Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
J Neurol ; 270(4): 1823-1834, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2209336


Emerging evidence indicates that the etiologic agent responsible for coronavirus disease 2019 (COVID-19), can cause neurological complications. COVID-19 may induce cognitive impairment through multiple mechanisms. The aim of the present study was to describe the possible neuropsychological and metabolic neuroimaging consequences of COVID-19 12 months after patients' hospital discharge. We retrospectively recruited 7 patients (age [mean ± SD] = 56 years ± 12.39, 4 men) who had been hospitalized for COVID-19 with persistent neuropsychological deficits 12 months after hospital discharge. All patients underwent cognitive assessment and brain (18F-FDG) PET/CT, and one also underwent 18F-amyloid PET/CT. Of the seven patients studied, four had normal glucose metabolism in the brain. Three patients showed various brain hypometabolism patterns: (1) unilateral left temporal mesial area hypometabolism; (2) pontine involvement; and (3) bilateral prefrontal area abnormalities with asymmetric parietal impairment. The patient who showed the most widespread glucose hypometabolism in the brain underwent an 18F-amyloid PET/CT to assess the presence of Aß plaques. This examination showed significant Aß deposition in the superior and middle frontal cortex, and in the posterior cingulate cortex extending mildly in the rostral and caudal anterior cingulate areas. Although some other reports have already suggested that brain hypometabolism may be associated with cognitive impairment at shorter intervals from SarsCov-2 infection, our study is the first to assess cognitive functions, brain metabolic activity and in a patient also amyloid PET one year after COVID-19, demonstrating that cerebral effects of COVID-19 can largely outlast the acute phase of the disease and even be followed by amyloid deposition.

Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Male , Humans , Middle Aged , Positron Emission Tomography Computed Tomography , Retrospective Studies , COVID-19/complications , COVID-19/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18/metabolism , Cognition , Alzheimer Disease/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism
Med Sci Monit ; 27: e930886, 2021 Jan 25.
Article in English | MEDLINE | ID: covidwho-1045272


Alterations in brain functioning, especially in regions associated with cognition, can result from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and are predicted to result in various psychiatric diseases. Recent studies have shown that SARS-CoV-2 infection and coronavirus disease 2019 (COVID-19) can directly or indirectly affect the central nervous system (CNS). Therefore, diseases associated with sequelae of COVID-19, or 'long COVID', also include serious long-term mental and cognitive changes, including the condition recently termed 'brain fog'. Hypoxia in the microenvironment of select brain areas may benefit the reproductive capacity of the virus. It is possible that in areas of cerebral hypoxia, neuronal cell energy metabolism may become compromised after integration of the viral genome, resulting in mitochondrial dysfunction. Because of their need for constant high metabolism, cerebral tissues require an immediate and constant supply of oxygen. In hypoxic conditions, neurons with the highest oxygen demand become dysfunctional. The resulting cognitive impairment benefits viral spread, as infected individuals exhibit behaviors that reduce protection against infection. The effects of compromised mitochondrial function may also be an evolutionary advantage for SARS-CoV-2 in terms of host interaction. A high viral load in patients with COVID-19 that involves the CNS results in the compromise of neurons with high-level energy metabolism. Therefore, we propose that selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce 'brain fog' and results in behavioral changes that favor viral propagation. Cognitive changes associated with COVID-19 will have increasing significance for patient diagnosis, prognosis, and long-term care.

COVID-19/metabolism , Cognitive Dysfunction/metabolism , Health Behavior , Hypoxia, Brain/metabolism , Mitochondria/metabolism , Neurons/metabolism , SARS-CoV-2/physiology , COVID-19/complications , COVID-19/physiopathology , COVID-19/psychology , COVID-19/transmission , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Energy Metabolism , Humans , Hypoxia, Brain/physiopathology , Hypoxia, Brain/psychology , Microbial Viability , Viral Load , Virus Replication , Post-Acute COVID-19 Syndrome