
Adjuvants, Immunologic , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Subunit/immunology , Alum Compounds , Animals , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , COVID-19/virology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Models, Animal , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , Male , Oligodeoxyribonucleotides , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Squalene
17.
Drug Dev Res ; 82(7): 883-895, 2021 11.
Article in English | MEDLINE | ID: covidwho-1168846

ABSTRACT

The current pandemic forced us to introspect and revisit our armamentarium of medicinal agents which could be life-saving in emergency situations. Oxygen diffusion-enhancing compounds represent one such class of potential therapeutic agents, particularly in ischemic conditions. As rewarding as the name suggests, these agents, represented by the most advanced and first-in-class molecule, trans-sodium crocetinate (TSC), are the subject of intense clinical investigation, including Phase 1b/2b clinical trials for COVID-19. Being a successor of a natural product, crocetin, TSC is being investigated for various cancers as a radiosensitizer owing to its oxygen diffusion enhancement capability. The unique properties of TSC make it a promising therapeutic agent for various ailments such as hemorrhagic shock, stroke, heart attack, among others. The present review outlines various (bio)synthetic strategies, pharmacological aspects, clinical overview and potential therapeutic benefits of crocetin and related compounds including TSC. The recent literature focusing on the delivery aspects of these compounds is covered as well to paint the complete picture to the curious reader. Given the potential TSC holds as a first-in-class agent, small- and/or macromolecular therapeutics based on the core concept of improved oxygen diffusion from blood to the surrounding tissues where it is needed the most, will be developed in future and satisfy the unmet medical need for many diseases and disorders.


Subject(s)
COVID-19/therapy , Carotenoids/therapeutic use , Oxygen Consumption/drug effects , Oxygen Inhalation Therapy/methods , Vitamin A/analogs & derivatives , Animals , Carotenoids/chemical synthesis , Carotenoids/pharmacology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Diffusion , Humans , Vitamin A/chemical synthesis , Vitamin A/pharmacology , Vitamin A/therapeutic use
18.
Antimicrob Agents Chemother ; 65(4)2021 03 18.
Article in English | MEDLINE | ID: covidwho-1072688

ABSTRACT

Finding antivirals to reduce coronavirus disease 2019 (COVID-19) morbidity and mortality has been challenging. Large randomized clinical trials that aimed to test four repurposed drugs, hydroxychloroquine, lopinavir-ritonavir, interferon beta 1a, and remdesivir, have shown that these compounds lack an impact on the COVID-19 course. Although the phase III COVID-19 vaccine trial results are encouraging, the search for effective COVID-19 therapeutics should not stop. Recently, plitidepsin (aplidin) demonstrated highly effective preclinical activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its antiviral activity was 27.5-fold more potent than that of remdesivir (K. M. White, R. Rosales, S. Yildiz, T. Kehrer, et al., Science, 2021, https://science.sciencemag.org/content/early/2021/01/22/science.abf4058). Plitidepsin, a repurposed drug developed for the treatment of multiple myeloma, targets the host translation cofactor eEF1A. Plitidepsin has shown efficacy in animal models and phase I/II human trials. Although plitidepsin is administered intravenously and its toxicity profile remains to be fully characterized, this compound may be a promising alternative COVID-19 therapeutic.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Depsipeptides/therapeutic use , Peptides, Cyclic/therapeutic use , Animals , COVID-19/virology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , SARS-CoV-2/drug effects
19.
Trials ; 22(1): 116, 2021 Feb 05.
Article in English | MEDLINE | ID: covidwho-1067266

ABSTRACT

OBJECTIVES: Baricitinib is supposed to have a double effect on SARS-CoV2 infection. Firstly, it reduces the inflammatory response through the inhibition of the Januse-Kinase signalling transducer and activator of transcription (JAK-STAT) pathway. Moreover, it reduces the receptor mediated viral endocytosis by AP2-associated protein kinase 1 (AAK1) inhibition. We propose the use of baricinitib to prevent the progression of the respiratory insufficiency in SARS-CoV2 pneumonia in onco-haematological patients. In this phase Ib/II study, the primary objective in the safety cohort is to describe the incidence of severe adverse events associated with baricitinib administration. The primary objective of the randomized phase (baricitinib cohort versus standard of care cohort) is to evaluate the number of patients who did not require mechanical oxygen support since start of therapy until day +14 or discharge (whichever it comes first). The secondary objectives of the study (only randomized phase of the study) are represented by the comparison between the two arms of the study in terms of mortality and toxicity at day+30. Moreover, a description of the immunological related changes between the two arms of the study will be reported. TRIAL DESIGN: The trial is a phase I/II study with a safety run-in cohort (phase 1) followed by an open label phase II randomized controlled trial with an experimental arm compared to a standard of care arm. PARTICIPANTS: The study will be performed at the Institut Català d'Oncologia, a tertiary level oncological referral center in the Catalonia region (Spain). The eligibility criteria are: patients > 18 years affected by oncological diseases; ECOG performance status < 2 (Karnofsky score > 60%); a laboratory confirmed infection with SARS-CoV-2 by means of real -time PCR; radiological signs of low respiratory tract disease; absence of organ dysfunction (a total bilirubin within normal institutional limits, AST/ALT≤2.5 X institutional upper limit of normal, alkaline phosphatase ≤2.5 X institutional upper limit of normal, coagulation within normal institutional limits, creatinine clearance >30 mL/min/1.73 m2 for patients with creatinine levels above institutional normal); absence of HIV infection; no active or latent HBV or HCV infection. The exclusion criteria are: patients with oncological diseases who are not candidates to receive any active oncological treatment; hemodynamic instability at time of study enrollment; impossibility to receive oral medication; medical history of recent or active pulmonary embolism or deep venous thrombosis or patients at high-risk of suffering them (surgical intervention, immobilization); multi organ failure, rapid worsening of respiratory function with requirement of fraction of inspired oxygen (FiO2) > 50% or high-flow nasal cannula before initiation of study treatment; uncontrolled intercurrent illness (ongoing or severe active infection, symptomatic congestive heart failure, unstable angina pectoris, cardiac arrhythmia, or psychiatric illness/social situations that would limit compliance with study requirements); allergy to one or more of study treatments; pregnant or breastfeeding women; positive pregnancy test in a pre-dose examination. Patients should have the ability to understand, and the willingness to sign, a written informed consent document; the willingness to accept randomization to any assigned treatment arm; and must agree not to enroll in another study of an investigational agent prior to completion of Day +28 of study. An electronic Case Report Form in the Research Electronic Data Capture (REDCap) platform will be used to collect the data of the trial. Removal from the study will apply in case of unacceptable adverse event(s), development of an intercurrent illness, condition or procedural complication, which could interfere with the patient's continued participation and voluntary patient withdrawal from study treatment (all patients are free to withdraw from participation in this study at any time, for any reasons, specified or unspecified, and without prejudice). INTERVENTION AND COMPARATOR: Treatment will be administered on an inpatient basis. We will compare the experimental treatment with baricitinib plus the institutional standard of care compared with the standard of care alone. During the phase I, we will define the dose-limiting toxicity of baricitinib and the dose to be used in the phase 2 part of the study. The starting baricitinib dose will be an oral tablet 4 mg-once daily which can be reduced to 2 mg depending on the observed toxicity. The minimum duration of therapy will be 5 days and it can be extended to 7 days. The standard of care will include the following therapies. Antibiotics will be individualized based on clinical suspicion, including the management of febrile neutropenia. Prophylaxis of thromboembolic disease will be administered to all participants. Remdesivir administration will be considered only in patients with severe pneumonia (SatO2 <94%) with less than 7 days of onset of symptoms and with supplemental oxygen requirements but not using high-flow nasal cannula, non-invasive or invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO). In the randomized phase, tocilizumab or interferon will not be allowed in the experimental arm. Tocilizumab can be used in patients in the standard of care arm at the discretion of the investigator. If it is prescribed it will be used according to the following criteria: patients who, according to his baseline clinical condition, would be an ICU tributary, interstitial pneumonia with severe respiratory failure, patients who are not on mechanical ventilation or ECMO and who are still progressing with corticoid treatment or if they are not candidates for corticosteroids. Mild ARDS (PAFI <300 mmHg) with radiological or blood gases deterioration that meets at least one of the following criteria: CRP >100mg/L D-Dimer >1,000µg/L LDH >400U/L Ferritin >700ng/ml Interleukin 6 ≥40ng/L. The use of tocilizumab is not recommended if there are AST/ALT values greater than 10 times the upper limit of normal, neutrophils <500 cells/mm3, sepsis due to other pathogens other than SARS-CoV-2, presence of comorbidity that can lead to a poor prognosis, complicated diverticulitis or intestinal perforation, ongoing skin infection. The dose will be that recommended by the Spanish Medicine Agency in patients ≥75Kg: 600mg dose whereas in patients <75kg: 400mg dose. Exceptionally, a second infusion can be assessed 12 hours after the first in those patients who experience a worsening of laboratory parameters after a first favourable response. The use of corticosteroids will be recommended in patients who have had symptoms for more than 7 days and who meet all the following criteria: need for oxygen support, non-invasive or invasive mechanical ventilation, acute respiratory failure or rapid deterioration of gas exchange, appearance or worsening of bilateral alveolar-interstitial infiltrates at the radiological level. In case of indication, it is recommended: dexamethasone 6mg/d p.o. or iv for 10 days or methylprednisolone 32mg/d orally or 30mg iv for 10 days or prednisone 40mg day p.o. for 10 days. MAIN OUTCOMES: Phase 1 part: to describe the toxicity profile of baricitinib in COVID19 oncological patients during the 5-7 day treatment period and until day +14 or discharge (whichever it comes first). Phase 2 part: to describe the number of patients in the experimental arm that will not require mechanical oxygen support compared to the standard of care arm until day +14 or discharge (whichever it comes first). RANDOMISATION: For the phase 2 of the study, the allocation ratio will be 1:1. Randomization process will be carried out electronically through the REDcap platform ( https://www.project-redcap.org/ ) BLINDING (MASKING): This is an open label study. No blinding will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The first part of the study (safety run-in cohort) will consist in the enrollment of 6 to 12 patients. In this population, we will test the toxicity of the experimental treatment. An incidence of severe adverse events grade 3-4 (graded by Common Terminology Criteria for Adverse Events v.5.0) inferior than 33% will be considered sufficient to follow with the next part of the study. The second part of the study we will perform an interim analysis of efficacy at first 64 assessed patients and a definitive one will analyze 128 assessed patients. Interim and definitive tests will be performed considering in both cases an alpha error of 0.05. We consider for the control arm this rate is expected to be 0.60 and for the experimental arm of 0.80. Considering this data, a superiority test to prove a difference of 0.20 with an overall alpha error of 0.10 and a beta error of 0.2 will be performed. Considering a 5% of dropout rate, it is expected that a total of 136 patients, 68 for each study arm, will be required to complete study accrual. TRIAL STATUS: Version 5.0. 14th October 2020 Recruitment started on the 16th of December 2020. Expected end of recruitment is June 2021. TRIAL REGISTRATION: AEMPs: 20-0356 EudraCT: 2020-001789-12, https://www.clinicaltrialsregister.eu/ctr-search/search (Not publically available as Phase I trial) Clinical trials: BARCOVID19, https://www.clinicaltrials.gov/ (In progress) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol."


Subject(s)
Antiviral Agents/adverse effects , Azetidines/adverse effects , COVID-19/drug therapy , Hematologic Neoplasms/complications , Purines/adverse effects , Pyrazoles/adverse effects , Respiratory Insufficiency/prevention & control , SARS-CoV-2/genetics , Sulfonamides/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Cohort Studies , Female , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/mortality , Humans , Male , Middle Aged , Oxygen Inhalation Therapy , Randomized Controlled Trials as Topic , Real-Time Polymerase Chain Reaction , Respiratory Insufficiency/epidemiology , Spain/epidemiology , Treatment Outcome , Young Adult
20.
Asia Pac J Clin Oncol ; 17(4): 388-395, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1050333

ABSTRACT

AIM: The significance and prioritization of early phase oncology trial continuation during a global pandemic is unknown. This study reported the outcomes, multiple challenges, and broad recommendations associated with the impact of the novel coronavirus disease 2019 (COVID-19) on oncology early phase 1 trials-and on drug development in Asia-based on the experiences and perspectives of Asian oncology phase 1 centers. METHODS: Between March and April 2020 during the initial period of outbreak, the impact of COVID-19 across oncology phase 1 sites in five Asian countries-China (Hong Kong), Japan, South Korea, Taiwan, and Singapore-was retrospectively analyzed. RESULTS: There was no trial termination or treatment discontinuation in all five countries. Although the most common impact was new patient enrollment being placed on hold, which was based on pharmaceutical sponsors' decision-making, the situation varied per site. Most sites had no restrictions in place that would limit their ability to fully comply with the requirements of conducting the early phase studies. The number of protocol deviations during the pandemic was largely dependent on domestic transportation status during the outbreak rather than the ability of the clinical trial centers. CONCLUSION: Determining the risk to benefits ratio of patients with cancer who are enrolled in early phase 1 clinical trials under the unusual circumstances of a global pandemic is important. Specific guidance or guidelines on the conduct of early phase 1 clinical trials during public health emergencies that are based on the recent lessons learned is urgently required.


Subject(s)
COVID-19 , Drug Development , Neoplasms , Clinical Trials, Phase I as Topic , Hong Kong , Humans , Neoplasms/epidemiology , Pandemics , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL