Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
PLoS One ; 17(4): e0265820, 2022.
Article in English | MEDLINE | ID: covidwho-1779758

ABSTRACT

INTRODUCTION: The rapid expansion of the novel SARS-CoV-2 virus has raised serious public health concerns due to the possibility of misdiagnosis in regions where arboviral diseases are endemic. We performed the first study in northern Peru to describe the detection of SARS-CoV-2 IgM antibodies in febrile patients with a suspected diagnosis of dengue and chikungunya fever. MATERIALS AND METHODS: A consecutive cross-sectional study was performed in febrile patients attending primary healthcare centers from April 2020 through March 2021. Patients enrolled underwent serum sample collection for the molecular and serological detection of DENV and CHIKV. Also, serological detection of IgM antibodies against SARS-CoV-2 was performed. RESULTS: 464 patients were included during the study period, of which (40.51%) were positive for one pathogen, meanwhile (6.90%) presented co-infections between 2 or more pathogens. The majority of patients with monoinfections were positive for SARS-CoV-2 IgM with (73.40%), followed by DENV 18.09% and CHIKV (8.51%). The most frequent co-infection was DENV + SARS-CoV-2 with (65.63%), followed by DENV + CHIKV and DENV + CHIKV + SARS-CoV-2, both with (12.50%). The presence of polyarthralgias in hands (43.75%, p<0.01) and feet (31.25%, p = 0.05) were more frequently reported in patients with CHIKV monoinfection. Also, conjunctivitis was more common in patients positive for SARS-CoV-2 IgM (11.45%, p<0.01). The rest of the symptoms were similar among all the study groups. CONCLUSION: SARS-CoV-2 IgM antibodies were frequently detected in acute sera from febrile patients with a clinical suspicion of arboviral disease. The presence of polyarthralgias in hands and feet may be suggestive of CHIKV infection. These results reaffirm the need to consider SARS-CoV-2 infection as a main differential diagnosis of acute febrile illness in arboviruses endemic areas, as well as to consider co-infections between these pathogens.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Coinfection , Dengue Virus , Dengue , Zika Virus Infection , Antibodies, Viral , Arthralgia , COVID-19/diagnosis , COVID-19/epidemiology , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Coinfection/diagnosis , Coinfection/epidemiology , Cross-Sectional Studies , Dengue/diagnosis , Dengue/epidemiology , Fever/diagnosis , Humans , Immunoglobulin M , Peru/epidemiology , SARS-CoV-2 , Zika Virus Infection/epidemiology
2.
Crit Care ; 25(1): 281, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1770564

ABSTRACT

BACKGROUND: Procalcitonin (PCT) and C-reactive protein (CRP) were previously shown to have value for the detection of secondary infections in critically ill COVID-19 patients. However, since the introduction of immunomodulatory therapy, the value of these biomarkers is unclear. We investigated PCT and CRP kinetics in critically ill COVID-19 patients treated with dexamethasone with or without tocilizumab, and assessed the value of these biomarkers to detect secondary bacterial infections. METHODS: In this prospective study, 190 critically ill COVID-19 patients were divided into three treatment groups: no dexamethasone, no tocilizumab (D-T-), dexamethasone, no tocilizumab (D+T-), and dexamethasone and tocilizumab (D+T+). Serial data of PCT and CRP were aligned on the last day of dexamethasone treatment, and kinetics of these biomarkers were analyzed between 6 days prior to cessation of dexamethasone and 10 days afterwards. Furthermore, the D+T- and D+T+ groups were subdivided into secondary infection and no-secondary infection groups to analyze differences in PCT and CRP kinetics and calculate detection accuracy of these biomarkers for the occurrence of a secondary infection. RESULTS: Following cessation of dexamethasone, there was a rebound in PCT and CRP levels, most pronounced in the D+T- group. Upon occurrence of a secondary infection, no significant increase in PCT and CRP levels was observed in the D+T- group (p = 0.052 and p = 0.08, respectively). Although PCT levels increased significantly in patients of the D+T+ group who developed a secondary infection (p = 0.0003), this rise was only apparent from day 2 post-infection onwards. CRP levels remained suppressed in the D+T+ group. Receiver operating curve analysis of PCT and CRP levels yielded area under the curves of 0.52 and 0.55, respectively, which are both markedly lower than those found in the group of COVID-19 patients not treated with immunomodulatory drugs (0.80 and 0.76, respectively, with p values for differences between groups of 0.001 and 0.02, respectively). CONCLUSIONS: Cessation of dexamethasone in critically ill COVID-19 patients results in a rebound increase in PCT and CRP levels unrelated to the occurrence of secondary bacterial infections. Furthermore, immunomodulatory treatment with dexamethasone and tocilizumab considerably reduces the value of PCT and CRP for detection of secondary infections in COVID-19 patients.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Bacterial Infections/diagnosis , COVID-19/drug therapy , Coinfection/diagnosis , Dexamethasone/therapeutic use , Aged , C-Reactive Protein/analysis , COVID-19/complications , Critical Illness , Female , Humans , Male , Middle Aged , Netherlands , Procalcitonin/analysis , Prospective Studies
3.
Front Immunol ; 13: 833715, 2022.
Article in English | MEDLINE | ID: covidwho-1731782

ABSTRACT

2020 will be marked in history for the dreadful implications of the COVID-19 pandemic that shook the world globally. The pandemic has reshaped the normality of life and affected mankind in the aspects of mental and physical health, financial, economy, growth, and development. The focus shift to COVID-19 has indirectly impacted an existing air-borne disease, Tuberculosis. In addition to the decrease in TB diagnosis, the emergence of the TB/COVID-19 syndemic and its serious implications (possible reactivation of latent TB post-COVID-19, aggravation of an existing active TB condition, or escalation of the severity of a COVID-19 during TB-COVID-19 coinfection), serve as primary reasons to equally prioritize TB. On a different note, the valuable lessons learnt for the COVID-19 pandemic provide useful knowledge for enhancing TB diagnostics and therapeutics. In this review, the crucial need to focus on TB amid the COVID-19 pandemic has been discussed. Besides, a general comparison between COVID-19 and TB in the aspects of pathogenesis, diagnostics, symptoms, and treatment options with importance given to antibody therapy were presented. Lastly, the lessons learnt from the COVID-19 pandemic and how it is applicable to enhance the antibody-based immunotherapy for TB have been presented.


Subject(s)
Antibodies/therapeutic use , COVID-19/epidemiology , COVID-19/therapy , Coinfection/therapy , Tuberculosis/epidemiology , Tuberculosis/therapy , Antibodies/immunology , COVID-19/diagnosis , COVID-19/immunology , Coinfection/diagnosis , Coinfection/epidemiology , Coinfection/immunology , Humans , Immunotherapy , Mycobacterium tuberculosis , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Tuberculosis/diagnosis , Tuberculosis/immunology
4.
BMJ Case Rep ; 15(3)2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1723594

ABSTRACT

A man fully mRNA-vaccinated against COVID-19 presented to our hospital with an acute febrile illness, respiratory symptoms and a positive test for SARS-CoV-2. He was later found early into hospitalisation to have two morbid bacterial co-infections: Legionella pneumophila serogroup 1 and methicillin-resistant Staphylococcus aureus (MRSA). Although this patient was initially admitted for COVID-19 management, his initial presentation was remarkable for lobar pneumonia, hyponatraemia and rhabdomyolysis more compatible with Legionnaire's disease than severe COVID-19. On discovery of MRSA pneumonia as a second bacterial infection, immunosuppressive COVID-19 therapies were discontinued and targeted antibiotics towards both bacterial co-infections were initiated. The patient's successful recovery highlighted the need to have high suspicion for bacterial co-infections in patients presenting with community-acquired pneumonia and a positive SARS-CoV-2 test, as patients with serious bacterial co-infections may have worse outcomes with use of immunosuppressive COVID-19 therapies.


Subject(s)
COVID-19 , Coinfection , Community-Acquired Infections , Legionella pneumophila , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Coinfection/diagnosis , Community-Acquired Infections/microbiology , Humans , Male , SARS-CoV-2 , Staphylococcal Infections/complications , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcus aureus
6.
Future Microbiol ; 17: 161-167, 2022 02.
Article in English | MEDLINE | ID: covidwho-1638319

ABSTRACT

The authors describe a case series of co-infection with COVID-19 and scrub typhus in two Indian patients. Clinical features like fever, cough, dyspnea and altered sensorium were common in both patients. Case 1 had lymphopenia, elevated IL-6 and history of hypertension, while case 2 had leukocytosis and an increased liver enzymes. Both patients had hypoalbuminemia and required admission to the intensive care unit; one of them succumbed to acute respiratory distress syndrome further complicated by multiple organ dysfunction syndrome. Seasonal tropical infections in COVID-19 patients in endemic settings may lead to significant morbidity and mortality. Therefore, high clinical suspicion and an early diagnosis for co-infections among COVID-19 patients are essential for better patient management.


Subject(s)
COVID-19/complications , COVID-19/diagnosis , Coinfection/diagnosis , Scrub Typhus/complications , Scrub Typhus/diagnosis , Adult , COVID-19/blood , Coinfection/microbiology , Coinfection/virology , Cough , Diagnosis, Differential , Dyspnea , Early Diagnosis , Fever , Humans , India , Male , Middle Aged , Multiple Organ Failure/complications , Respiratory Distress Syndrome/complications , Scrub Typhus/blood
7.
PLoS One ; 16(12): e0261849, 2021.
Article in English | MEDLINE | ID: covidwho-1623664

ABSTRACT

BACKGROUND: Tuberculosis (TB) and COVID-19 pandemics are both diseases of public health threat globally. Both diseases are caused by pathogens that infect mainly the respiratory system, and are involved in airborne transmission; they also share some clinical signs and symptoms. We, therefore, took advantage of collected sputum samples at the early stage of COVID-19 outbreak in Ghana to conduct differential diagnoses of long-standing endemic respiratory illness, particularly tuberculosis. METHODOLOGY: Sputum samples collected through the enhanced national surveys from suspected COVID-19 patients and contact tracing cases were analyzed for TB. The sputum samples were processed using Cepheid's GeneXpert MTB/RIF assay in pools of 4 samples to determine the presence of Mycobacterium tuberculosis complex. Positive pools were then decoupled and analyzed individually. Details of positive TB samples were forwarded to the NTP for appropriate case management. RESULTS: Seven-hundred and seventy-four sputum samples were analyzed for Mycobacterium tuberculosis in both suspected COVID-19 cases (679/774, 87.7%) and their contacts (95/774, 12.3%). A total of 111 (14.3%) were diagnosed with SARS CoV-2 infection and six (0.8%) out of the 774 individuals tested positive for pulmonary tuberculosis: five (83.3%) males and one female (16.7%). Drug susceptibility analysis identified 1 (16.7%) rifampicin-resistant tuberculosis case. Out of the six TB positive cases, 2 (33.3%) tested positive for COVID-19 indicating a coinfection. Stratifying by demography, three out of the six (50%) were from the Ayawaso West District. All positive cases received appropriate treatment at the respective sub-district according to the national guidelines. CONCLUSION: Our findings highlight the need for differential diagnosis among COVID-19 suspected cases and regular active TB surveillance in TB endemic settings.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Coinfection/diagnosis , Coinfection/epidemiology , Mycobacterium tuberculosis/genetics , Pandemics/prevention & control , SARS-CoV-2/genetics , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/epidemiology , Antibiotics, Antitubercular/pharmacology , COVID-19/prevention & control , COVID-19/virology , Coinfection/virology , Diagnosis, Differential , Drug Resistance, Bacterial/drug effects , Female , Ghana/epidemiology , Humans , Male , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Rifampin/pharmacology , Sputum/microbiology , Tuberculosis, Pulmonary/microbiology
8.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: covidwho-1580428

ABSTRACT

BACKGROUND: We aimed to compare the clinical severity in patients who were coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rhinovirus or monoinfected with a single one of these viruses. METHODS: The study period ranged from 1 March 2020 to 28 February 2021 (one year). SARS-CoV-2 and other respiratory viruses were identified by real-time reverse-transcription-PCR as part of the routine work at Marseille University hospitals. Bacterial and fungal infections were detected by standard methods. Clinical data were retrospectively collected from medical files. This study was approved by the ethical committee of our institute. RESULTS: A total of 6034/15,157 (40%) tested patients were positive for at least one respiratory virus. Ninety-three (4.3%) SARS-CoV-2-infected patients were coinfected with another respiratory virus, with rhinovirus being the most frequent (62/93, 67%). Patients coinfected with SARS-CoV-2 and rhinovirus were significantly more likely to report a cough than those with SARS-CoV-2 monoinfection (62% vs. 31%; p = 0.0008). In addition, they were also significantly more likely to report dyspnea than patients with rhinovirus monoinfection (45% vs. 36%; p = 0.02). They were also more likely to be transferred to an intensive care unit and to die than patients with rhinovirus monoinfection (16% vs. 5% and 7% vs. 2%, respectively) but these differences were not statistically significant. CONCLUSIONS: A close surveillance and investigation of the co-incidence and interactions of SARS-CoV-2 and other respiratory viruses is needed. The possible higher risk of increased clinical severity in SARS-CoV-2-positive patients coinfected with rhinovirus warrants further large scale studies.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/virology , Picornaviridae Infections/epidemiology , Adolescent , Adult , Aged , COVID-19/diagnosis , Child , Coinfection/diagnosis , Female , Humans , Incidence , Male , Middle Aged , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Rhinovirus , SARS-CoV-2 , Severity of Illness Index , Young Adult
9.
Front Immunol ; 12: 755579, 2021.
Article in English | MEDLINE | ID: covidwho-1556334

ABSTRACT

During the COVID-19 pandemic, a phenomenon emerged in which some patients with severe disease were critically ill and could not be discharged from the ICU even though they exhibited negative viral tests. To explore the underlying mechanism, we collected blood samples from these patients and analyzed the gene expression profiles of peripheral immune cells. We found that all enrolled patients, regardless of changes in genes related to different symptoms and inflammatory responses, showed universally and severely decreased expression of adaptive immunity-related genes, especially those related to T/B cell arms and HLA molecules, and that these patients exhibited long-term secondary infections. In addition, no significant change was found in the expression of classic immunosuppression molecules including PD-1, PD-L1, and CTLA-4, suggesting that the adaptive immune suppression may not be due to the change of these genes. According to the published literatures and our data, this adaptive immunosuppression is likely to be caused by the "dysregulated host response" to severe infection, similar to the immunosuppression that exists in other severely infected patients with sepsis.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Immune Tolerance/immunology , Adaptive Immunity/genetics , Aged , COVID-19/diagnosis , COVID-19/genetics , Coinfection/diagnosis , Coinfection/genetics , Coinfection/immunology , Cross-Sectional Studies , Cytokine Release Syndrome/genetics , Female , Gene Expression Profiling , Humans , Immune Tolerance/genetics , Inflammation/genetics , Intensive Care Units , Male , Middle Aged , Patient Discharge , SARS-CoV-2/isolation & purification , Smell/genetics , Taste/genetics
10.
Diagn Microbiol Infect Dis ; 101(3): 115476, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1544965

ABSTRACT

Among critically ill COVID-19 patients, bacterial coinfections may occur, and timely appropriate therapy may be limited with culture-based microbiology due to turnaround time and diagnostic yield challenges (e.g. antibiotic pre-exposure). We performed a systematic review and meta-analysis of the impact of BioFire® FilmArray® Pneumonia Panel in detecting bacteria and clinical management among critically ill COVID-19 patients admitted to the ICU. Seven studies with 558 patients were included. Antibiotic use before respiratory sampling occurred in 28-79% of cases. The panel incidence of detections was 33% (95% CI 0.25 to 0.41, I2=32%) while culture yielded 18% (95% CI 0.02 to 0.45; I2=93%). The panel was associated with approximately a 1 and 2 day decrease in turnaround for identification and common resistance targets, respectively. The panel may be an important tool for clinicians to improve antimicrobial use in critically ill COVID-19 patients.


Subject(s)
COVID-19/complications , COVID-19/pathology , Coinfection/diagnosis , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/diagnosis , SARS-CoV-2/isolation & purification , Critical Illness , Humans , Molecular Diagnostic Techniques , Pneumonia, Bacterial/microbiology , Sensitivity and Specificity
11.
Sci Rep ; 11(1): 21807, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1506761

ABSTRACT

In this study, we compare the predictive value of clinical scoring systems that are already in use in patients with Coronavirus disease 2019 (COVID-19), including the Brescia-COVID Respiratory Severity Scale (BCRSS), Quick SOFA (qSOFA), Sequential Organ Failure Assessment (SOFA), Multilobular infiltration, hypo-Lymphocytosis, Bacterial coinfection, Smoking history, hyper-Tension, and Age (MuLBSTA) and scoring system for reactive hemophagocytic syndrome (HScore), for determining the severity of the disease. Our aim in this study is to determine which scoring system is most useful in determining disease severity and to guide clinicians. We classified the patients into two groups according to the stage of the disease (severe and non-severe) and adopted interim guidance of the World Health Organization. Severe cases were divided into a group of surviving patients and a deceased group according to the prognosis. According to admission values, the BCRSS, qSOFA, SOFA, MuLBSTA, and HScore were evaluated at admission using the worst parameters available in the first 24 h. Of the 417 patients included in our study, 46 (11%) were in the severe group, while 371 (89%) were in the non-severe group. Of these 417 patients, 230 (55.2%) were men. The median (IQR) age of all patients was 44 (25) years. In multivariate logistic regression analyses, BRCSS in the highest tertile (HR 6.1, 95% CI 2.105-17.674, p = 0.001) was determined as an independent predictor of severe disease in cases of COVID-19. In multivariate analyses, qSOFA was also found to be an independent predictor of severe COVID-19 (HR 4.757, 95% CI 1.438-15.730, p = 0.011). The area under the curve (AUC) of the BRCSS, qSOFA, SOFA, MuLBSTA, and HScore was 0.977, 0.961, 0.958, 0.860, and 0.698, respectively. Calculation of the BRCSS and qSOFA at the time of hospital admission can predict critical clinical outcomes in patients with COVID-19, and their predictive value is superior to that of HScore, MuLBSTA, and SOFA. Our prediction is that early interventions for high-risk patients, with early identification of high-risk group using BRCSS and qSOFA, may improve clinical outcomes in COVID-19.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Adult , Aged , Area Under Curve , Coinfection/diagnosis , Female , Hospital Mortality , Humans , Intensive Care Units , Lymphocytosis , Male , Middle Aged , Observer Variation , Organ Dysfunction Scores , Patient Admission , Predictive Value of Tests , Prognosis , Regression Analysis , Respiration , Respiration Disorders , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Smoking , Treatment Outcome
12.
J Mother Child ; 25(2): 127-134, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1498444

ABSTRACT

Various guidelines are in place for management for COVID-19 and pulmonary tuberculosis (PTB) in pregnancy. However, to the best of our knowledge, there are no significant guidelines for the management of COVID-19 and PTB co-infection in pregnancy. Pregnancy being an altered physiological state, the use of various drugs and their outcomes are altered. Here we present two cases of COVID-19 and PTB co-infection in pregnancy which were managed successfully.


Subject(s)
COVID-19 , Coinfection , Latent Tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , COVID-19/complications , Coinfection/diagnosis , Female , Humans , Pregnancy , Tuberculosis/complications , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis, Pulmonary/complications , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy
13.
J Antimicrob Chemother ; 77(2): 542, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1483462
14.
Infection ; 49(6): 1299-1306, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1482322

ABSTRACT

PURPOSE: Thorough knowledge of the nature and frequency of co-infections is essential to optimize treatment strategies and risk assessment in cases of coronavirus disease 2019 (COVID-19). This study aimed to evaluate the multiplex polymerase chain reaction (PCR) screening approach for community-acquired bacterial pathogens (CABPs) at hospital admission, which could facilitate identification of bacterial co-infections in hospitalized COVID-19 patients. METHODS: Clinical data and biomaterials from 200 hospitalized COVID-19 patients from the observational cohort of the Competence Network for community-acquired pneumonia (CAPNETZ) prospectively recruited between March 17, 2020, and March 12, 2021 in 12 centers in Germany and Switzerland, were included in this study. Nasopharyngeal swab samples were analyzed on hospital admission using multiplex real-time reverse transcription (RT)-PCR for a broad range of CABPs. RESULTS: In total of 200 patients Staphylococcus aureus (27.0%), Haemophilus influenzae (13.5%), Streptococcus pneumoniae (5.5%), Moraxella catarrhalis (2.5%), and Legionella pneumophila (1.5%) were the most frequently detected bacterial pathogens. PCR detection of bacterial pathogens correlated with purulent sputum, and showed no correlation with ICU admission, mortality, and inflammation markers. Although patients who received antimicrobial treatment were more often admitted to the ICU and had a higher mortality rate, PCR pathogen detection was not significantly related to antimicrobial treatment. CONCLUSION: General CABP screening using multiplex PCR with nasopharyngeal swabs may not facilitate prediction or identification of bacterial co-infections in the early phase of COVID-19-related hospitalization. Most patients with positive PCR results appear to be colonized rather than infected at that time, questioning the value of routine antibiotic treatment on admission in COVID-19 patients.


Subject(s)
COVID-19 , Coinfection , Community-Acquired Infections , Legionella pneumophila , Pneumonia , Cohort Studies , Coinfection/diagnosis , Coinfection/epidemiology , Community-Acquired Infections/diagnosis , Humans , Multiplex Polymerase Chain Reaction , Prospective Studies , SARS-CoV-2
15.
J Infect Public Health ; 14(11): 1567-1570, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1461377

ABSTRACT

The emerging of the COVID-19 pandemic is currently challenging for the public health system globally. Beyond SARS-CoV-2 pathogenicity, co-infections with recycling respiratory pathogens, whether bacterial, viral, or fungal, might increase disease symptoms, morbidity, and mortality. In this study, we reported two COVID-19 cases in the early phase of the virus spread in Saudi Arabia with underdiagnosed respiratory viruses' co-infections, influenza B and Parainfluenza-2, detected retrospectively. Fortunately, both patients recovered and were discharged home. Underestimation of co-infection among COVID19 patients might lead to hospital stay prolongation and increases morbidity and mortality. Therefore, it is crucial to consider and screen for co-infecting pathogens among COVID-19 patients and those with risk factors.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Paramyxoviridae Infections , Coinfection/diagnosis , Coinfection/epidemiology , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Pandemics , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology
17.
Respir Med ; 188: 106619, 2021 11.
Article in English | MEDLINE | ID: covidwho-1415764

ABSTRACT

BACKGROUND: Invasive fungal infections (IFI) are increasing in prevalence in recent years. In the last few months, the rise of COVID-19 patients has generated a new escalation in patients presenting opportunistic mycoses, mainly by Aspergillus. Candida infections are not being reported yet. OBJECTIVES: We aimed to determine the prevalence of systemic candidiasis in patients admitted to ICUs due to severe pneumonia secondary to SARS-CoV-2 infection and the existence of possible associated risk factors that led these patients to develop candidiasis. PATIENTS/METHODS: We designed a study including patients with a confirmed diagnosis of COVID-19. RESULTS: The prevalence of systemic candidiasis was 14.4%, and the main isolated species were C. albicans and C. parapsilosis. All patients that were tested positive for Candida spp. stayed longer in the ICU in comparison to patients who tested negative. Patients with candidiasis had higher MuLBSTA score and mortality rates and a worse radiological involvement. In our study, Candida spp. isolates were found in patients that were submitted to: tocilizumab, tocilizumab plus systemic steroids, interferon type 1ß and Lopinavir-Ritonavir. CONCLUSIONS: Results suggested a high prevalence of systemic candidiasis in severe COVID-19-associated pneumonia patients. Patients with Candidiasis had the worst clinical outcomes. Treatment with tocilizumab could potentialize the risk to develop systemic candidiasis.


Subject(s)
COVID-19/complications , Candidiasis/epidemiology , Coinfection/epidemiology , Pneumonia/epidemiology , Aged , COVID-19/diagnosis , Candida albicans , Candida parapsilosis , Candidiasis/complications , Candidiasis/diagnosis , Coinfection/diagnosis , Critical Care , Female , Humans , Male , Middle Aged , Pneumonia/microbiology , Pneumonia/virology , Prevalence , Prospective Studies , Risk Factors
18.
J Infect Dev Ctries ; 15(8): 1104-1106, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1405470

ABSTRACT

Brucellosis is a common zoonotic infection. Brucellosis typically presents with fever, weakness, night sweats, and arthralgias. Symptoms associated with Coronavirus Disease 2019 (COVID-19) and infection with Brucella spp. are similar to one another, which may lead to delayed diagnosis of the latter condition. There are no previous reports of brucellosis in a patient previously diagnosed with COVID-19. We present here the case of a 20-year-old male who we diagnosed with brucellosis after joint pains and fever that persisted after resolution of COVID-19.


Subject(s)
Brucellosis/diagnosis , COVID-19/complications , Coinfection/diagnosis , Zoonoses/diagnosis , Animals , Arthralgia/microbiology , Brucellosis/physiopathology , COVID-19/diagnostic imaging , Coinfection/microbiology , Coinfection/virology , Diagnosis, Differential , Fever/microbiology , Humans , Male , Tomography, X-Ray Computed , Young Adult , Zoonoses/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL