Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add filters

Document Type
Year range
1.
PLoS Negl Trop Dis ; 15(11): e0009921, 2021 11.
Article in English | MEDLINE | ID: covidwho-1523404

ABSTRACT

Coronavirus Disease 2019 (COVID-19), during the second wave in early 2021, has caused devastating chaos in India. As daily infection rates rise alarmingly, the number of severe cases has increased dramatically. The country has encountered health infrastructure inadequacy and excessive demand for hospital beds, drugs, vaccines, and oxygen. Adding more burden to such a challenging situation, mucormycosis, an invasive fungal infection, has seen a sudden surge in patients with COVID-19. The rhino-orbital-cerebral form is the most common type observed. In particular, approximately three-fourths of them had diabetes as predisposing comorbidity and received corticosteroids to treat COVID-19. Possible mechanisms may involve immune and inflammatory processes. Diabetes, when coupled with COVID-19-induced systemic immune change, tends to cause decreased immunity and an increased risk of secondary infections. Since comprehensive data on this fatal opportunistic infection are evolving against the backdrop of a major pandemic, prevention strategies primarily involve managing comorbid conditions in high-risk groups. The recommended treatment strategies primarily included surgical debridement and antifungal therapy using Amphotericin B and selected azoles. Several India-centric clinical guidelines have emerged to rightly diagnose the infection, characterise the clinical presentation, understand the pathogenesis involved, and track the disease course. Code Mucor is the most comprehensive one, which proposes a simple but reliable staging system for the rhino-orbital-cerebral form. A staging system has recently been proposed, and a dedicated registry has been started. In this critical review, we extensively analyse recent evidence and guidance on COVID-19-associated mucormycosis in India.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Mucormycosis/epidemiology , Mucormycosis/virology , Antifungal Agents/therapeutic use , COVID-19/microbiology , Coinfection/drug therapy , Coinfection/microbiology , Comorbidity , Diabetes Complications/microbiology , Humans , India/epidemiology , Mucormycosis/drug therapy , Risk Factors
2.
Genome Med ; 13(1): 182, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523323

ABSTRACT

BACKGROUND: Clinical metagenomics (CMg) has the potential to be translated from a research tool into routine service to improve antimicrobial treatment and infection control decisions. The SARS-CoV-2 pandemic provides added impetus to realise these benefits, given the increased risk of secondary infection and nosocomial transmission of multi-drug-resistant (MDR) pathogens linked with the expansion of critical care capacity. METHODS: CMg using nanopore sequencing was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. RESULTS: An 8-h CMg workflow was 92% sensitive (95% CI, 75-99%) and 82% specific (95% CI, 57-96%) for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of ß-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from 4 positive and 39 negative samples. Molecular typing using 24-h sequencing data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak involving 14 patients across three ICUs. CONCLUSION: CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg.


Subject(s)
COVID-19/pathology , Cross Infection/transmission , Metagenomics , Anti-Bacterial Agents/therapeutic use , COVID-19/virology , Coinfection/drug therapy , Coinfection/microbiology , Corynebacterium/genetics , Corynebacterium/isolation & purification , Cross Infection/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Middle Aged , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , beta-Lactamases/genetics
3.
Antimicrob Resist Infect Control ; 10(1): 155, 2021 10 30.
Article in English | MEDLINE | ID: covidwho-1496232

ABSTRACT

BACKGROUND: We defined the frequency of respiratory community-acquired bacterial co-infection in patients with COVID-19, i.e. patients with a positive SARS-CoV-2 PCR or a COVID-19 Reporting and Data System (CO-RADS) score ≥ 4, based on a complete clinical assessment, including prior antibiotic use, clinical characteristics, inflammatory markers, chest computed tomography (CT) results and microbiological test results. METHODS: Our retrospective study was conducted within a cohort of prospectively included patients admitted for COVID-19 in our tertiary medical centres between 1-3-2020 and 1-6-2020. A multidisciplinary study team developed a diagnostic protocol to retrospectively categorize patients as unlikely, possible or probable bacterial co-infection based on clinical, radiological and microbiological parameters in the first 72 h of admission. Within the three categories, we summarized patient characteristics and antibiotic consumption. RESULTS: Among 281 included COVID-19 patients, bacterial co-infection was classified as unlikely in 233 patients (82.9%), possible in 35 patients (12.4%) and probable in 3 patients (1.1%). Ten patients (3.6%) could not be classified due to inconclusive data. Within 72 h of hospital admission, 81% of the total study population and 78% of patients classified as unlikely bacterial co-infection received antibiotics. CONCLUSIONS: COVID-19 patients are unlikely to have a respiratory community-acquired bacterial co-infection. This study underpins recommendations for restrictive use of antibacterial drugs in patients with COVID-19.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/diagnosis , Coinfection/epidemiology , Community-Acquired Infections/epidemiology , Hospitalization/statistics & numerical data , Pneumonia/epidemiology , Adult , Anti-Bacterial Agents/therapeutic use , Antimicrobial Stewardship , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , COVID-19/complications , Cohort Studies , Coinfection/drug therapy , Community-Acquired Infections/microbiology , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2
4.
Antimicrob Agents Chemother ; 65(11): e0134121, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1398569

ABSTRACT

Hospitalized patients with SARS-CoV-2 infection (COVID-19) often receive antibiotics for suspected bacterial coinfection. We estimated the incidence of bacterial coinfection and secondary infection in COVID-19 using clinical diagnoses to determine how frequently antibiotics are administered when bacterial infection is absent. We performed a retrospective cohort study of inpatients with COVID-19 present on admission to hospitals in the Premier Healthcare Database between April and June 2020. Bacterial infections were defined using ICD-10-CM diagnosis codes and associated "present on admission" coding. Coinfections were defined by bacterial infection present on admission, while secondary infections were defined by bacterial infection that developed after admission. Coinfection and secondary infection were not mutually exclusive. A total of 18.5% of 64,961 COVID-19 patients (n = 12,040) presented with bacterial infection at admission, 3.8% (n = 2,506) developed secondary infection after admission, and 0.9% (n = 574) had both; 76.3% (n = 49,551) received an antibiotic while hospitalized, including 71% of patients who had no diagnosis of bacterial infection. Secondary bacterial infection occurred in 5.7% of patients receiving steroids in the first 2 days of hospitalization, 9.9% receiving tocilizumab in the first 2 days of hospitalization, and 10.3% of patients receiving both. After adjusting for patient and hospital characteristics, bacterial coinfection (adjusted relative risk [aRR], 1.15; 95% confidence interval [CI], 1.11 to 1.20) and secondary infection (aRR 1.93; 95% CI, 1.82 to 2.04) were both independently associated with increased mortality. Although 1 in 5 inpatients with COVID-19 presents with bacterial infection, secondary infections in the hospital are uncommon. Most inpatients with COVID-19 receive antibiotic therapy, including 71% of those not diagnosed with bacterial infection.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Coinfection/drug therapy , Hospitalization , Humans , Inpatients , Retrospective Studies , SARS-CoV-2
6.
Ann Palliat Med ; 10(8): 8557-8570, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1353025

ABSTRACT

BACKGROUND: Since 2020 COVID-19 pandemic became an emergent public sanitary incident. The epidemiology data and the impact on prognosis of secondary infection in severe and critical COVID-19 patients in China remained largely unclear. METHODS: We retrospectively reviewed medical records of all adult patients with laboratory-confirmed COVID-19 who were admitted to ICUs from January 18th 2020 to April 26th 2020 at two hospitals in Wuhan, China and one hospital in Guangzhou, China. We measured the frequency of bacteria and fungi cultured from respiratory tract, blood and other body fluid specimens. The risk factors for and impact of secondary infection on clinical outcomes were also assessed. RESULTS: Secondary infections were very common (86.6%) when patients were admitted to ICU for >72 hours. The majority of infections were respiratory, with the most common organisms being Klebsiella pneumoniae (24.5%), Acinetobacter baumannii (21.8%), Stenotrophomonas maltophilia (9.9%), Candida albicans (6.8%), and Pseudomonas spp. (4.8%). Furthermore, the proportions of multidrug resistant (MDR) bacteria and carbapenem resistant Enterobacteriaceae (CRE) were high. We also found that age ≥60 years and mechanical ventilation ≥13 days independently increased the likelihood of secondary infection. Finally, patients with positive cultures had reduced ventilator free days in 28 days and patients with CRE and/or MDR bacteria positivity showed lower 28-day survival rate. CONCLUSIONS: In a retrospective cohort of severe and critical COVID-19 patients admitted to ICUs in China, the prevalence of secondary infection was high, especially with CRE and MDR bacteria, resulting in poor clinical outcomes.


Subject(s)
COVID-19 , Coinfection , Cross Infection , Adult , Anti-Bacterial Agents/therapeutic use , Coinfection/drug therapy , Cross Infection/drug therapy , Cross Infection/epidemiology , Humans , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2
8.
Int J Antimicrob Agents ; 58(4): 106409, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1330851

ABSTRACT

Since the start of the COVID-19 pandemic, there has been concern about the concomitant rise of antimicrobial resistance. While bacterial co-infections seem rare in COVID-19 patients admitted to hospital wards and intensive care units (ICUs), an increase in empirical antibiotic use has been described. In the ICU setting, where antibiotics are already abundantly-and often inappropriately-prescribed, the need for an ICU-specific antimicrobial stewardship programme is widely advocated. Apart from essentially warning against the use of antibacterial drugs for the treatment of a viral infection, other aspects of ICU antimicrobial stewardship need to be considered in view of the clinical course and characteristics of COVID-19. First, the distinction between infectious and non-infectious (inflammatory) causes of respiratory deterioration during an ICU stay is difficult, and the much-debated relevance of fungal and viral co-infections adds to the complexity of empirical antimicrobial prescribing. Biomarkers such as procalcitonin for the decision to start antibacterial therapy for ICU nosocomial infections seem to be more promising in COVID-19 than non-COVID-19 patients. In COVID-19 patients, cytomegalovirus reactivation is an important factor to consider when assessing patients infected with SARS-CoV-2 as it may have a role in modulating the patient immune response. The diagnosis of COVID-19-associated invasive aspergillosis is challenging because of the lack of sensitivity and specificity of the available tests. Furthermore, altered pharmacokinetic/pharmacodynamic properties need to be taken into account when prescribing antimicrobial therapy. Future research should now further explore the 'known unknowns', ideally with robust prospective study designs.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antimicrobial Stewardship/methods , COVID-19 , Cross Infection/diagnosis , Anti-Bacterial Agents/pharmacokinetics , Antimicrobial Stewardship/organization & administration , Biomarkers/analysis , COVID-19/drug therapy , Coinfection/drug therapy , Coinfection/microbiology , Cross Infection/drug therapy , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Virus Activation/drug effects
9.
Future Microbiol ; 16: 919-925, 2021 08.
Article in English | MEDLINE | ID: covidwho-1329168

ABSTRACT

In the absence of potent antimicrobial agents, it is estimated that bacterial infections could cause millions of deaths. The emergence of COVID-19, its complex pathophysiology and the high propensity of patients to coinfections has resulted in therapeutic regimes that use a cocktail of antibiotics for disease management. Suboptimal antimicrobial stewardship in this era and the slow pace of drug discovery could result in large-scale drug resistance, narrowing future antimicrobial therapeutics. Thus, judicious use of current antimicrobials is imperative to keep up with existing and emerging infectious pathogens. Here, we provide insights into the potential implications of suboptimal antimicrobial stewardship, resulting from the emergence of COVID-19, on the spread of antimicrobial resistance.


Subject(s)
Antimicrobial Stewardship/methods , Bacterial Infections , COVID-19/epidemiology , Coinfection , Mycoses , Anti-Infective Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology , Coinfection/drug therapy , Coinfection/epidemiology , Hand Disinfection , Humans , Mycoses/drug therapy , Mycoses/epidemiology
10.
Microbiol Spectr ; 9(1): e0016321, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1319383

ABSTRACT

Emerging evidence indicates that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals are at an increased risk for coinfections; therefore, physicians need to be cognizant about excluding other treatable respiratory pathogens. Here, we report coinfection with SARS-CoV-2 and other respiratory pathogens in patients admitted to the coronavirus disease (COVID) care facilities of an Indian tertiary care hospital. From June 2020 through January 2021, we tested 191 patients with SARS-CoV-2 for 33 other respiratory pathogens using an fast track diagnostics respiratory pathogen 33 (FTD-33) assay. Additionally, information regarding other relevant respiratory pathogens was collected by reviewing their laboratory data. Overall, 13 pathogens were identified among patients infected with SARS-CoV-2, and 46.6% (89/191) of patients had coinfection with one or more additional pathogens. Bacterial coinfections (41.4% [79/191]) were frequent, with Staphylococcus aureus being the most common, followed by Klebsiella pneumoniae. Coinfections with SARS-CoV-2 and Pneumocystis jirovecii or Legionella pneumophila were also identified. The viral coinfection rate was 7.3%, with human adenovirus and human rhinovirus being the most common. Five patients in our cohort had positive cultures for Acinetobacter baumannii and K. pneumoniae, and two patients had active Mycobacterium tuberculosis infection. In total, 47.1% (90/191) of patients with coinfections were identified. The higher proportion of patients with coinfections in our cohort supports the systemic use of antibiotics in patients with severe SARS-CoV-2 pneumonia with rapid de-escalation based on respiratory PCR/culture results. The timely and simultaneous identification of coinfections can contribute to improved health of COVID-19 patients and enhanced antibiotic stewardship during the pandemic. IMPORTANCE Coinfections in COVID-19 patients may worsen disease outcomes and need further investigation. We found that a higher proportion of patients with COVID-19 were coinfected with one or more additional pathogens. A better understanding of the prevalence of coinfection with other respiratory pathogens in COVID-19 patients and the profile of pathogens can contribute to effective patient management and antibiotic stewardship during the current pandemic.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/virology , Acinetobacter baumannii , Adenoviruses, Human , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents , Antimicrobial Stewardship , COVID-19/diagnosis , Coinfection/drug therapy , Enterovirus , Female , Humans , India/epidemiology , Klebsiella pneumoniae , Male , Middle Aged , Mycobacterium tuberculosis , Pandemics , SARS-CoV-2 , Tuberculosis/epidemiology , Young Adult
11.
mBio ; 12(4): e0047321, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1318003

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is a challenge for ongoing efforts to combat antimicrobial-resistant (AMR) bacterial infections. As we learn more about COVID-19 disease and drug stewardship evolves, there is likely to be a lasting impact of increased use of antimicrobial agents and antibiotics, as well as a lack of consistent access to health care across many populations. Sexually transmitted infections have been underreported during the pandemic and are often caused by some of the most drug-resistant pathogens. In their recent article in mBio, Parzych et al. (E. M. Parzych, S. Gulati, B. Zheng, M. A. Bah, et al., mBio 12:e00242-21, 2021, https://doi.org/10.1128/mBio.00242-21) focus on protection against Neisseria gonorrhoeae infection via in vivo delivery of an antigonococcal DNA-encoded antibody that has been modified for increased complement activation. Nucleic acid approaches are highly adaptable and could be tremendously beneficial for personalized strategies to combat AMR pathogens.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antimicrobial Stewardship/methods , COVID-19/pathology , Drug Resistance, Multiple, Bacterial/genetics , Coinfection/drug therapy , Coinfection/microbiology , Gonorrhea/drug therapy , Health Services Accessibility , Humans , Microbial Sensitivity Tests , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Precision Medicine , SARS-CoV-2
12.
Rev Esp Quimioter ; 34(5): 491-495, 2021 Oct.
Article in Spanish | MEDLINE | ID: covidwho-1316065

ABSTRACT

OBJECTIVE: Currently the prevalence of pneumococcal coinfection in patients with COVID-19 is unknown. In this work we present its clinical characteristics, evolution and treatment. METHODS: Retrospective data collection from August to October 2020 in two hospitals in the Murcia region. RESULTS: Eighteen patients had COVID-19 diagnosed by PCR and pneumococcal infection confirmed by antigenuria, which represented a prevalence of 2%. A total of 88% had radiological alterations upon admission (two patients had an X-ray within normality) and 29% had elevated procalcitonin. Mortality in our series was 12%. CONCLUSIONS: It could be reasonable to consider the start of antimicrobial therapy in those cases in which there is a moderate or high suspicion of bacterial coinfection, being essential the early suspension of antibiotic treatment if it is not confirmed.


Subject(s)
COVID-19 , Coinfection , Coinfection/drug therapy , Humans , Retrospective Studies , SARS-CoV-2 , Streptococcus pneumoniae
14.
J Med Virol ; 93(7): 4411-4419, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1263106

ABSTRACT

In late December 2019, an outbreak of a novel coronavirus which caused coronavirus disease 2019 (COVID-19) was initiated. Acute kidney injury (AKI) was associated with higher severity and mortality of COVID-19. We aimed to evaluate the effects of comorbidities and medications in addition to determining the association between AKI, antibiotics against coinfections (AAC) and outcomes of patients. We conducted a retrospective study on adult patients hospitalized with COVID-19 in a tertiary center. Our primary outcomes were the incidence rate of AKI based on comorbidities and medications. The secondary outcome was to determine mortality, intensive care unit (ICU) admission, and prolonged hospitalization by AKI and AAC. Univariable and multivariable logistic regression method was used to explore predictive effects of AKI and AAC on outcomes. Out of 854 included participants, 118 patients developed AKI in whom, 57 used AAC and 61 did not. Hypertension and diabetes were the most common comorbidities in patients developed AKI. AAC, lopinavir/ritonavir, ribavirin, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, and corticosteroids had significant higher rate of administration in patients developed AKI. AAC were associated with higher deaths (odds ratio [OR] = 5.13; 95% confidence interval (CI): 3-8.78) and ICU admission (OR = 5.87; 95%CI: 2.81-12.27), while AKI had higher OR for prolonged hospitalization (3.37; 95%CI: 1.76-6.45). Both AKI and AAC are associated with poor prognosis of COVID-19. Defining strict criteria regarding indications and types of antibiotics would help overcoming concomitant infections and minimizing related adverse events.


Subject(s)
Acute Kidney Injury/epidemiology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/pathology , SARS-CoV-2/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/virology , Adult , Angiotensin-Converting Enzyme Inhibitors , Azithromycin/therapeutic use , Coinfection/drug therapy , Coinfection/prevention & control , Critical Care/statistics & numerical data , Drug Combinations , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Humans , Iran/epidemiology , Linezolid/therapeutic use , Lopinavir/therapeutic use , Male , Middle Aged , Retrospective Studies , Ribavirin/therapeutic use , Ritonavir/therapeutic use , Treatment Outcome , Vancomycin/therapeutic use
16.
BMC Infect Dis ; 21(1): 516, 2021 Jun 02.
Article in English | MEDLINE | ID: covidwho-1255908

ABSTRACT

BACKGROUND: Empiric antibiotics for community acquired bacterial pneumonia (CABP) are often prescribed to patients with COVID-19, despite a low reported incidence of co-infections. Stewardship interventions targeted at facilitating appropriate antibiotic prescribing for CABP among COVID-19 patients are needed. We developed a guideline for antibiotic initiation and discontinuation for CABP in COVID-19 patients. The purpose of this study was to assess the impact of this intervention on the duration of empiric CABP antibiotic therapy among patients with COVID-19. METHODS: This was a single-center, retrospective, quasi-experimental study of adult patients admitted between 3/1/2020 to 4/25/2020 with COVID-19 pneumonia, who were initiated on empiric CABP antibiotics. Patients were excluded if they were initiated on antibiotics > 48 h following admission or if another source of infection was identified. The primary outcome was the duration of antibiotic therapy (DOT) prior to the guideline (March 1 to March27, 2020) and after guideline implementation (March 28 to April 25, 2020). We also evaluated the clinical outcomes (mortality, readmissions, length of stay) among those initiated on empiric CABP antibiotics. RESULTS: A total of 506 patients with COVID-19 were evaluated, 102 pre-intervention and 404 post-intervention. Prior to the intervention, 74.5% (n = 76) of patients with COVID-19 received empiric antibiotics compared to only 42% of patients post-intervention (n = 170), p < 0.001. The median DOT in the post-intervention group was 1.3 days shorter (p < 0.001) than the pre-intervention group, and antibiotics directed at atypical bacteria DOT was reduced by 2.8 days (p < 0.001). More patients in the post-intervention group were initiated on antibiotics based on criteria consistent with our guideline (68% versus 87%, p = 0.001). There were no differences between groups in terms of clinical outcomes. CONCLUSION: Following the implementation of a guideline outlining recommendations for initiating and discontinuing antibiotics for CABP among COVID-19 inpatients, we observed a reduction in antibiotic prescribing and DOT. The guideline also resulted in a significant increase in the rate of guideline-congruent empiric antibiotic initiation.


Subject(s)
Anti-Bacterial Agents/therapeutic use , COVID-19/drug therapy , Adult , Antimicrobial Stewardship , Coinfection/drug therapy , Community-Acquired Infections/drug therapy , Hospitalization , Humans , Inpatients , Pneumonia, Bacterial/drug therapy , Practice Guidelines as Topic , Retrospective Studies
17.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1246687

ABSTRACT

BACKGROUND: The clinical consequences of SARS-CoV-2 and DENGUE virus co-infection are not promising. However, their treatment options are currently unavailable. Current studies have shown that quercetin is both resistant to COVID-19 and DENGUE; this study aimed to evaluate the possible functional roles and underlying mechanisms of action of quercetin as a potential molecular candidate against COVID-19 and DENGUE co-infection. METHODS: We used a series of bioinformatics analyses to understand and characterize the biological functions, pharmacological targets and therapeutic mechanisms of quercetin in COVID-19 and DENGUE co-infection. RESULTS: We revealed the clinical characteristics of COVID-19 and DENGUE, including pathological mechanisms, key inflammatory pathways and possible methods of intervention, 60 overlapping targets related to the co-infection and the drug were identified, the protein-protein interaction (PPI) was constructed and TNFα, CCL-2 and CXCL8 could become potential drug targets. Furthermore, we disclosed the signaling pathways, biological functions and upstream pathway activity of quercetin in COVID-19 and DENGUE. The analysis indicated that quercetin could inhibit cytokines release, alleviate excessive immune responses and eliminate inflammation, through NF-κB, IL-17 and Toll-like receptor signaling pathway. CONCLUSIONS: This study is the first to reveal quercetin as a pharmacological drug for COVID-19 and DENGUE co-infection. COVID-19 and DENGUE co-infection remain a potential threat to the world's public health system. Therefore, we need innovative thinking to provide admissible evidence for quercetin as a potential molecule drug for the treatment of COVID-19 and DENGUE, but the findings have not been verified in actual patients, so further clinical drug trials are needed.


Subject(s)
COVID-19/drug therapy , Dengue Virus/chemistry , Dengue/drug therapy , Quercetin/chemistry , SARS-CoV-2/chemistry , COVID-19/complications , COVID-19/genetics , COVID-19/virology , Chemokine CCL2/chemistry , Chemokine CCL2/drug effects , Chemokine CCL2/genetics , Coinfection/drug therapy , Coinfection/genetics , Coinfection/virology , Dengue/complications , Dengue/genetics , Dengue/virology , Dengue Virus/drug effects , Humans , Interleukin-17/genetics , Interleukin-8/chemistry , Interleukin-8/drug effects , Interleukin-8/genetics , NF-kappa B/drug effects , NF-kappa B/genetics , Protein Interaction Maps/drug effects , Quercetin/therapeutic use , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/genetics
18.
Clin Infect Dis ; 72(10): e533-e541, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1232185

ABSTRACT

BACKGROUND: Antibacterials may be initiated out of concern for bacterial coinfection in coronavirus disease 2019 (COVID-19). We determined prevalence and predictors of empiric antibacterial therapy and community-onset bacterial coinfections in hospitalized patients with COVID-19. METHODS: A randomly sampled cohort of 1705 patients hospitalized with COVID-19 in 38 Michigan hospitals between 3/13/2020 and 6/18/2020. Data were collected on early (within 2 days of hospitalization) empiric antibacterial therapy and community-onset bacterial coinfections (positive microbiologic test ≤3 days). Poisson generalized estimating equation models were used to assess predictors. RESULTS: Of 1705 patients with COVID-19, 56.6% were prescribed early empiric antibacterial therapy; 3.5% (59/1705) had a confirmed community-onset bacterial infection. Across hospitals, early empiric antibacterial use varied from 27% to 84%. Patients were more likely to receive early empiric antibacterial therapy if they were older (adjusted rate ratio [ARR]: 1.04 [1.00-1.08] per 10 years); had a lower body mass index (ARR: 0.99 [0.99-1.00] per kg/m2), more severe illness (eg, severe sepsis; ARR: 1.16 [1.07-1.27]), a lobar infiltrate (ARR: 1.21 [1.04-1.42]); or were admitted to a for-profit hospital (ARR: 1.30 [1.15-1.47]). Over time, COVID-19 test turnaround time (returned ≤1 day in March [54.2%, 461/850] vs April [85.2%, 628/737], P < .001) and empiric antibacterial use (ARR: 0.71 [0.63-0.81] April vs March) decreased. CONCLUSIONS: The prevalence of confirmed community-onset bacterial coinfections was low. Despite this, half of patients received early empiric antibacterial therapy. Antibacterial use varied widely by hospital. Reducing COVID-19 test turnaround time and supporting stewardship could improve antibacterial use.


Subject(s)
COVID-19 , Coinfection , Anti-Bacterial Agents/therapeutic use , Cohort Studies , Coinfection/drug therapy , Coinfection/epidemiology , Hospitalization , Hospitals , Humans , Michigan , SARS-CoV-2
19.
Indian J Med Microbiol ; 39(2): 147-153, 2021 04.
Article in English | MEDLINE | ID: covidwho-1220867

ABSTRACT

BACKGROUND: The COVID-19 pandemic has raised concerns over secondary infections because it has limited treatment options and empiric antimicrobial treatment poses serious risks of aggravating antimicrobial resistance (AMR). Studies have shown that COVID-19 patients are predisposed to develop secondary infections. This study was conducted to ascertain the prevalence and profiles of co- & secondary infections in patients at the COVID-19 facility in North India. METHODS: We studied the profile of pathogens isolated from 290 clinical samples. Bacterial and fungal pathogens were identified, and antimicrobial susceptibility was determined by the Vitek2® system. Additionally, respiratory samples were tested for any viral/atypical bacterial co-infections and the presence of AMR genes by FilmArray test. The clinical and outcome data of these patients were also recorded for demographic and outcome measures analyses. RESULTS: A total of 151 (13%) patients had secondary infections, and most got infected within the first 14 days of hospital admission. Patients aged >50 years developed severe symptoms (p = 0.0004) and/or had a fatal outcome (p = 0.0005). In-hospital mortality was 33%.K.pneumoniae (33.3%) was the predominant pathogen, followed by A. baumannii (27.1%). The overall resistance was up to 84%.Majority of the organisms were multidrug-resistant (MDR) harbouring MDR genes. CONCLUSION: A high rate of secondary infections with resistant pathogens in COVID-19 patients highlights the importance of antimicrobial stewardship programs focussing on supporting the optimal selection of empiric treatment and rapid-de-escalation, based on culture reports.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/drug therapy , COVID-19/mortality , Child , Child, Preschool , Coinfection/drug therapy , Coinfection/mortality , Drug Resistance, Microbial , Female , Hospital Mortality , Humans , Infant , Male , Middle Aged , Tertiary Healthcare , Young Adult
20.
J Med Virol ; 93(1): 472-480, 2021 01.
Article in English | MEDLINE | ID: covidwho-1206789

ABSTRACT

During the early stages of the pandemic, some coronavirus disease (COVID-19) patients were misdiagnosed as having influenza, which aroused the concern that some deaths attributed to influenza were actually COVID-19-related. However, little is known about whether coinfection with influenza contributes to severity of COVID-19 pneumonia, and the optimal therapeutic strategy for these patients. We retrospectively studied 128 hospitalized patients with COVID-19 pneumonia. All patients were positive severe acute respiratory syndrome coronavirus 2 positive by nucleic acid detection. Sixty-four cases were coinfected with influenza A/B and the other 64 were influenza negative, matched by age, sex, and days from onset of symptoms. Among the 64 coinfected patients, 54 (84.4%) were coinfected with influenza A, and 10 (15.6%) with influenza B. The median duration of viral shedding time from admission was longer for patients with influenza coinfection (17.0 days) than for those without influenza coinfection (12.0 days) (P < .001). The multivariable Cox proportional hazards model showed that the hazards ratio of resolution in lung involvement was 1.878 (P = .020) for patients administered lopinavir/ritonavir, compared with those not administered lopinavir/ritonavir (95% confidence interval: 1.103-3.196). Among influenza coinfected patients, those treated with lopinavir/ritonavir exhibited faster pneumonia resolution within 2 weeks after symptom onset (37% vs 1%; P = .001). There was no difference in lung involvement between influenza coinfected and noninfected groups. Lopinavir/ritonavir eliminated the difference of lung involvement between influenza coinfected and noninfected groups, indicating that lopinavir/ritonavir is associated with pneumonia resolution in COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Coinfection/drug therapy , Influenza, Human/drug therapy , Lopinavir/therapeutic use , Pneumonia/drug therapy , Ritonavir/therapeutic use , Aged , COVID-19/virology , Case-Control Studies , Cohort Studies , Drug Therapy, Combination/methods , Female , Hospitalization , Humans , Influenza, Human/virology , Male , Middle Aged , Pandemics/prevention & control , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/drug effects , Virus Shedding/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...