Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
5.
Elife ; 102021 09 21.
Article in English | MEDLINE | ID: covidwho-1513080

ABSTRACT

Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind's insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.


Subject(s)
Biological Evolution , Communicable Diseases, Emerging/transmission , Disease Reservoirs , Zoonoses/transmission , Animals , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/immunology , Host-Pathogen Interactions , Humans , Virulence , Zoonoses/epidemiology , Zoonoses/immunology
8.
Cell Host Microbe ; 29(2): 160-164, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1385266

ABSTRACT

The emergence of alternate variants of SARS-CoV-2 due to ongoing adaptations in humans and following human-to-animal transmission has raised concern over the efficacy of vaccines against new variants. We describe human-to-animal transmission (zooanthroponosis) of SARS-CoV-2 and its implications for faunal virus persistence and vaccine-mediated immunity.


Subject(s)
COVID-19/veterinary , Communicable Diseases, Emerging/veterinary , SARS-CoV-2/pathogenicity , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Humans , Immunity , Viral Vaccines/immunology
9.
Int Health ; 12(2): 77-85, 2020 02 12.
Article in English | MEDLINE | ID: covidwho-1387916

ABSTRACT

BACKGROUND: Strategies are urgently needed to mitigate the risk of zoonotic disease emergence in southern China, where pathogens with zoonotic potential are known to circulate in wild animal populations. However, the risk factors leading to emergence are poorly understood, which presents a challenge in developing appropriate mitigation strategies for local communities. METHODS: Residents in rural communities of Yunnan, Guangxi and Guangdong provinces were recruited and enrolled in this study. Data were collected through ethnographic interviews and field observations, and thematically coded and analysed to identify both risk and protective factors for zoonotic disease emergence at the individual, community and policy levels. RESULTS: Eighty-eight ethnographic interviews and 55 field observations were conducted at nine selected sites. Frequent human-animal interactions and low levels of environmental biosecurity in local communities were identified as risks for zoonotic disease emergence. Policies and programmes existing in the communities provide opportunities for zoonotic risk mitigation. CONCLUSIONS: This study explored the relationship among zoonotic risk and human behaviour, environment and policies in rural communities in southern China. It identifies key behavioural risk factors that can be targeted for development of tailored risk-mitigation strategies to reduce the threat of novel zoonoses.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/transmission , Coronavirus Infections/transmission , Disease Outbreaks/prevention & control , Pneumonia, Viral/transmission , Rural Population , Virus Diseases/transmission , Zoonoses/transmission , Adolescent , Adult , Animals , Betacoronavirus , COVID-19 , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Female , Health Knowledge, Attitudes, Practice , Humans , Interviews as Topic , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Qualitative Research , Risk Factors , SARS-CoV-2 , Severe Acute Respiratory Syndrome , Virus Diseases/epidemiology , Young Adult , Zoonoses/epidemiology , Zoonoses/virology
10.
Cells ; 10(6)2021 05 23.
Article in English | MEDLINE | ID: covidwho-1243956

ABSTRACT

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.


Subject(s)
Adaptive Immunity/genetics , Camelus/virology , Communicable Diseases, Emerging/immunology , Coronavirus Infections/immunology , Immunity, Innate/genetics , Zoonoses/immunology , Animals , Antibodies, Viral , Bronchi/cytology , Bronchi/physiology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Camelus/genetics , Camelus/immunology , Cilia/physiology , Communicable Diseases, Emerging/genetics , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Coronavirus Infections/genetics , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Reservoirs/virology , Female , Genetic Predisposition to Disease , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Male , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Respiratory Mucosa/cytology , Respiratory Mucosa/physiology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , United Arab Emirates , Virus Replication/genetics , Virus Replication/immunology , Zoonoses/genetics , Zoonoses/transmission , Zoonoses/virology
11.
Cell ; 184(8): 1960-1961, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1174128

ABSTRACT

The events of the past year have underscored the serious and rapid threat that emerging viruses pose to global health. However, much of the rapid progress in understanding and combating SARS-CoV-2 was made possible because of the decades of important groundwork laid from researchers studying other emergent infectious diseases. The 2021 John Dirks Canada Gairdner Global Health award recognizes the contributions of Joseph Sriyal Malik Peiris and Yi Guan toward understanding the origins and options for control of newly emerging infectious disease outbreaks in Asia, notably zoonotic influenza and severe acute respiratory syndrome (SARS). Cell's Nicole Neuman corresponded with Yi Guan about his path to becoming a viral infection sleuth and the challenges of understanding emerging pathogens and their origins. Excerpts of their exchange are included here.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Disease Outbreaks , Influenza, Human , Zoonoses , Animals , Asia , COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/history , Communicable Diseases, Emerging/transmission , Disease Outbreaks/history , Global Health , History, 21st Century , Humans , Influenza, Human/epidemiology , Influenza, Human/history , Influenza, Human/transmission , Zoonoses/epidemiology , Zoonoses/transmission
12.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: covidwho-1171893

ABSTRACT

The death toll and economic loss resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are stark reminders that we are vulnerable to zoonotic viral threats. Strategies are needed to identify and characterize animal viruses that pose the greatest risk of spillover and spread in humans and inform public health interventions. Using expert opinion and scientific evidence, we identified host, viral, and environmental risk factors contributing to zoonotic virus spillover and spread in humans. We then developed a risk ranking framework and interactive web tool, SpillOver, that estimates a risk score for wildlife-origin viruses, creating a comparative risk assessment of viruses with uncharacterized zoonotic spillover potential alongside those already known to be zoonotic. Using data from testing 509,721 samples from 74,635 animals as part of a virus discovery project and public records of virus detections around the world, we ranked the spillover potential of 887 wildlife viruses. Validating the risk assessment, the top 12 were known zoonotic viruses, including SARS-CoV-2. Several newly detected wildlife viruses ranked higher than known zoonotic viruses. Using a scientifically informed process, we capitalized on the recent wealth of virus discovery data to systematically identify and prioritize targets for investigation. The publicly accessible SpillOver platform can be used by policy makers and health scientists to inform research and public health interventions for prevention and rapid control of disease outbreaks. SpillOver is a living, interactive database that can be refined over time to continue to improve the quality and public availability of information on viral threats to human health.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Pandemics , SARS-CoV-2 , Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Humans , Zoonoses/epidemiology , Zoonoses/transmission
14.
Viruses ; 13(2)2021 02 06.
Article in English | MEDLINE | ID: covidwho-1079721

ABSTRACT

This Special Issue of Viruses is a collection of the current knowledge on a broad range of emerging human, animal, and plant viral diseases [...].


Subject(s)
Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Virus Diseases/epidemiology , Virus Diseases/transmission , Viruses/classification , Animals , Humans , Plant Diseases/virology , Plants/virology
15.
Crit Rev Microbiol ; 47(3): 307-322, 2021 May.
Article in English | MEDLINE | ID: covidwho-1078679

ABSTRACT

The ongoing COVID-19 pandemic has made us wonder what led to its occurrence and what can be done to avoid such events in the future. As we document, one changing circumstance that is resulting in the emergence and changing the expression of viral diseases in both plants and animals is climate change. Of note, the rapidly changing environment and weather conditions such as excessive flooding, droughts, and forest fires have raised concerns about the global ecosystem's security, sustainability, and balance. In this review, we discuss the main consequences of climate change and link these to how they impact the appearance of new viral pathogens, how they may facilitate transmission between usual and novel hosts, and how they may also affect the host's ability to manage the infection. We emphasize how changes in temperature and humidity and other events associated with climate change influence the reservoirs of viral infections, their transmission by insects and other intermediates, their survival outside the host as well the success of infection in plants and animals. We conclude that climate change has mainly detrimental consequences for the emergence, transmission, and outcome of viral infections and plead the case for halting and hopefully reversing this dangerous event.


Subject(s)
COVID-19/transmission , Climate Change , Communicable Diseases, Emerging/transmission , Plant Diseases/virology , Virus Diseases/transmission , Animals , Aquatic Organisms/virology , COVID-19/complications , COVID-19/etiology , COVID-19/immunology , Chiroptera/virology , Communicable Diseases, Emerging/complications , Communicable Diseases, Emerging/etiology , Communicable Diseases, Emerging/immunology , Crops, Agricultural/virology , Disease Reservoirs/virology , Disease Vectors/classification , Food Supply , Humans , Humidity , Plant Diseases/immunology , Primate Diseases/transmission , Primate Diseases/virology , Primates , Rain , Seasons , Temperature , Virus Diseases/complications , Virus Diseases/etiology , Virus Diseases/immunology
16.
Mol Ecol Resour ; 21(5): 1410-1412, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1072520

ABSTRACT

Emerging infectious diseases (EIDs) are increasingly recognized as a threat to both biodiversity and human health (Scheele et al., 2019; Wells et al., 2020). But pathogens cannot been seen as unique entities; their intraspecific genetic variability represented in variants, strains, antigenic types or genetic lineages may cause different impacts at the population level (Nelson and Holmes, 2007; Greenspan et al., 2018). The global spread of pathogens has been largely facilitated by globalization of transport, which particularly intensified during the last century (O'Hanlon et al., 2018). As seen with SARS-CoV-2, air travel can rapidly spread a pathogen globally (Wells et al., 2020). Furthermore, after initial introduction subsequent translocations of a pathogen may cause the contact of different variants facilitating the rise of novel genotypes that may have higher pathogenicity or transmissibility (Nelson and Holmes, 2007; Greenspan et al., 2018). Chytridiomycosis is an EID caused by the fungus Batrachochytrium dendrobatidis (Bd), that infects amphibian skin causing population declines to extinction in susceptible species. Now a wildlife pandemic, Bd has been recognized as the single pathogen causing the greatest loss of biodiversity on Earth (Scheele et al., 2019). Recent advances in genetics have made novel tools for pathogen detection and characterization more accessible and reliable (Boyle et al., 2004; Byrne et al., 2019). In this issue of Molecular Ecology Resources, Ghosh et al. (2021) report the development of a new genotyping qPCR assay targeting mitochondrial DNA (mtDNA) of Bd, and based on noninvasive swab samples (Figure 1), discriminate between the two most globally widespread and pathogenic genetic lineages of Bd. Having a better understanding of how the genetic diversity of a pathogen is distributed is crucial to understand their spread patterns and develop timely mitigation strategies.


Subject(s)
Animals, Wild/microbiology , Batrachochytrium/genetics , Genetic Variation/genetics , Mycoses/epidemiology , Mycoses/prevention & control , Pandemics/prevention & control , Animals , Biodiversity , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , DNA, Mitochondrial/genetics , Genotype , Humans , Mycoses/microbiology , Mycoses/therapy
17.
Cell Host Microbe ; 29(2): 160-164, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1064929

ABSTRACT

The emergence of alternate variants of SARS-CoV-2 due to ongoing adaptations in humans and following human-to-animal transmission has raised concern over the efficacy of vaccines against new variants. We describe human-to-animal transmission (zooanthroponosis) of SARS-CoV-2 and its implications for faunal virus persistence and vaccine-mediated immunity.


Subject(s)
COVID-19/veterinary , Communicable Diseases, Emerging/veterinary , SARS-CoV-2/pathogenicity , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Humans , Immunity , Viral Vaccines/immunology
18.
PLoS Biol ; 18(11): e3000947, 2020 11.
Article in English | MEDLINE | ID: covidwho-1005852

ABSTRACT

Human perturbation of natural systems is accelerating the emergence of infectious diseases, mandating integration of disease and ecological research. Bats have been associated with recent zoonoses, but our bibliometric analysis of coauthor relationships identified a separation of bat ecologists and infectious disease researchers with few cross-disciplinary relationships. Of 5,645 papers, true interdisciplinary collaborations occurred primarily in research focused on White Nose Syndrome (WNS). This finding is important because it illustrates how research with outcomes favoring both bat conservation and disease mitigation promotes domain integration and network connectivity. We advocate for increased engagement between ecology and infectious researchers to address such common causes and suggest that efforts focus on leveraging existing activities, building interdisciplinary projects, and networking individuals and networks to integrate domains and coordinate resources. We provide specific opportunities for pursuing these strategies through the Bat One Health Research Network (BOHRN).


Subject(s)
Chiroptera/virology , Communicable Diseases, Emerging/veterinary , Animals , COVID-19/transmission , COVID-19/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Conservation of Natural Resources , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Disease Vectors , Ecosystem , Humans , Interdisciplinary Research , Pandemics , SARS-CoV-2 , Viral Zoonoses/transmission , Viral Zoonoses/virology
19.
Front Public Health ; 8: 596944, 2020.
Article in English | MEDLINE | ID: covidwho-979060

ABSTRACT

The World Health Organization defines a zoonosis as any infection naturally transmissible from vertebrate animals to humans. The pandemic of Coronavirus disease (COVID-19) caused by SARS-CoV-2 has been classified as a zoonotic disease, however, no animal reservoir has yet been found, so this classification is premature. We propose that COVID-19 should instead be classified an "emerging infectious disease (EID) of probable animal origin." To explore if COVID-19 infection fits our proposed re-categorization vs. the contemporary definitions of zoonoses, we reviewed current evidence of infection origin and transmission routes of SARS-CoV-2 virus and described this in the context of known zoonoses, EIDs and "spill-over" events. Although the initial one hundred COVID-19 patients were presumably exposed to the virus at a seafood Market in China, and despite the fact that 33 of 585 swab samples collected from surfaces and cages in the market tested positive for SARS-CoV-2, no virus was isolated directly from animals and no animal reservoir was detected. Elsewhere, SARS-CoV-2 has been detected in animals including domesticated cats, dogs, and ferrets, as well as captive-managed mink, lions, tigers, deer, and mice confirming zooanthroponosis. Other than circumstantial evidence of zoonotic cases in mink farms in the Netherlands, no cases of natural transmission from wild or domesticated animals have been confirmed. More than 40 million human COVID-19 infections reported appear to be exclusively through human-human transmission. SARS-CoV-2 virus and COVID-19 do not meet the WHO definition of zoonoses. We suggest SARS-CoV-2 should be re-classified as an EID of probable animal origin.


Subject(s)
COVID-19/classification , Communicable Diseases, Emerging , SARS-CoV-2/classification , Zoonoses , Animals , Animals, Wild , China , Communicable Diseases, Emerging/classification , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Humans , World Health Organization , Zoonoses/classification , Zoonoses/transmission , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL