Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1580700

ABSTRACT

Acute respiratory distress syndrome (ARDS) followed by repair with lung remodeling is observed in COVID-19. These findings can lead to pulmonary terminal fibrosis, a form of irreversible sequelae. There is evidence that TGF-ß is intimately involved in the fibrogenic process. When activated, TGF-ß promotes the differentiation of fibroblasts into myofibroblasts and regulates the remodeling of the extracellular matrix (ECM). In this sense, the present study evaluated the histopathological features and immunohistochemical biomarkers (ACE-2, AKT-1, Caveolin-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 tissue expression) involved in the TGF-ß1 signaling pathways and pulmonary fibrosis. The study consisted of 24 paraffin lung samples from patients who died of COVID-19 (COVID-19 group), compared to 10 lung samples from patients who died of H1N1pdm09 (H1N1 group) and 11 lung samples from patients who died of different causes, with no lung injury (CONTROL group). In addition to the presence of alveolar septal fibrosis, diffuse alveolar damage (DAD) was found to be significantly increased in the COVID-19 group, associated with a higher density of Collagen I (mature) and III (immature). There was also a significant increase observed in the immunoexpression of tissue biomarkers ACE-2, AKT-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 in the COVID-19 group. A significantly lower expression of Caveolin-1 was also found in this group. The results suggest the participation of TGF-ß pathways in the development process of pulmonary fibrosis. Thus, it would be plausible to consider therapy with TGF-ß inhibitors in those patients recovered from COVID-19 to mitigate a possible development of pulmonary fibrosis and its consequences for post-COVID-19 life quality.


Subject(s)
COVID-19/metabolism , Pulmonary Fibrosis/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/metabolism , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/drug therapy , COVID-19/pathology , Caveolin 1/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Female , Humans , Hyaluronan Receptors/metabolism , Immunohistochemistry , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , Influenza, Human/pathology , Interleukin-4/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Retrospective Studies , Transforming Growth Factor beta1/metabolism
2.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-917002

ABSTRACT

Pro-inflammatory cytokines like interleukin-1ß (IL-1ß) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1ß on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1ß and used Atomic Force Microscopy to unveil that IL-1ß significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1ß stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1ß may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1ß-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1ß provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.


Subject(s)
Interleukin-1beta/physiology , Lung/physiology , Actins/metabolism , Adolescent , Adult , Biomechanical Phenomena , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type III/genetics , Collagen Type III/metabolism , Cyclooxygenase 2/metabolism , Elasticity/drug effects , Elasticity/physiology , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Interleukin-1beta/pharmacology , Lung/cytology , Lung/drug effects , Male , Microscopy, Atomic Force , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/genetics , Regeneration/physiology , Wound Healing/drug effects , Wound Healing/genetics , Wound Healing/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL