Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
PLoS One ; 17(3): e0264644, 2022.
Article in English | MEDLINE | ID: covidwho-1793511

ABSTRACT

INTRODUCTION: Patients with high-consequence infectious diseases (HCID) are rare in Western Europe. However, high-level isolation units (HLIU) must always be prepared for patient admission. Case fatality rates of HCID can be reduced by providing optimal intensive care management. We here describe a single centre's preparation, its embedding in the national context and the challenges we faced during the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. METHODS: Ten team leaders organize monthly whole day trainings for a team of doctors and nurses from the HLIU focusing on intensive care medicine. Impact and relevance of training are assessed by a questionnaire and a perception survey, respectively. Furthermore, yearly exercises with several partner institutions are performed to cover different real-life scenarios. Exercises are evaluated by internal and external observers. Both training sessions and exercises are accompanied by intense feedback. RESULTS: From May 2017 monthly training sessions were held with a two-month and a seven-month break due to the first and second wave of the SARS-CoV-2 pandemic, respectively. Agreement with the statements of the questionnaire was higher after training compared to before training indicating a positive effect of training sessions on competence. Participants rated joint trainings for nurses and doctors at regular intervals as important. Numerous issues with potential for improvement were identified during post processing of exercises. Action plans for their improvement were drafted and as of now mostly implemented. The network of the permanent working group of competence and treatment centres for HCID (Ständiger Arbeitskreis der Kompetenz- und Behandlungszentren für Krankheiten durch hochpathogene Erreger (STAKOB)) at the Robert Koch-Institute (RKI) was strengthened throughout the SARS-CoV-2 pandemic. DISCUSSION: Adequate preparation for the admission of patients with HCID is challenging. We show that joint regular trainings of doctors and nurses are appreciated and that training sessions may improve perceived skills. We also show that real-life scenario exercises may reveal additional deficits, which cannot be easily disclosed in training sessions. Although the SARS-CoV-2 pandemic interfered with our activities the enhanced cooperation among German HLIU during the pandemic ensured constant readiness for the admission of HCID patients to our or to collaborating HLIU. This is a single centre's experience, which may not be generalized to other centres. However, we believe that our work may address aspects that should be considered when preparing a unit for the admission of patients with HCID. These may then be adapted to the local situations.


Subject(s)
Communicable Diseases/therapy , Critical Care/organization & administration , Intensive Care Units/organization & administration , Patient Isolation/organization & administration , COVID-19/epidemiology , Clinical Competence , Communicable Diseases/epidemiology , Education, Medical, Continuing/methods , Education, Medical, Continuing/organization & administration , Education, Nursing, Continuing/methods , Education, Nursing, Continuing/organization & administration , Environment Design , Germany/epidemiology , History, 21st Century , Humans , Pandemics , Patient Admission , Patient Care Team/organization & administration , Patient Isolation/methods , SARS-CoV-2/physiology , Simulation Training/organization & administration , Workflow
2.
Front Immunol ; 12: 838082, 2021.
Article in English | MEDLINE | ID: covidwho-1674340

ABSTRACT

Recombinant antibodies such as nanobodies are progressively demonstrating to be a valid alternative to conventional monoclonal antibodies also for clinical applications. Furthermore, they do not solely represent a substitute for monoclonal antibodies but their unique features allow expanding the applications of biotherapeutics and changes the pattern of disease treatment. Nanobodies possess the double advantage of being small and simple to engineer. This combination has promoted extremely diversified approaches to design nanobody-based constructs suitable for particular applications. Both the format geometry possibilities and the functionalization strategies have been widely explored to provide macromolecules with better efficacy with respect to single nanobodies or their combination. Nanobody multimers and nanobody-derived reagents were developed to image and contrast several cancer diseases and have shown their effectiveness in animal models. Their capacity to block more independent signaling pathways simultaneously is considered a critical advantage to avoid tumor resistance, whereas the mass of these multimeric compounds still remains significantly smaller than that of an IgG, enabling deeper penetration in solid tumors. When applied to CAR-T cell therapy, nanobodies can effectively improve the specificity by targeting multiple epitopes and consequently reduce the side effects. This represents a great potential in treating malignant lymphomas, acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma and solid tumors. Apart from cancer treatment, multispecific drugs and imaging reagents built with nanobody blocks have demonstrated their value also for detecting and tackling neurodegenerative, autoimmune, metabolic, and infectious diseases and as antidotes for toxins. In particular, multi-paratopic nanobody-based constructs have been developed recently as drugs for passive immunization against SARS-CoV-2 with the goal of impairing variant survival due to resistance to antibodies targeting single epitopes. Given the enormous research activity in the field, it can be expected that more and more multimeric nanobody molecules will undergo late clinical trials in the next future. Systematic Review Registration.


Subject(s)
Single-Domain Antibodies/chemistry , Single-Domain Antibodies/therapeutic use , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Communicable Diseases/immunology , Communicable Diseases/therapy , Humans , Immunomodulation , Molecular Imaging , Molecular Targeted Therapy , Neoplasms/diagnostic imaging , Neoplasms/immunology , Neoplasms/therapy , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Single-Domain Antibodies/immunology
3.
Rev Med Suisse ; 18(767): 173-181, 2022 Feb 02.
Article in French | MEDLINE | ID: covidwho-1675729

ABSTRACT

The substantial progresses during the last decades in the field of infectious diseases have significantly improved their prevention, diagnosis and treatment. Basic and medical sciences have efficiently dealt with the challenges of emerging infections, infectious complications related to the increasing complexity of medical practices and marked slow-down in the development of new antimicrobial agents. During the worldwide crisis related to the COVID-19 pandemic, the « medical normality ¼ has been put in stand-by, but medical advances have fortunately continued. In the present article we present new knowledge in the field of bacterial, viral and fungal infections, which may modify hospital and ambulatory practices. Significant achievements in the field of COVID-19 will be presented in a future article.


Les progrès spectaculaires des dernières décennies dans le domaine des maladies infectieuses ont sensiblement amélioré leurs prévention, diagnostic et traitement. Les sciences de base et cliniques ont répondu présent face à de multiples défis: infections émergentes, complications infectieuses de pratiques médicales de plus en plus complexes, ralentissement préoccupant du développement de nouveaux agents antimicrobiens. Pendant la crise mondiale liée à la pandémie de Covid-19, la « normalité médicale ¼ a dû être mise entre parenthèses, mais les progrès médicaux se sont ­ fort heureusement ­ poursuivis. Dans cet article, nous vous présentons de nouvelles connaissances en matière d'infections bactériennes, virales ou fongiques qui pourraient faire évoluer nos pratiques hospitalières et ambulatoires. Les acquis marquants dans le domaine du Covid-19 feront l'objet d'un article à venir.


Subject(s)
COVID-19 , Communicable Diseases , Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Communicable Diseases/therapy , Forecasting , Humans , Pandemics , SARS-CoV-2
4.
Acc Chem Res ; 54(23): 4283-4293, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1521679

ABSTRACT

After decades of extensive fundamental studies and clinical trials, lipid nanoparticles (LNPs) have demonstrated effective mRNA delivery such as the Moderna and Pfizer-BioNTech vaccines fighting against COVID-19. Moreover, researchers and clinicians have been investigating mRNA therapeutics for a variety of therapeutic indications including protein replacement therapy, genome editing, and cancer immunotherapy. To realize these therapeutics in the clinic, there are many formidable challenges. First, novel delivery systems such as LNPs with high delivery efficiency and low toxicity need to be developed for different cell types. Second, mRNA molecules need to be engineered for improved pharmaceutical properties. Lastly, the LNP-mRNA nanoparticle formulations need to match their therapeutic applications.In this Account, we summarize our recent advances in the design and development of various classes of lipids and lipid derivatives, which can be formulated with multiple types of mRNA molecules to treat diverse diseases. For example, we conceived a series of ionizable lipid-like molecules based on the structures of a benzene core, an amide linker, and hydrophobic tails. We identified N1,N3,N5-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide (TT3) as a lead compound for mRNA delivery both in vitro and in vivo. Moreover, we tuned the biodegradability of these lipid-like molecules by introducing branched ester or linear ester chains. Meanwhile, inspired by biomimetic compounds, we synthesized vitamin-derived lipids, chemotherapeutic conjugated lipids, phospholipids, and glycolipids. These scaffolds greatly broaden the chemical space of ionizable lipids for mRNA delivery. In another section, we highlight our efforts on the research direction of mRNA engineering. We previously optimized mRNA chemistry using chemically-modified nucleotides to increase the protein expression, such as pseudouridine (ψ), 5-methoxyuridine (5moU), and N1-methylpseudouridine (me1ψ). Also, we engineered the sequences of mRNA 5' untranslated regions (5'-UTRs) and 3' untranslated regions (3'-UTRs), which dramatically enhanced protein expression. With the progress of LNP development and mRNA engineering, we consolidate these technologies and apply them to treat diseases such as genetic disorders, infectious diseases, and cancers. For instance, TT3 and its analog-derived lipid-like nanoparticles can effectively deliver factor IX or VIII mRNA and recover the clotting activity in hemophilia mouse models. Engineered mRNAs encoding SARS-CoV-2 antigens serve well as vaccine candidates against COVID-19. Vitamin-derived lipid nanoparticles loaded with antimicrobial peptide-cathepsin B mRNA enable adoptive macrophage transfer to treat multidrug resistant bacterial sepsis. Biomimetic lipids such as phospholipids formulated with mRNAs encoding costimulatory receptors lead to enhanced cancer immunotherapy.Overall, lipid-mRNA nanoparticle formulations have considerably benefited public health in the COVID-19 pandemic. To expand their applications in clinical use, research work from many disciplines such as chemistry, engineering, materials, pharmaceutical sciences, and medicine need to be integrated. With these collaborative efforts, we believe that more and more lipid-mRNA nanoparticle formulations will enter the clinic in the near future and benefit human health.


Subject(s)
Drug Carriers/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , RNA, Messenger/chemistry , Animals , Benzamides/chemistry , Biomimetic Materials/chemistry , Communicable Diseases/immunology , Communicable Diseases/therapy , Disease Models, Animal , Genetic Diseases, Inborn/immunology , Genetic Diseases, Inborn/therapy , Humans , Mice , Neoplasms/immunology , Neoplasms/therapy , Phospholipids/chemistry , RNA, Messenger/metabolism , RNA, Messenger/therapeutic use , Untranslated Regions , Vitamins/chemistry
5.
J Biomed Semantics ; 12(1): 13, 2021 07 18.
Article in English | MEDLINE | ID: covidwho-1484319

ABSTRACT

BACKGROUND: Effective response to public health emergencies, such as we are now experiencing with COVID-19, requires data sharing across multiple disciplines and data systems. Ontologies offer a powerful data sharing tool, and this holds especially for those ontologies built on the design principles of the Open Biomedical Ontologies Foundry. These principles are exemplified by the Infectious Disease Ontology (IDO), a suite of interoperable ontology modules aiming to provide coverage of all aspects of the infectious disease domain. At its center is IDO Core, a disease- and pathogen-neutral ontology covering just those types of entities and relations that are relevant to infectious diseases generally. IDO Core is extended by disease and pathogen-specific ontology modules. RESULTS: To assist the integration and analysis of COVID-19 data, and viral infectious disease data more generally, we have recently developed three new IDO extensions: IDO Virus (VIDO); the Coronavirus Infectious Disease Ontology (CIDO); and an extension of CIDO focusing on COVID-19 (IDO-COVID-19). Reflecting the fact that viruses lack cellular parts, we have introduced into IDO Core the term acellular structure to cover viruses and other acellular entities studied by virologists. We now distinguish between infectious agents - organisms with an infectious disposition - and infectious structures - acellular structures with an infectious disposition. This in turn has led to various updates and refinements of IDO Core's content. We believe that our work on VIDO, CIDO, and IDO-COVID-19 can serve as a model for yielding greater conformance with ontology building best practices. CONCLUSIONS: IDO provides a simple recipe for building new pathogen-specific ontologies in a way that allows data about novel diseases to be easily compared, along multiple dimensions, with data represented by existing disease ontologies. The IDO strategy, moreover, supports ontology coordination, providing a powerful method of data integration and sharing that allows physicians, researchers, and public health organizations to respond rapidly and efficiently to current and future public health crises.


Subject(s)
Biological Ontologies/statistics & numerical data , COVID-19/prevention & control , Communicable Disease Control/statistics & numerical data , Communicable Diseases/therapy , Computational Biology/statistics & numerical data , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/virology , Communicable Disease Control/methods , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Computational Biology/methods , Data Mining/methods , Data Mining/statistics & numerical data , Epidemics , Humans , Information Dissemination/methods , Public Health/methods , Public Health/statistics & numerical data , SARS-CoV-2/physiology , Semantics
6.
Zhen Ci Yan Jiu ; 46(8): 717-20, 2021 Aug 25.
Article in Chinese | MEDLINE | ID: covidwho-1395343

ABSTRACT

Moxibustion therapy has a good therapeutic effect in warming yang, strengthening body resistance to dispel pathogenic cold and qi, thus being able to prevent and treat infectious diseases. There are many records about clinical application of moxibustion to infectious diseases in ancient and modern literature. In the present paper, we expound the specific methods of moxibustion for strengthening the body resistance and preventing infectious diseases and its application in the treatment of miasma, bone steaming disease, cholera, pestis, epidemic hemorrhagic fever and so on, in the records of ancient and modern times, and expound its effectiveness. On this basis, we also proposed the feasibility of moxibustion in the prevention and treatment of COVID-19, a new type of infectious disease currently.


Subject(s)
Acupuncture Therapy , COVID-19 , Communicable Diseases , Moxibustion , Communicable Diseases/therapy , Humans , Qi , SARS-CoV-2
7.
Infection ; 49(3): 377-385, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1384709

ABSTRACT

PURPOSE: CRISPR gene-editing technology has the potential to transform the diagnosis and treatment of infectious diseases, but most clinicians are unaware of its broad applicability. Derived from an ancient microbial defence system, these so-called "molecular scissors" enable precise gene editing with a low error rate. However, CRISPR systems can also be targeted against pathogenic DNA or RNA sequences. This potential is being combined with innovative delivery systems to develop new therapeutic approaches to infectious diseases. METHODS: We searched Pubmed and Google Scholar for CRISPR-based strategies in the diagnosis and treatment of infectious diseases. Reference lists were reviewed and synthesized for narrative review. RESULTS: CRISPR-based strategies represent a novel approach to many challenging infectious diseases. CRISPR technologies can be harnessed to create rapid, low-cost diagnostic systems, as well as to identify drug-resistance genes. Therapeutic strategies, such as CRISPR systems that cleave integrated viral genomes or that target resistant bacteria, are in development. CRISPR-based therapies for emerging viruses, such as SARS-CoV-2, have also been proposed. Finally, CRISPR systems can be used to reprogram human B cells to produce neutralizing antibodies. The risks of CRISPR-based therapies include off-target and on-target modifications. Strategies to control these risks are being developed and a phase 1 clinical trials of CRISPR-based therapies for cancer and monogenic diseases are already underway. CONCLUSIONS: CRISPR systems have broad applicability in the field of infectious diseases and may offer solutions to many of the most challenging human infections.


Subject(s)
CRISPR-Cas Systems , Communicable Diseases/diagnosis , Communicable Diseases/therapy , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Gene Editing , Humans , Molecular Diagnostic Techniques , Molecular Targeted Therapy , Viruses/genetics , Viruses/isolation & purification , Viruses/pathogenicity
9.
Clin Microbiol Infect ; 27(11): 1693.e1-1693.e8, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1347547

ABSTRACT

OBJECTIVES: To define the status of infectious diseases (ID) as an approved specialty in Europe; to enumerate the number of specialists (in general and in relation to the overall population) and specialist trainees and describe the content, delivery and evaluation of postgraduate training in ID in different countries. METHODS: Structured web-based questionnaire surveys in March 2021 of responsible national authorities, specialist societies and individual country representatives to the Section of Infectious Diseases of the European Union for Medical Specialties. Descriptive analysis of quantitative and qualitative responses. RESULTS: In responses received from 33/35 (94.3%) countries, ID is recognized as a specialty in 24 and as a subspecialty of general internal medicine (GIM) in eight, but it is not recognized in Spain. The number of ID specialists per country varies from <5 per million inhabitants to 78 per million inhabitants. Median length of training is 5 years (interquartile range 4.0-6.0 years) with variable amounts of preceding and/or concurrent GIM. Only 21.2% of countries (7/33) provide the minimum recommended training of 6 months in microbiology and 30% cover competencies such as palliative care, team working and leadership, audit, and quality control. Training is monitored by personal logbook or e-portfolio in 75.8% (25/33) and assessed by final examinations in 69.7% (23/33) of countries, but yearly reviews with trainees only occur in 54.5% (18/33) of countries. CONCLUSIONS: There are substantial gaps in modernization of ID training in many countries to match current European training requirements. Joint training with clinical microbiology (CM) and in multidisciplinary team working should be extended. Training/monitoring trainers should find greater focus, together with regular feedback to trainees within many national training programmes.


Subject(s)
Communicable Diseases , Education, Medical , Infectious Disease Medicine/education , Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Communicable Diseases/therapy , Curriculum , Education, Medical/trends , Europe , Humans , Specialization , Surveys and Questionnaires
10.
Mol Aspects Med ; 81: 101003, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1329970

ABSTRACT

The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.


Subject(s)
Communicable Diseases , Oligonucleotides, Antisense , Communicable Diseases/therapy , Humans , Oligonucleotides , RNA, Small Interfering/genetics , Vaccines, Synthetic
11.
Clin Infect Dis ; 74(4): 729-733, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1328915

ABSTRACT

Emerging infectious disease epidemics require a rapid response from health systems; however, evidence-based consensus guidelines are generally absent early in the course of events. Formed in 2017 by 5 high-level isolation units spanning 3 continents, the experience of the Global Infectious Disease Preparedness Network (GIDPN) early in the course of coronavirus disease 2019 (COVID-19) provides a model for accelerating best practice development and improving decision-making in health emergencies. The network served as a platform for real-time, open and transparent information-sharing during unknowns of an active outbreak by clinicians caring for patients, by researchers conducting clinical trials and transmission and infection prevention studies, and by teams advising local and national policy makers. Shared knowledge led to earlier adoption of some treatment modalities as compared to most peer institutions and to implementation of protocols prior to incorporation into national guidelines. GIDPN and similar networks are integral in enhancing preparedness for and response to future epidemics/pandemics.


Subject(s)
COVID-19 , Communicable Diseases , Communicable Diseases/epidemiology , Communicable Diseases/therapy , Decision Making , Humans , Pandemics/prevention & control , SARS-CoV-2
12.
Front Immunol ; 12: 673699, 2021.
Article in English | MEDLINE | ID: covidwho-1325526

ABSTRACT

Conventional vaccinations and immunotherapies have encountered major roadblocks in preventing infectious diseases like HIV, influenza, and malaria. These challenges are due to the high genomic variation and immunomodulatory mechanisms inherent to these diseases. Passive transfer of broadly neutralizing antibodies may offer partial protection, but these treatments require repeated dosing. Some recombinant viral vectors, such as those based on lentiviruses and adeno-associated viruses (AAVs), can confer long-term transgene expression in the host after a single dose. Particularly, recombinant (r)AAVs have emerged as favorable vectors, given their high in vivo transduction efficiency, proven clinical efficacy, and low immunogenicity profiles. Hence, rAAVs are being explored to deliver recombinant antibodies to confer immunity against infections or to diminish the severity of disease. When used as a vaccination vector for the delivery of antigens, rAAVs enable de novo synthesis of foreign proteins with the conformation and topology that resemble those of natural pathogens. However, technical hurdles like pre-existing immunity to the rAAV capsid and production of anti-drug antibodies can reduce the efficacy of rAAV-vectored immunotherapies. This review summarizes rAAV-based prophylactic and therapeutic strategies developed against infectious diseases that are currently being tested in pre-clinical and clinical studies. Technical challenges and potential solutions will also be discussed.


Subject(s)
Communicable Diseases/therapy , Dependovirus , Genetic Vectors , Immunotherapy/methods , Humans , Vaccines
13.
Front Cell Infect Microbiol ; 11: 697876, 2021.
Article in English | MEDLINE | ID: covidwho-1325516

ABSTRACT

Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.


Subject(s)
Bacteriophages , COVID-19 , Communicable Diseases , Animals , Antibodies, Monoclonal , Communicable Diseases/diagnosis , Communicable Diseases/therapy , Humans , Pandemics , SARS-CoV-2
14.
Adv Drug Deliv Rev ; 176: 113867, 2021 09.
Article in English | MEDLINE | ID: covidwho-1312868

ABSTRACT

Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities. Nevertheless, there has been no systematic summary of the delivery systems to cover a wide range of infectious pathogens. We herein summarized and compared the delivery systems for major or epidemic infectious diseases caused by bacteria, viruses, fungi, and parasites. We also included the newly licensed vaccines (e.g., COVID-19 vaccines) and those close to licensure. Furthermore, we highlighted advanced delivery systems with high efficiency, cross-protection, or long-term protection against epidemic pathogens, and we put forward prospects and thoughts on the development of future prophylactic vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Communicable Diseases/therapy , Drug Delivery Systems/methods , Pre-Exposure Prophylaxis/methods , Animals , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/immunology , Communicable Diseases/epidemiology , Communicable Diseases/immunology , Epidemics/prevention & control , Humans , Liposomes , Nanoparticles/administration & dosage
18.
Sci Robot ; 6(52)2021 03 31.
Article in English | MEDLINE | ID: covidwho-1209822

ABSTRACT

The world was unprepared for the COVID-19 pandemic, and recovery is likely to be a long process. Robots have long been heralded to take on dangerous, dull, and dirty jobs, often in environments that are unsuitable for humans. Could robots be used to fight future pandemics? We review the fundamental requirements for robotics for infectious disease management and outline how robotic technologies can be used in different scenarios, including disease prevention and monitoring, clinical care, laboratory automation, logistics, and maintenance of socioeconomic activities. We also address some of the open challenges for developing advanced robots that are application oriented, reliable, safe, and rapidly deployable when needed. Last, we look at the ethical use of robots and call for globally sustained efforts in order for robots to be ready for future outbreaks.


Subject(s)
Communicable Disease Control/trends , Communicable Diseases , Robotics/trends , COVID-19/prevention & control , Communicable Diseases/diagnosis , Communicable Diseases/therapy , Disinfection/trends , Humans , Machine Learning , Pandemics/prevention & control , Remote Sensing Technology/trends , Robotic Surgical Procedures/trends , Robotics/instrumentation , SARS-CoV-2 , User-Computer Interface
19.
JAMA Netw Open ; 4(4): e215493, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1178961

ABSTRACT

Importance: Claims that spinal manipulative therapy (SMT) can improve immune function have increased substantially during the COVID-19 pandemic and may have contributed to the rapid spread of both accurate and inaccurate information (referred to as an infodemic by the World Health Organization). Objective: To identify, appraise, and synthesize the scientific literature on the efficacy and effectiveness of SMT in preventing the development of infectious disease or improving disease-specific outcomes in patients with infectious disease and to examine the association between SMT and selected immunological, endocrine, and other physiological biomarkers. Evidence Review: A literature search of MEDLINE, the Cumulative Index to Nursing and Allied Health Literature, the Index to Chiropractic Literature, the Cochrane Central Register of Controlled Trials, and Embase was conducted from inception to April 15, 2020. Randomized clinical trials and cohort studies were included. Eligible studies were critically appraised, and evidence with high and acceptable quality was synthesized using the Synthesis Without Meta-Analysis guideline. Findings: A total of 2593 records were retrieved; after exclusions, 50 full-text articles were screened, and 16 articles reporting the findings of 13 studies comprising 795 participants were critically appraised. The literature search found no clinical studies that investigated the efficacy or effectiveness of SMT in preventing the development of infectious disease or improving disease-specific outcomes among patients with infectious disease. Eight articles reporting the results of 6 high- and acceptable-quality RCTs comprising 529 participants investigated the effect of SMT on biomarkers. Spinal manipulative therapy was not associated with changes in lymphocyte levels or physiological markers among patients with low back pain or participants who were asymptomatic compared with sham manipulation, a lecture series, and venipuncture control groups. Spinal manipulative therapy was associated with short-term changes in selected immunological biomarkers among asymptomatic participants compared with sham manipulation, a lecture series, and venipuncture control groups. Conclusions and Relevance: In this systematic review of 13 studies, no clinical evidence was found to support or refute claims that SMT was efficacious or effective in changing immune system outcomes. Although there were limited preliminary data from basic scientific studies suggesting that SMT may be associated with short-term changes in immunological and endocrine biomarkers, the clinical relevance of these findings is unknown. Given the lack of evidence that SMT is associated with the prevention of infectious diseases or improvements in immune function, further studies should be completed before claims of efficacy or effectiveness are made.


Subject(s)
COVID-19/therapy , Communicable Diseases/therapy , Manipulation, Chiropractic/methods , Manipulation, Spinal/methods , Physical Therapy Modalities , Biomarkers/analysis , COVID-19/immunology , Communicable Diseases/immunology , Humans , Immune System/physiopathology , Immune System/virology , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL