Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 762
Filter
Add filters

Document Type
Year range
1.
PLoS One ; 16(12): e0261849, 2021.
Article in English | MEDLINE | ID: covidwho-1623664

ABSTRACT

BACKGROUND: Tuberculosis (TB) and COVID-19 pandemics are both diseases of public health threat globally. Both diseases are caused by pathogens that infect mainly the respiratory system, and are involved in airborne transmission; they also share some clinical signs and symptoms. We, therefore, took advantage of collected sputum samples at the early stage of COVID-19 outbreak in Ghana to conduct differential diagnoses of long-standing endemic respiratory illness, particularly tuberculosis. METHODOLOGY: Sputum samples collected through the enhanced national surveys from suspected COVID-19 patients and contact tracing cases were analyzed for TB. The sputum samples were processed using Cepheid's GeneXpert MTB/RIF assay in pools of 4 samples to determine the presence of Mycobacterium tuberculosis complex. Positive pools were then decoupled and analyzed individually. Details of positive TB samples were forwarded to the NTP for appropriate case management. RESULTS: Seven-hundred and seventy-four sputum samples were analyzed for Mycobacterium tuberculosis in both suspected COVID-19 cases (679/774, 87.7%) and their contacts (95/774, 12.3%). A total of 111 (14.3%) were diagnosed with SARS CoV-2 infection and six (0.8%) out of the 774 individuals tested positive for pulmonary tuberculosis: five (83.3%) males and one female (16.7%). Drug susceptibility analysis identified 1 (16.7%) rifampicin-resistant tuberculosis case. Out of the six TB positive cases, 2 (33.3%) tested positive for COVID-19 indicating a coinfection. Stratifying by demography, three out of the six (50%) were from the Ayawaso West District. All positive cases received appropriate treatment at the respective sub-district according to the national guidelines. CONCLUSION: Our findings highlight the need for differential diagnosis among COVID-19 suspected cases and regular active TB surveillance in TB endemic settings.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Coinfection/diagnosis , Coinfection/epidemiology , Mycobacterium tuberculosis/genetics , Pandemics/prevention & control , SARS-CoV-2/genetics , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/epidemiology , Antibiotics, Antitubercular/pharmacology , COVID-19/prevention & control , COVID-19/virology , Coinfection/virology , Diagnosis, Differential , Drug Resistance, Bacterial/drug effects , Female , Ghana/epidemiology , Humans , Male , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Rifampin/pharmacology , Sputum/microbiology , Tuberculosis, Pulmonary/microbiology
2.
Virol J ; 18(1): 205, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1619949

ABSTRACT

Co-infections have a key role in virus transmission in wild reservoir hosts. We investigated the simultaneous presence of astroviruses, coronaviruses, and paramyxoviruses in bats from Madagascar, Mayotte, Mozambique, and Reunion Island. A total of 871 samples from 28 bat species representing 8 families were tested by polymerase chain reactions (PCRs) targeting the RNA-dependent RNA-polymerase genes. Overall, 2.4% of bats tested positive for the presence of at least two viruses, only on Madagascar and in Mozambique. Significant variation in the proportion of co-infections was detected among bat species, and some combinations of co-infection were more common than others. Our findings support that co-infections of the three targeted viruses occur in bats in the western Indian Ocean region, although further studies are needed to assess their epidemiological consequences.


Subject(s)
Astroviridae Infections/epidemiology , Chiroptera/virology , Coinfection/epidemiology , Coronavirus Infections/epidemiology , Paramyxoviridae Infections/epidemiology , Animals , Madagascar , Mozambique , Reunion
3.
Proc Biol Sci ; 289(1966): 20212358, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1621738

ABSTRACT

There is growing experimental evidence that many respiratory viruses-including influenza and SARS-CoV-2-can interact, such that their epidemiological dynamics may not be independent. To assess these interactions, standard statistical tests of independence suggest that the prevalence ratio-defined as the ratio of co-infection prevalence to the product of single-infection prevalences-should equal unity for non-interacting pathogens. As a result, earlier epidemiological studies aimed to estimate the prevalence ratio from co-detection prevalence data, under the assumption that deviations from unity implied interaction. To examine the validity of this assumption, we designed a simulation study that built on a broadly applicable epidemiological model of co-circulation of two emerging or seasonal respiratory viruses. By focusing on the pair influenza-SARS-CoV-2, we first demonstrate that the prevalence ratio systematically underestimates the strength of interaction, and can even misclassify antagonistic or synergistic interactions that persist after clearance of infection. In a global sensitivity analysis, we further identify properties of viral infection-such as a high reproduction number or a short infectious period-that blur the interaction inferred from the prevalence ratio. Altogether, our results suggest that ecological or epidemiological studies based on co-detection prevalence data provide a poor guide to assess interactions among respiratory viruses.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Coinfection/epidemiology , Humans , Influenza, Human/epidemiology , Prevalence , SARS-CoV-2
4.
MMWR Morb Mortal Wkly Rep ; 70(5152): 1766-1772, 2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1599145

ABSTRACT

During June 2021, the highly transmissible† B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, became the predominant circulating strain in the United States. U.S. pediatric COVID-19-related hospitalizations increased during July-August 2021 following emergence of the Delta variant and peaked in September 2021.§ As of May 12, 2021, CDC recommended COVID-19 vaccinations for persons aged ≥12 years,¶ and on November 2, 2021, COVID-19 vaccinations were recommended for persons aged 5-11 years.** To date, clinical signs and symptoms, illness course, and factors contributing to hospitalizations during the period of Delta predominance have not been well described in pediatric patients. CDC partnered with six children's hospitals to review medical record data for patients aged <18 years with COVID-19-related hospitalizations during July-August 2021.†† Among 915 patients identified, 713 (77.9%) were hospitalized for COVID-19 (acute COVID-19 as the primary or contributing reason for hospitalization), 177 (19.3%) had incidental positive SARS-CoV-2 test results (asymptomatic or mild infection unrelated to the reason for hospitalization), and 25 (2.7%) had multisystem inflammatory syndrome in children (MIS-C), a rare but serious inflammatory condition associated with COVID-19.§§ Among the 713 patients hospitalized for COVID-19, 24.7% were aged <1 year, 17.1% were aged 1-4 years, 20.1% were aged 5-11 years, and 38.1% were aged 12-17 years. Approximately two thirds of patients (67.5%) had one or more underlying medical conditions, with obesity being the most common (32.4%); among patients aged 12-17 years, 61.4% had obesity. Among patients hospitalized for COVID-19, 15.8% had a viral coinfection¶¶ (66.4% of whom had respiratory syncytial virus [RSV] infection). Approximately one third (33.9%) of patients aged <5 years hospitalized for COVID-19 had a viral coinfection. Among 272 vaccine-eligible (aged 12-17 years) patients hospitalized for COVID-19, one (0.4%) was fully vaccinated.*** Approximately one half (54.0%) of patients hospitalized for COVID-19 received oxygen support, 29.5% were admitted to the intensive care unit (ICU), and 1.5% died; of those requiring respiratory support, 14.5% required invasive mechanical ventilation (IMV). Among pediatric patients with COVID-19-related hospitalizations, many had severe illness and viral coinfections, and few vaccine-eligible patients hospitalized for COVID-19 were vaccinated, highlighting the importance of vaccination for those aged ≥5 years and other prevention strategies to protect children and adolescents from COVID-19, particularly those with underlying medical conditions.


Subject(s)
COVID-19/therapy , Adolescent , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Coinfection/epidemiology , Female , Hospitalization , Hospitals , Humans , Infant , Male , Pediatric Obesity/epidemiology , Treatment Outcome , United States/epidemiology , Vaccination/statistics & numerical data
5.
Front Public Health ; 9: 773130, 2021.
Article in English | MEDLINE | ID: covidwho-1593754

ABSTRACT

Background: Although coinfection with influenza in COVID-19 patients has drawn considerable attention, it is still not completely understood whether simultaneously infected with these two viruses influences disease severity. We therefore aimed to estimate the impact of coinfected with SARS-CoV-2 and influenza on the disease outcomes compared with the single infection of SARS-CoV-2. Materials and Methods: We searched the PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure Database (CNKI) to identify relevant articles up to July 9, 2021. Studies that assessed the effect of SARS-CoV-2 and influenza coinfection on disease outcomes or those with sufficient data to calculate risk factors were included. Risk effects were pooled using fixed or random effects model. Results: We ultimately identified 12 studies with 9,498 patients to evaluate the risk effects of SARS-CoV-2 and influenza coinfection on disease severity. Results indicated that coinfection was not significantly associated with mortality (OR = 0.85, 95%CI: 0.51, 1.43; p = 0.55, I 2 = 76.00%). However, mortality was found significantly decreased in the studies from China (OR = 0.51, 95%CI: 0.39, 0.68; I 2 = 26.50%), while significantly increased outside China (OR = 1.56, 95%CI: 1.12, 2.19; I 2 = 1.00%). Moreover, a lower risk for critical outcomes was detected among coinfection patients (OR = 0.64, 95%CI: 0.43, 0.97; p = 0.04, I 2 = 0.00%). Additionally, coinfection patients presented different laboratory indexes compared with the single SARS-CoV-2 infection, including lymphocyte counts and APTT. Conclusion: Our study revealed that coinfection with SARS-CoV-2 and influenza had no effect on overall mortality. However, risk for critical outcomes was lower in coinfection patients and different associations were detected in the studies from different regions and specific laboratory indexes. Further studies on influenza strains and the order of infection were warranted. Systematic testing for influenza coinfection in COVID-19 patients and influenza vaccination should be recommended.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , SARS-CoV-2 , Severity of Illness Index
6.
J Int AIDS Soc ; 24(12): e25846, 2021 12.
Article in English | MEDLINE | ID: covidwho-1591262

ABSTRACT

INTRODUCTION: While pregnant people have been an important focus for HIV research, critical evidence gaps remain regarding prevention, co-infection, and safety and efficacy of new antiretroviral therapies in pregnancy. Such gaps can result in harm: without safety data, drugs used may carry unacceptable risks to the foetus or pregnant person; without pregnancy-specific dosing data, pregnant people face risks of both toxicity and undertreatment; and delays in gathering evidence can limit access to beneficial next-generation drugs. Despite recognition of the need, numerous barriers and ethical complexities have limited progress. We describe the process, ethical foundations, recommendations and applications of guidance for advancing responsible inclusion of pregnant people in HIV/co-infections research. DISCUSSION: The 26-member international and interdisciplinary Pregnancy and HIV/AIDS: Seeking Equitable Study (PHASES) Working Group was convened to develop ethics-centred guidance for advancing timely, responsible HIV/co-infections research with pregnant people. Deliberations over 3 years drew on extensive qualitative research, stakeholder engagement, expert consultation and a series of workshops. The guidance, initially issued in July 2020, highlights conceptual shifts needed in framing research with pregnant people, and articulates three ethical foundations to ground recommendations: equitable protection from drug-related risks, timely access to biomedical advances and equitable respect for pregnant people's health interests. The guidance advances 12 specific recommendations, actionable within the current regulatory environment, addressing multiple stakeholders across drug development and post-approval research, and organized around four themes: building capacity, supporting inclusion, achieving priority research and ensuring respect. The recommendations describe strategies towards ethically redressing the evidence gap for pregnant people around HIV and co-infections. The guidance has informed key efforts of leading organizations working to advance needed research, and identifies further opportunities for impact by a range of stakeholder groups. CONCLUSIONS: There are clear pathways towards ethical inclusion of pregnant people in the biomedical research agenda, and strong agreement across the HIV research community about the need for - and the promise of - advancing them. Those who fund, conduct, oversee and advocate for research can use the PHASES guidance to facilitate more, better and earlier evidence to optimize the health and wellbeing of pregnant people and their children.


Subject(s)
Acquired Immunodeficiency Syndrome , Biomedical Research , Coinfection , HIV Infections , Child , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Pregnancy , Stakeholder Participation
7.
Emerg Infect Dis ; 28(1): 9-19, 2022 01.
Article in English | MEDLINE | ID: covidwho-1581410

ABSTRACT

State and local health departments established the California Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Respiratory Virus Sentinel Surveillance System to conduct enhanced surveillance for SARS-CoV-2 and other respiratory pathogens at sentinel outpatient testing sites in 10 counties throughout California, USA. We describe results obtained during May 10, 2020‒June 12, 2021, and compare persons with positive and negative SARS-CoV-2 PCR results by using Poisson regression. We detected SARS-CoV-2 in 1,696 (19.6%) of 8,662 specimens. Among 7,851 specimens tested by respiratory panel, rhinovirus/enterovirus was detected in 906 (11.5%) specimens and other respiratory pathogens in 136 (1.7%) specimens. We also detected 23 co-infections with SARS-CoV-2 and another pathogen. SARS-CoV-2 positivity was associated with male participants, an age of 35-49 years, Latino race/ethnicity, obesity, and work in transportation occupations. Sentinel surveillance can provide useful virologic and epidemiologic data to supplement other disease monitoring activities and might become increasingly useful as routine testing decreases.


Subject(s)
COVID-19 , Coinfection , Adult , Humans , Male , Middle Aged , Polymerase Chain Reaction , SARS-CoV-2 , Sentinel Surveillance
8.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: covidwho-1580428

ABSTRACT

BACKGROUND: We aimed to compare the clinical severity in patients who were coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rhinovirus or monoinfected with a single one of these viruses. METHODS: The study period ranged from 1 March 2020 to 28 February 2021 (one year). SARS-CoV-2 and other respiratory viruses were identified by real-time reverse-transcription-PCR as part of the routine work at Marseille University hospitals. Bacterial and fungal infections were detected by standard methods. Clinical data were retrospectively collected from medical files. This study was approved by the ethical committee of our institute. RESULTS: A total of 6034/15,157 (40%) tested patients were positive for at least one respiratory virus. Ninety-three (4.3%) SARS-CoV-2-infected patients were coinfected with another respiratory virus, with rhinovirus being the most frequent (62/93, 67%). Patients coinfected with SARS-CoV-2 and rhinovirus were significantly more likely to report a cough than those with SARS-CoV-2 monoinfection (62% vs. 31%; p = 0.0008). In addition, they were also significantly more likely to report dyspnea than patients with rhinovirus monoinfection (45% vs. 36%; p = 0.02). They were also more likely to be transferred to an intensive care unit and to die than patients with rhinovirus monoinfection (16% vs. 5% and 7% vs. 2%, respectively) but these differences were not statistically significant. CONCLUSIONS: A close surveillance and investigation of the co-incidence and interactions of SARS-CoV-2 and other respiratory viruses is needed. The possible higher risk of increased clinical severity in SARS-CoV-2-positive patients coinfected with rhinovirus warrants further large scale studies.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/virology , Picornaviridae Infections/epidemiology , Adolescent , Adult , Aged , COVID-19/diagnosis , Child , Coinfection/diagnosis , Female , Humans , Incidence , Male , Middle Aged , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Rhinovirus , SARS-CoV-2 , Severity of Illness Index , Young Adult
9.
Virchows Arch ; 479(1): 97-108, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1574264

ABSTRACT

Between April and June 2020, i.e., during the first wave of pandemic coronavirus disease 2019 (COVID-19), 55 patients underwent long-term treatment in the intensive care unit at the University Hospital of Regensburg. Most of them were transferred from smaller hospitals, often due to the need for an extracorporeal membrane oxygenation system. Autopsy was performed in 8/17 COVID-19-proven patients after long-term treatment (mean: 33.6 days). Autopsy revealed that the typical pathological changes occurring during the early stages of the disease (e.g., thrombosis, endothelitis, capillaritis) are less prevalent at this stage, while severe diffuse alveolar damage and especially coinfection with different fungal species were the most conspicuous finding. In addition, signs of macrophage activation syndrome was detected in 7 of 8 patients. Thus, fungal infections were a leading cause of death in our cohort of severely ill patients and may alter clinical management of patients, particularly in long-term periods of treatment.


Subject(s)
COVID-19/microbiology , Coinfection , Lung Diseases, Fungal/microbiology , Lung/microbiology , Multiple Organ Failure/microbiology , Adult , Aged , COVID-19/drug therapy , COVID-19/mortality , COVID-19/pathology , COVID-19/therapy , Cause of Death , Extracorporeal Membrane Oxygenation , Female , Humans , Intensive Care Units , Lung/pathology , Lung/virology , Lung Diseases, Fungal/mortality , Lung Diseases, Fungal/pathology , Macrophage Activation Syndrome/microbiology , Macrophage Activation Syndrome/pathology , Male , Middle Aged , Multiple Organ Failure/mortality , Multiple Organ Failure/pathology , Multiple Organ Failure/virology , Risk Factors , Time Factors , Treatment Outcome
10.
J Int Med Res ; 49(12): 3000605211062783, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1571589

ABSTRACT

OBJECTIVE: Secondary infection, especially bloodstream infection, is an important cause of death in critically ill patients with COVID-19. We aimed to describe secondary bloodstream infection (SBI) in critically ill adults with COVID-19 in the intensive care unit (ICU) and to explore risk factors related to SBI. METHODS: We reviewed all SBI cases among critically ill patients with COVID-19 from 12 February 2020 to 24 March 2020 in the COVID-19 ICU of Jingmen First People's Hospital. We compared risk factors associated with bloodstream infection in this study. All SBIs were confirmed by blood culture. RESULTS: We identified five cases of SBI among the 32 patients: three with Enterococcus faecium, one mixed septicemia (E. faecium and Candida albicans), and one C. parapsilosis. There were no significant differences between the SBI group and non-SBI group. Significant risk factors for SBI were extracorporeal membrane oxygenation, central venous catheter, indwelling urethral catheter, and nasogastric tube. CONCLUSIONS: Our findings confirmed that the incidence of secondary infection, particularly SBI, and mortality are high among critically ill patients with COVID-19. We showed that long-term hospitalization and invasive procedures such as tracheotomy, central venous catheter, indwelling urethral catheter, and nasogastric tube are risk factors for SBI and other complications.


Subject(s)
COVID-19 , Coinfection , Sepsis , Adult , Critical Illness , Humans , Intensive Care Units , SARS-CoV-2
11.
Diagn Microbiol Infect Dis ; 101(3): 115476, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1544965

ABSTRACT

Among critically ill COVID-19 patients, bacterial coinfections may occur, and timely appropriate therapy may be limited with culture-based microbiology due to turnaround time and diagnostic yield challenges (e.g. antibiotic pre-exposure). We performed a systematic review and meta-analysis of the impact of BioFire® FilmArray® Pneumonia Panel in detecting bacteria and clinical management among critically ill COVID-19 patients admitted to the ICU. Seven studies with 558 patients were included. Antibiotic use before respiratory sampling occurred in 28-79% of cases. The panel incidence of detections was 33% (95% CI 0.25 to 0.41, I2=32%) while culture yielded 18% (95% CI 0.02 to 0.45; I2=93%). The panel was associated with approximately a 1 and 2 day decrease in turnaround for identification and common resistance targets, respectively. The panel may be an important tool for clinicians to improve antimicrobial use in critically ill COVID-19 patients.


Subject(s)
COVID-19/complications , COVID-19/pathology , Coinfection/diagnosis , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/diagnosis , SARS-CoV-2/isolation & purification , Critical Illness , Humans , Molecular Diagnostic Techniques , Pneumonia, Bacterial/microbiology , Sensitivity and Specificity
12.
J Med Virol ; 94(1): 99-109, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544351

ABSTRACT

A severe pandemic of Coronavirus Disease (COVID-19) has been sweeping the globe since 2019, and this time, it did not stop, with frequent mutations transforming into virulent strains, for instance, B.1.1.7, B.1.351, and B.1.427. In recent months, a fungal infection, mucormycosis has emerged with more fatal responses and significantly increased mortality rate. To measure the severity and potential alternative approaches against black fungus coinfection in COVID-19 patients, PubMed, Google Scholar, World Health Organization (WHO) newsletters, and other online resources, based on the cases reported and retrospective observational analysis were searched from the years 2015-2021. The studies reporting mucormycosis with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) coinfection and/or demonstrating potential risk factors, such as a history of diabetes mellitus or suppressed immune system were included, and reports published in non-English language were excluded. More than 20 case reports and observational studies on black fungus coinfection in COVID-19 patients were eligible for inclusion. The results indicated that diabetes mellitus, hyperglycemic, and immunocompromised COVID-19 patients with mucormycosis were at a higher risk. We found that it was prudent to assess the potential risk factors and severity of invasive mycosis via standardized diagnostic and clinical settings. Large-scale studies need to be conducted to identify early biomarkers and optimization of diagnostic methods has to be established per population and geographical variation. This will not only help clinicians around the world to detect the coinfection in time but also will prepare them for future outbreaks of other potential pandemics.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Mucormycosis/epidemiology , Mucormycosis/mortality , SARS-CoV-2/isolation & purification , Diabetes Mellitus/pathology , Humans , Hyperglycemia/pathology , Immunocompromised Host/physiology , Mucorales/growth & development , Mucorales/isolation & purification , Mucormycosis/pathology , Retrospective Studies , Risk Factors
13.
J Med Virol ; 94(1): 366-371, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544350

ABSTRACT

Co-epidemics happening simultaneously can generate a burden on healthcare systems. The co-occurrence of SARS-CoV-2 with vector-borne diseases (VBD), such as malaria and dengue in resource-limited settings represents an additional challenge to the healthcare systems. Herein, we assessed the coinfection rate between SARS-CoV-2 and VBD to highlight the need to carry out an accurate diagnosis and promote timely measures for these infections in Luanda, the capital city of Angola. This was a cross-sectional study conducted with 105 subjects tested for the SARS-CoV-2 and VBD with a rapid detection test in April 2021. The participants tested positive for SARS-CoV-2 (3.80%), malaria (13.3%), and dengue (27.6%). Low odds related to testing positivity to SARS-CoV-2 or VBD were observed in participants above or equal to 40 years (odds ratio [OR]: 0.60, p = 0.536), while higher odds were observed in male (OR: 1.44, p = 0.392) and urbanized areas (OR: 3.78, p = 0.223). The overall co-infection rate between SARS-CoV-2 and VBD was 11.4%. Our findings showed a coinfection between SARS-CoV-2 with malaria and dengue, which could indicate the need to integrate the screening for VBD in the SARS-CoV-2 testing algorithm and the adjustment of treatment protocols. Further studies are warranted to better elucidate the relationship between COVID-19 and VBD in Angola.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Dengue/epidemiology , Malaria/epidemiology , Vector Borne Diseases/epidemiology , Adolescent , Adult , Age Factors , Angola/epidemiology , Antibodies, Protozoan/blood , Antibodies, Viral/blood , COVID-19 Testing , Chikungunya Fever/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Mass Screening , Middle Aged , RNA, Viral/blood , SARS-CoV-2/isolation & purification , Sex Factors , Young Adult , Zika Virus Infection/epidemiology
14.
J Med Virol ; 94(1): 303-309, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544346

ABSTRACT

Emerging evidence shows co-infection with atypical bacteria in coronavirus disease 2019 (COVID-19) patients. Respiratory illness caused by atypical bacteria such as Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella pneumophila may show overlapping manifestations and imaging features with COVID-19 causing clinical and laboratory diagnostic issues. We conducted a prospective study to identify co-infections with SARS-CoV-2 and atypical bacteria in an Indian tertiary hospital. From June 2020 to January 2021, a total of 194 patients with laboratory-confirmed COVID-19 were also tested for atypical bacterial pathogens. For diagnosing M. pneumoniae, a real-time polymerase chain reaction (PCR) assay and serology (IgM ELISA) were performed. C. pneumoniae diagnosis was made based on IgM serology. L. pneumophila diagnosis was based on PCR or urinary antigen testing. Clinical and epidemiological features of SARS-CoV-2 and atypical bacteria-positive and -negative patient groups were compared. Of the 194 patients admitted with COVID-19, 17 (8.8%) were also diagnosed with M. pneumoniae (n = 10) or C. pneumoniae infection (n = 7). Confusion, headache, and bilateral infiltrate were found more frequently in the SARS CoV-2 and atypical bacteria co-infection group. Patients in the M. pneumoniae or C. pneumoniae co-infection group were more likely to develop ARDS, required ventilatory support, had a longer hospital length of stay, and higher fatality rate compared to patients with only SARS-CoV-2. Our report highlights co-infection with bacteria causing atypical pneumonia should be considered in patients with SARS-CoV-2 depending on the clinical context. Timely identification of co-existing pathogens can provide pathogen-targeted treatment and prevent fatal outcomes of patients infected with SARS-CoV-2 during the current pandemic.


Subject(s)
Atypical Bacterial Forms/isolation & purification , COVID-19/pathology , Chlamydophila Infections/epidemiology , Coinfection/epidemiology , Legionnaires' Disease/epidemiology , Pneumonia, Mycoplasma/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Chlamydophila pneumoniae/isolation & purification , Female , Humans , India , Legionella pneumophila/isolation & purification , Length of Stay , Male , Middle Aged , Mycoplasma pneumoniae/isolation & purification , Prospective Studies , SARS-CoV-2 , Severity of Illness Index , Young Adult
15.
J Med Virol ; 93(12): 6798-6802, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1530182

ABSTRACT

Viral infections have been on the rise for the past decades. The impact of the viruses worsened amidst the pandemic burdening the already overwhelmed health care system in African countries. This article sheds light on how the coronavirus together with the already existing viral infections, some of which re-emerged, impacted the continent. The strategies in place such as immunization, education, will have to be strengthened in all African countries to reduce the burden. Furthermore, governments can further collaborate with other countries in creating guidelines to reduce co-infection of the diseases.


Subject(s)
COVID-19/enzymology , COVID-19/virology , Coinfection/epidemiology , Coinfection/virology , Virus Diseases/epidemiology , Africa/epidemiology , COVID-19/immunology , Coinfection/immunology , Humans , Pandemics/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Virus Diseases/immunology , Virus Diseases/virology
16.
Bioessays ; 43(12): e2100158, 2021 12.
Article in English | MEDLINE | ID: covidwho-1525412

ABSTRACT

Severe COVID-19 is often accompanied by coagulopathies such as thrombocytopenia and abnormal clotting. Rarely, such complications follow SARS-CoV-2 vaccination. The cause of these coagulopathies is unknown. It is hypothesized that coagulopathies accompanying SARS-CoV-2 infections and vaccinations result from bacterial co-infections that synergize with virus-induced autoimmunity due to antigenic mimicry of blood proteins by both bacterial and viral antigens. Coagulopathies occur mainly in severe COVID-19 characterized by bacterial co-infections with Streptococci, Staphylococci, Klebsiella, Escherichia coli, and Acinetobacter baumannii. These bacteria express unusually large numbers of antigens mimicking human blood antigens, as do both SARS-CoV-2 and adenoviruses. Bacteria mimic cardiolipin, prothrombin, albumin, and platelet factor 4 (PF4). SARS-CoV-2 mimics complement factors, Rh antigens, platelet phosphodiesterases, Factors IX and X, von Willebrand Factor (VWF), and VWF protease ADAMTS13. Adenoviruses mimic prothrombin and platelet factor 4. Bacterial prophylaxis, avoidance of vaccinating bacterially infected individuals, and antigen deletion for vaccines may reduce coagulopathy risk. Also see the video abstract here: https://youtu.be/zWDOsghrPg8.


Subject(s)
COVID-19 , Coinfection , Autoantibodies , Autoimmunity , Bacteria , COVID-19 Vaccines , Cardiolipins , Carrier Proteins , Humans , Platelet Factor 4 , Prothrombin , SARS-CoV-2
17.
PLoS Negl Trop Dis ; 15(11): e0009921, 2021 11.
Article in English | MEDLINE | ID: covidwho-1523404

ABSTRACT

Coronavirus Disease 2019 (COVID-19), during the second wave in early 2021, has caused devastating chaos in India. As daily infection rates rise alarmingly, the number of severe cases has increased dramatically. The country has encountered health infrastructure inadequacy and excessive demand for hospital beds, drugs, vaccines, and oxygen. Adding more burden to such a challenging situation, mucormycosis, an invasive fungal infection, has seen a sudden surge in patients with COVID-19. The rhino-orbital-cerebral form is the most common type observed. In particular, approximately three-fourths of them had diabetes as predisposing comorbidity and received corticosteroids to treat COVID-19. Possible mechanisms may involve immune and inflammatory processes. Diabetes, when coupled with COVID-19-induced systemic immune change, tends to cause decreased immunity and an increased risk of secondary infections. Since comprehensive data on this fatal opportunistic infection are evolving against the backdrop of a major pandemic, prevention strategies primarily involve managing comorbid conditions in high-risk groups. The recommended treatment strategies primarily included surgical debridement and antifungal therapy using Amphotericin B and selected azoles. Several India-centric clinical guidelines have emerged to rightly diagnose the infection, characterise the clinical presentation, understand the pathogenesis involved, and track the disease course. Code Mucor is the most comprehensive one, which proposes a simple but reliable staging system for the rhino-orbital-cerebral form. A staging system has recently been proposed, and a dedicated registry has been started. In this critical review, we extensively analyse recent evidence and guidance on COVID-19-associated mucormycosis in India.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Mucormycosis/epidemiology , Mucormycosis/virology , Antifungal Agents/therapeutic use , COVID-19/microbiology , Coinfection/drug therapy , Coinfection/microbiology , Comorbidity , Diabetes Complications/microbiology , Humans , India/epidemiology , Mucormycosis/drug therapy , Risk Factors
18.
Genome Med ; 13(1): 182, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523323

ABSTRACT

BACKGROUND: Clinical metagenomics (CMg) has the potential to be translated from a research tool into routine service to improve antimicrobial treatment and infection control decisions. The SARS-CoV-2 pandemic provides added impetus to realise these benefits, given the increased risk of secondary infection and nosocomial transmission of multi-drug-resistant (MDR) pathogens linked with the expansion of critical care capacity. METHODS: CMg using nanopore sequencing was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. RESULTS: An 8-h CMg workflow was 92% sensitive (95% CI, 75-99%) and 82% specific (95% CI, 57-96%) for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of ß-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from 4 positive and 39 negative samples. Molecular typing using 24-h sequencing data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak involving 14 patients across three ICUs. CONCLUSION: CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg.


Subject(s)
COVID-19/pathology , Cross Infection/transmission , Metagenomics , Anti-Bacterial Agents/therapeutic use , COVID-19/virology , Coinfection/drug therapy , Coinfection/microbiology , Corynebacterium/genetics , Corynebacterium/isolation & purification , Cross Infection/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Middle Aged , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , beta-Lactamases/genetics
19.
Clin Infect Dis ; 73(10): 1913-1919, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1522140

ABSTRACT

Globally, there are prevailing knowledge gaps in the epidemiology, clinical manifestations, and outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among children and adolescents; and these gaps are especially wide in African countries. The availability of robust age-disaggregated data is a critical first step in improving knowledge on disease burden and manifestations of coronavirus disease 2019 (COVID-19) among children. Furthermore, it is essential to improve understanding of SARS-CoV-2 interactions with comorbidities and coinfections such as human immunodeficiency virus (HIV), tuberculosis, malaria, sickle cell disease, and malnutrition, which are highly prevalent among children in sub-Saharan Africa. The African Forum for Research and Education in Health (AFREhealth) COVID-19 Research Collaboration on Children and Adolescents is conducting studies across Western, Central, Eastern, and Southern Africa to address existing knowledge gaps. This consortium is expected to generate key evidence to inform clinical practice and public health policy-making for COVID-19 while concurrently addressing other major diseases affecting children in African countries.


Subject(s)
COVID-19 , Coinfection , Tuberculosis , Adolescent , Africa South of the Sahara/epidemiology , Child , Humans , SARS-CoV-2
20.
BMC Med ; 19(1): 301, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1518277

ABSTRACT

BACKGROUND: With the increasing number of people infected with and recovered from coronavirus disease 2019 (COVID-19), the extent of major health consequences of COVID-19 is unclear, including risks of severe secondary infections. METHODS: Based on 445,845 UK Biobank participants registered in England, we conducted a matched cohort study where 5151 individuals with a positive test result or hospitalized with a diagnosis of COVID-19 were included in the exposed group. We then randomly selected up to 10 matched individuals without COVID-19 diagnosis for each exposed individual (n = 51,402). The life-threatening secondary infections were defined as diagnoses of severe secondary infections with high mortality rates (i.e., sepsis, endocarditis, and central nervous system infections) from the UK Biobank inpatient hospital data, or deaths from these infections from mortality data. The follow-up period was limited to 3 months after the initial COVID-19 diagnosis. Using a similar study design, we additionally constructed a matched cohort where exposed individuals were diagnosed with seasonal influenza from either inpatient hospital or primary care data between 2010 and 2019 (6169 exposed and 61,555 unexposed individuals). After controlling for multiple confounders, Cox models were used to estimate hazard ratios (HRs) of life-threatening secondary infections after COVID-19 or seasonal influenza. RESULTS: In the matched cohort for COVID-19, 50.22% of participants were male, and the median age at the index date was 66 years. During a median follow-up of 12.71 weeks, the incidence rate of life-threatening secondary infections was 2.23 (123/55.15) and 0.25 (151/600.55) per 1000 person-weeks for all patients with COVID-19 and their matched individuals, respectively, which corresponded to a fully adjusted HR of 8.19 (95% confidence interval [CI] 6.33-10.59). The corresponding HR of life-threatening secondary infections among all patients with seasonal influenza diagnosis was 4.50, 95% CI 3.34-6.08 (p for difference < 0.01). Also, elevated HRs were observed among hospitalized individuals for life-threatening secondary infections following hospital discharge, both in the COVID-19 (HR = 6.28 [95% CI 4.05-9.75]) and seasonal influenza (6.01 [95% CI 3.53-10.26], p for difference = 0.902) cohorts. CONCLUSION: COVID-19 patients have increased subsequent risks of life-threatening secondary infections, to an equal extent or beyond risk elevations observed for patients with seasonal influenza.


Subject(s)
COVID-19 , Coinfection , Biological Specimen Banks , COVID-19 Testing , Cohort Studies , Humans , Male , SARS-CoV-2 , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...